6.2立方根第一课时课件
《立方根》PPT教学课文课件
立方根
定义 表示
如果一个数的立方等于 a, 那么这个数叫做 a 的 __立__方__根__或三次方根.
一个数 a 的立方根用符 号表示为__3_a___,a 是 被__开__方__数__,3 是_根__指__数__
特征
正数 a 的平方根是____a_; 0 的平方根是___0____; 负数没有平方根
1. 算一算:
(1)
3
- 3 27 =__-__3___,
64
4 ____5____;
125
(2) 0.125 的立方根是__0__.5____;
(3) - 3 1 ____1____, 3 103 ___1_0____ .
2. 比较 3,4,3 50 的大小. 解:33 = 27,43 = 64.
因为 27 < 50 < 64, 所以 3 < 3 50 < 4. 3. 立方根概念的起源与几何中的正方体有关,如果 一个正方体的体积为 V,那么这个正方体的边长为 多少? 解:这个正方体的边长为 3 V.
4.一个长方体的长为 9 cm,宽为 3 cm,高为 4 cm, 而另一个正方体的体积是它的二倍,求这个正方体 的棱长.
解:设正方体的棱长为 a cm, 则依题意得 a3 = 9×3×4×2 = 216, 解得 a = 6. 故这个正方体的棱长为 6 cm.
5. 已知一个正数的两个平方根分别为 a 和 (-2a - 5). (1) 求 a 的值,并求这个正数; (2) 求 34 + 2a3 的立方根.
解:(1) 由题意,得 a + (-2a - 5) = 0, 解得 a = -5,∴ 这个正数为 (-5)2 = 25.
因为( 0 )3 = 0,所以 0 的立方根是 ( 0 );
最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根
3.计算:(1)- 3 1 =
3
;(2) 3 3 =
;
64
8
(3) 3 -0.027 =
;(4) 3 (-2)3 =
.
答案 (1)- 1 (2) 3 (3)-0.3 (4)-2
4
2
解析
(1)∵
1 4
3
=
1 64
,∴-
3
1 64
=- 1
4
.
(2) 3
33 8
=3
27 8
=3
3 3 2
=3.
2
(3)∵(-0.3)3=-0.027,∴ 3 -0.027 =-0.3.
6.2 立方根
5.若一个数的平方根与它的立方根完全相同,则这个数是 (
栏目索引
)
A.1 B.-1 C.0 D.±1,0
答案 C 根据平方根与立方根的性质,一个数的平方根与它的立方根完 全相同,则这个数是0.故选C.
6.(-6)3的立方根是
.
答案 -6
解析 易知 3 a3 =a,∴ 3 (-6)3 =-6.
知识点二 立方根的性质
6.2 立方根
栏目索引
7.下列式子不正确的是 ( )
A. 3 -a =- 3 a
B. 3 a3 =a
C.( 3 a )3=a D.(- 3 a )3=a
答案 D 由立方根的性质知(- 3 a )3=-a,故选项D中式子不正确.
8.下列语句正确的是 (
6.2 立方根
)
栏目索引
答案 A 设棱长为x cm,则x3=100,∴x= 3 100 ,∵64<100<125,∴4< 3 100 <5, 故选A.
(完整版)第六章实数6.2立方根
B、a≥4
C、0≤a≤4
D、任意数
第二课时
三位 一位
探究 先填写下表,再回答问题:
a 0.000001 0.001 1 1000 1000000
六位
3 a 0.01 0.1 1 10
100
二位
从上面表格中你发现什么?
探究 先填写下表,再回答问题:
a 0.000001 0.001 1 1000 1000000
填空,你能发现其中的规律吗?
2 2
公式一:
公式二: (3 a )3 a
试一试:
3 23 2
3 ( 3)3 3 44
3 (2)3 -2
3 (0.1)3 -0.1
公式三: 3 a3 a
1、要使 3 4 a3 4 a 成立,则a必须
满足 ( D )
x3 5
x 的立方等于5,则 x 就是5的立方根
则x表示为:x 3 5
3
问题:开立方这种运算,对应的结果叫什么?
你会区别下列的数吗?
a , a , 3 a , 4 a
a 表示a的算术平方根 a 表示a的平方根或a的二次方根
a 3
表示a的立方根或a的三次方根
a 4
表示a的四次方根
课堂检测
正方体的体积 = 棱长×棱长×棱长=棱长3
解:设正方体的棱长为 x ㎝, 由题意得:
x3 27
这就是要找一个数,使它的立方等于27.
因为:33 27
所以我们要找的x应该是:
x3
类比平方根的定义,给出立方根的定义:
(1)如何表示一个数的立方根? 读两遍:
一个数 a 的立方根可以表示为:
思考:由(1)和(3),(2)和(4)
人教版七年级下册数学6.2 立 方 根课件
3a3
.
解:(1) 3 64 3 64 -4 ;
(2) 3 0.064 3 0.43 0.4 ;
(3) 3 27 3 3 3 3 ; 125 5 5
(4) 3 a 3 a.
提示:求一个负数的立方根,可以先求出这个负 数绝对值的立方根,然后再取它的相反数.
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值. 例4 用计算器求下列各数的立方根:343,-1.331.
如∵ (3)2 9 , ∴ ﹢3 是9的算术平方根,
即 9 3
式子读作“9的算术平方根等于3” 或“根号9等于3” 规定:0的算术平方根是0
填空:
求平方
1 1
1
2 2
4
3
9
3
平方 互逆 运算
开平方
求平方根
1
1 1
4
2 2
9
3
3
求一个数a的平方根的运算,叫做开平方.
你能类比平方根的定义给出立方根的定义吗?
立方根的估算 50的立方根记作
3 50 .
问题:3 50 有多大呢?
因为 33 27 , 43 64
所以
3
‗‗‗‗3‗.6‗8
3
50
‗3‗.6‗9‗4‗‗‗‗
因为 3.63 46.656 , 3.73 50.653
所以 ‗‗‗3‗.‗6‗3‗.‗68‗ 3 50 3‗.6‗39‗.7‗‗‗‗‗
你能看出正数,0,负数的立方根各有什么特点?
8的立方根是 2
0.125的立方根是
1 2
-8的立方根是 -2 0的立方根是 0
归纳:
一个数的立方根只有一个; 正数的立方根是正数; 零的立方根是零; 负数的立方根是负数。
人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】
直
156 157 153 165 159 157 155 164 156
方
图 的 步 骤
1、计算最大值与最小值的差(极差)
在以上数据中, 最大值-最小值= 17_2_-__14_9__=__2_3___.
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
三、研读课文
158 158 160 168 159 159 151 158 159
知
168 158 154 158 154 169 158 158 158
识
159 167 170 153 160 160 159 159 160
点
149 163 163 162 172 161 153 156 162
例3 求下列各式的值(口答): (1)3 0.001 ; (2)3 1000 ;(3)3 216000 .
例4 求下列各式中的x:
(1) x3=0.125;
(2) 1
4
(10-x)3+54=0.
利用计算器算一算:
0.1
3 0.001
3 1 1
-0.06
3 0.000216
二、学习目标
1 了解频数及频数分布,掌握划分法 2 会用表格整理数据表示频数分布.
三、研读课文
认真阅读课本第145至149页的内容,
知 完成下面练习并体验知识点的形成过程. 识 点 一 问题 为了参加学校年级之间的广播体操比
赛,七年级准备从63名同学中挑出身高相 差不多的40名同学参加比赛.为此收集到这 63名同学的身高(单位:cm)如下:
一
人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】
《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。
6.2立方根
课堂小结
通过预学与探究,梳理本节课 的知识点和解题方法,说出对本 节课学习目标的理解。
班级和各组记录员汇总本节课 得分情况。
当堂检测
在规定的时间内,完成导学测 评13页第1-4题,组长收齐后核 对答案,将完成情况给老师汇报。
注意学生解题过程的规范要求。
预习及作业安排
1.阅读课本53-54页,完成练习。 2.完成导学案25页预习导学的内 容,组长下节课上课前组织校对答 案,经组内讨论不能解决的问题, 课前把题号或疑问上传本组黑板上演练
已知x2=16,(y+1)3=3
x
3 8
求 的y 立方根。
合作探究
探究3 比较4与 的3 6大0 小
合作探究
探究4 当x为何值时,
3 4互 3为x 相反数?
3与5x 6
合作探究
探究5 (1)若正方体的棱长为1,则其体积为1;若正 方体的棱长为2,则其体积为8;若正方体的棱长 为4,则其体积为64;若其棱长为8,则其体积为 512;…;当棱长为2n时,其体积为多少? (2)某正方体的体积为1时,其棱长为1;体积 为2时,棱长为3 2;体积为3时,棱长为 3 ;3 ……; 若体积扩大到原来的n倍,则棱长扩大多少倍?
谢谢大家 2019.3
6.2立方根
学习目标
理解立方根的概念,学会求一个数 的立方根,掌握立方根与平方根的区 别。
预习导学
组长组织交流预习导学,用红 笔标注自己通过预学存在的问题, 组长将记录各题完成情况,组织 成员讨论出错题目,将未解决问 题上传至本组黑板上或准备口头 提出。
如无问题则进入反转环节。
预习展示
求下列各数的立方根
-8 8
- 0.216
125 27
【精品课件二】6.2立方根-上课用
3
2
解(1)相当于求-0.008的立方根,(-0.2)3=0.008,
立方根只有一个,所以x=-0.2
(2)8x3 =-125
5 3 2
x3 125 8
5 (- ) 125 x 3 2 3 8 2 (4)( x -1) =(-27) 9 3 x3 x x (3) 3 46 3 -1 9 3 10
∴x-1=5
(1) x 343
∴x=7
(3) x=23
∴x=8
(2) x 1 3 125
X=6 (4) X-2=43 ∴X=66
二.课堂练习
练习:求下列各式中的x的值
(1) x3 =-0.008
(2)8x3 125 0
(3) 9 37
x3 3
(4)( -1) =(-27)
二.讲授新课
探究:先填写下表,再回答问题:
a
3
0.000001 0.001
1
1000
1000000
a
0.01
0.1
1
10
100
从上面表格中你发现什么? 归纳: 被开方数扩大(缩小)1000倍时,它的立方根扩 大(缩小)10倍.
二.课堂练习
例1.下列说法对不对? (1)-4没有立方根 (2)1的立方根是±1 (3)-5的立方根是 3 5 (4)64的算术平方根是8
一.巩固复习
平方根的性质:
一个正数有正、负 两个平方根,它们 互为相反数;零的 平方根是零,负数 没有平方根。
立方根的性质:
1、正数有一个正的立方根 2、负数有一个负的立方根 3、0的立方根还是0
x a
想一想:平方根是本身的数有哪些?0 算术平方根是本身的呢? 0,1 立方根是本身的呢? 0,1,-1
【新】人教版七年级数学下册第六章《6.2 立方根(1)》公开课课件.ppt
6.1 立方根(1)
活动一 创设情境,复旧导新 1. 1想. 想一想一想:
(1) 16的平方根是____4__;
(2)-16的平方根_不__存__在___;
(3)0的平方根是___0_____. 问题:
平方根是如何定义的?平方根有哪些性质?
zX.x.K
2. 做一做
问题: 要制作一种容积为27 m3的正方体形状
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights.
(2) 因为(0.5)3 =0.125,所以0.125的立方是(0.5 );
(3)因为( 0 )3=0,所以0的立方根是( 0 );
(4)因为 ( 2)3=-8,所以-8的立方根是( 2);
(5)因为(
2)3=-
3
-287 ,所以--287
的立方根
是( 2).
3
探究题中正数、0和负数的立方根各有
活动六 布置作业,提升能力 1 ; (2) 3 4 3 ; (3)0.216.
1 000
2.求下列各式的值.
( 1 ) 3-8 ; ( 2 ) -32 7 ; ( 3 ) 33 -1 7 ; ( 4 ) 331 1 21.
2 7
24
3.如果3x+16的立方根是4,求2x+4的算术平方根.
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021
山西省忻州市第五中学七年级数学下册 6.2 立方根课件 (新版)新人教版
求下列各数的立方根。 1 (1) 27 (2)-27 (3) (4)-0.064 (5) 0 27 3 (1) ∵ 3 27 解: 即 3 27 3 ∴27的立方根是3
(2)∵ (3Βιβλιοθήκη 273例1∴-27的立方根是-3 即 3
1 3 1 (3)∵ ( ) 3 27
∴
1 1 的立方根是 27 3
如果x a, 那么x叫做a的立方根。
3
其中a是被开方数, 3 3是根指数,符号 “ ”读做“三次根 号”. 求一个数的立方根的运算,叫做开 立方.
立方和开立方互为逆运算
正数的立方根是
负数的立方根是 0 的立方根是
正
负 0
数
数
任意一个数的立方根都是存在且 被开方数可以为任意数。 唯一的。
被开方数互为相反数时,其立方根 结论: 也互为相反数。
有两个平方根, 互为相反数
有一个平方根,是0 没有平方根
求一个数的平方根的运算叫开平方; 求一个数的立方根的运算 开平方与平方是互逆运算。 叫开立方;开立方与立方 是互逆运算。
a ,其中a 是被开方数,
3
a ,其中a 是被开方数,
2是根指数(省略)
3是根指数(不能省略)
练一练
1.判断下列说法是否正确,并说明理由
1.21 的立方根是
3
21
,- 21 的立方根是
3
21
2
2.若一个数的平方根是
8 ,则这个数的立方根是
3.- 8的立方根与9的平方根的积是 ± 1 1 3 3 4.若 a ,则 的值为 3
6
3 5.已知 x 2 64 ,则 3 x
a
2
B.立方根等于本身的数是0和 1
6.2 立方根
6.2 立方根
5.(1)[2018· 泰州]8 的立方根等于______ 2 . (2)[2018· 上海]-8 的立方根是______ -2 . 3
3 2 . 8的立方根是______
3 - 5 , -0.2 6. 125 的立方根是____ , - 0.008 的立方根是 ______ , - 5 的立方根是 ______ 5
课件目录
首
页
末 页
6.2 立方根
10.[2018· 上杭期中]已知 x-2 的平方根是± 2,2x+y+7 的立方根是 3. (1)求 x,y 的值; (2)求 x2+y2 的平方根.
解:(1)∵x-2 的平方根是± 2,2x+y+7 的立方根是 3, ∴x-2=22,2x+y+7=27, 解得 x=6,y=8. (2)由(1)知 x=6,y=8, ∴x2+y2=62+82=100, ∴x2+y2 的平方根是± 10.
课件目录
首
页
末 页
6.2 立方根
4.一个数的立方根与它的相反数的立方根的关系
关 3 =- a. 注 3 系: 互为相反数的两个数的立方根也互为相反数, 用符号表示为 -a
意:(1)这个关系式对于任意实数 a 都成立;
(2)求负数的立方根,运用这一关系可以先求出这个负数的绝对值的立方根, 然后再取它的相反数.
解:设小正方体的棱长为 x cm,则大正方体的棱长为 2x cm. 由题意得 x3+(2x)3=25×45, 解得 x=5,2x=2×5=10. 答:这两个正方体的棱长分别为 5 cm 和 10 cm.
课件目录
首
页
末 页
6.2 立方根
13.(1)填写下表: a 3 a 0.000 001 0.001 1 1 000 1 000 000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有1,0
通过这节课的学习,大家获得那些知识呢?
立方根定义,性质,及表示方法. 如何求一个数的立方根.
立方根和平方根的区别
作
业
P51 1、2 写在书上;
大家要认真做啊!
作业本:P52 3、5, 选做8
谢谢大家!
再见!
课内练习2
1.分别求下列各式的值:
(1)
3
125
(2)
3
0.008
(3)
3
0 0
3
正数有立方根吗?如果有,有几个? 负数呢? 零呢? 从上面的例1可知: 正数的立方根是正数; 负数的立方根是负数, 0的立方根是0。
练一练
1.判断下列说法是否正确,并说明理由
8 2 的立方根是 (1) 27 3 (2) 25的平方根是5 x
(3) -64没有立方根 (4) -4的平方根是 2
开平方,开立方
求一个数的立方根的运算,叫做 开立方.
立方和开立方互为逆运算
探 究
根据立方根的意义填空,看看正数、0和负 数的立方根各有什么特点?
因为23=8,所以8的立方根是( 2 ); 因为(0.5)3=0.125,所以0.125的立方根是(0.5); 因为(0 )3=0,所以0的立方根是( 0 ); 因为( -2)3=-8,所以-8的立方根是( -2 );
a
0.01
0.1
1
10
100
从上面表格中你发现什么?
1 64
(4) 0.001 0.01
3
4 16的平方根是______
没有平方根 -16的平方根是________ 0
0的平方根是________
一个正数有正负两个平方根,它们互为相反 数;零的平方根是零,负数没有平方根.
探究
a
3
先填写下表,再回答问题:
1 1000 1000000
0.000001 0.001
例 求下列各式的值:
3
3
64 ( ) 64 (2) 0.001 (3) 1 125 解: 3
3
( ) 64 4 1
3
(2) 0.001 0.1
64 4 4 (3) 3 ( ) 125 5 5
练习:P51 练习1 、3、4
想一想:
立方根是它本身的数有哪些? 有1, -1, 0 平方根是它本身的数呢? 只有0 算术平方根是它本身的数呢?
例1
∴-27的立方根是-3 即 3
1 3 1 (3)∵ ( ) 3 27
∴
1 1 的立方根是 27 3
27 3
3
1 1 即 27 3
(4) -0.064
解∵
(0.4) 0.064
3
3
0.064 0.4
(5) 0
3
记住了:一般地,3
a a
3
解 ∵0 =0
x
x
x
√
(5) 0的平方根和立方根都是0
讨论:你能归纳出平方根和立方根的 异同点吗?
被开方数 平方根 正数 立方根 有两个,互为相反数 有一个,是正数
负数
零
无平方根 零
有一个,是负数 零
2 填空:
1 )3 1 , (1) ( 8 2 3 1 1 _____ 2
6.2 立方根
问题:要做一个体积为27cm3的正方体模型
(如图),它的棱长要取多少?
解:设它的棱长为 x cm,根据题意得
x3=27
那么x=?
概念:
一般地,一个数的立方等于a, 这个数就叫做a的立方根,也叫 3 做a的三次方根.记做 a .
3
如果x a, 那么x叫做a的立方根。
3
a
其中a是被开方数, 3 3是根指数,符号 “ ”读做“三次根 到现在我们学了几 号”. 3 种运算? 8 =2 3 +,-,x,÷,乘方, = -2 8
2 3 8 2 8 因为( ) = 27 ,所以 的立方根是( ); 3 3 27
求下列各数的立方根。 1 (1) 27 (2)-27 (3) (4)-0.064 (5) 0 27 (1)∵33 27 解: 即 3 27 3 ∴27的立方根是3
(2)∵ (3) 27
3
8
(2) ( 125 , 5)
3
5 125 _____
3
3.口答
1 1 求1, 1, , 的立方根. 27 27 从计算中你发
3 解:
1 1 1 1
3
发现了什么?
3
1 1 3 1 1 27 3 27 3
互为相反数的 数的立方根也 互为相反数