原子物理学第3章习题
原子物理学习题标准答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mvctgb bZeZea qpepe ==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg bK oqape p ---´´===´´´´´´米式中212K Mv a =是a 粒子的功能。
1.2已知散射角为q 的a 粒子与散射核的最短距离为222121()(1)4sinm Ze r Mvqpe =+,试问上题a 粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 22121()(1)4sinZe r Mvqpe =+1929619479(1.6010)1910(1)7.6810 1.6010sin 75o --´´´=´´´+´´´143.0210-=´米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180o。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min 124p ZeMv K r pe ==,故有:2min 04pZe r K pe =19291361979(1.6010)910 1.141010 1.6010---´´=´´=´´´米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-´米。
1.7能量为3.5兆电子伏特的细a 粒子束射到单位面积上质量为22/1005.1米公斤-´的银箔上,a 粒解:设靶厚度为't 。
高中物理《原子物理》练习3—4
高中物理《原子物理》练习31. (2012·四川理综·17)如图所示为氢原子能级示意图的一部分,则氢原子( )A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到 n =2能级辐射出电磁波的波长长B .从n =5能级跃迁到n =1能级比从n =5能级跃 迁到n =4能级辐射出电磁波的速度大C .处于不同能级时,核外电子在各处出现的概率是一样的D .从高能级向低能级跃迁时,氢原子核一定向外放出能量2. 可见光光子的能量在1.61 eV ~3.10 eV 范围内.若氢原子从高能级跃迁到低能级,根据氢原子能级图(如图所示)可判断( )A .从n =4能级跃迁到n =3能级时发出可见光B .从n =3能级跃迁到n =2能级时发出可见光C .从n =2能级跃迁到n =1能级时发出可见光D .从n =4能级跃迁到n =1能级时发出可见光3. 如图为氢原子的能级图,若用能量为10.5ev 的光子去照射一群处于基态的氢原子,则氢原子( )A .能跃迁到n=2的激发态上去B .能跃迁到n=3的激发态上去C .能跃迁到n=4的激发态上去D .以上三种说法均不对4. 氦原子的一个核外电子被电离,会形成类似氢原子结构的氦 离子.已知基态的氦离子能量为E 1=-54.4 eV ,氦离子能级的示意图如图所示.可以推知,在具有下列能量的光子中,不能..被基态氦离子吸收而发生跃迁的是:( ) A .40.8 eV B .43.2 eV C .51.0 eV D .54.4 eV5. 已知氢原子的能级图如图所示,现用光子能量介于10~12.9 eV 范围内的光去照射一群处于基态的氢原子,则下列说法中正确的是( )。
A .在照射光中可能被吸收的光子能量有无数种B .在照射光中可能被吸收的光子能量只有3种C .照射后可能观测到氢原子发射不同波长的光有6种D .照射后可能观测到氢原子发射不同波长的光有3种6.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用。
原子物理学习题标准答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvzed (2)把(2)式代入(1)式,得:2sin)()41(422220θπεΩ=d Mv ze Nt n dn ……(3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
《原子物理学》部分习题解答(杨福家)
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2
1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c
《原子物理与量子力学》一至三章习题解答
n n ( x ) dx A 0 sin a x d x 1 A
2 2 a 2
APPLIED PHYSICS 10
2 a
2.6 对称性(P52)
证: 设对应能量E的定态波函数为
( x)
满足定态Schrö dinger方程 以 - x 代替 x
d d d x 2 d( x ) 2
A1 cos k1a B1 sin k1a B2 exp k 2 a x a时 A1k1 sin k1a B1 k1 cos k1a B2 k 2 exp k 2 a A1 k1 sink1a k2 cos k1a B1 k1 cos k1a k2 sink1a 0
1 a 2 a x a时 d 1 d 2 dx dx x a
x a
A1 cos k1a B1 sin k1a A2 exp k 2 a x a时 A1 k1 sin k1a B1 k1 cos k1a A2 k 2 exp k 2 a A1 k1 sink1a k2 cos k1a B1 k1 cos k1a k2 sink1a 0
( , T )
所以必存在一点Tm=b使得
HUST APPLIED PHYSICS
( , T ) 0
5
令: 有:
x hc /(kT )
f ( x ) 5(1 Exp[ x]) x 0
由迭代公式:
xn1 5(1 Exp[ xn ]), x0 5.0
第一章 原子的基本状况
7. α粒子散射问题(P21) 单原子质量:
动能为
Nt
原子物理学第三章习题解答
第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。
解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
原子物理第三章 (2)
当n ,l ,m 都给定后,就给出了一个确定的状态;
所以我们经常说: (n ,l ,ml )描述了一个确定的态。 对于氢原子,能量只与n 有关,n 给定后,有n 个l , 每一个l 有2l+1 个ml ,所以氢原子的一个能级 En 对应 于 n2 个不同的状态,我们称这种现象为简并,相应的 状态数称为能级 En 的简并度。
e e 2 ( ) g s ( ) S 2m 2m
其中 gl 和
gs
分别是轨道和自旋 g 因子
引入 g 因子之后,任意角动量对应的磁矩 j 可以 统一表示为:
j j ( j 1) g j B
jz m j g j B
量子数 j 取定后 mj =j, j-1,……,-j 共2j+1个值.当取 j=l ,s 就可以分别得到轨道和自旋磁矩。
与此相类比,s 与相应的 s 之间也应有相应的对应 关系,有实验结果定出这个对应关系是
e s s m
其量值关系为
s 3B
e sz sz B m
2.朗德因子g 综合上面的讨论,我们得到磁矩和角动量的比值为:
l
s
e e 1 ( ) g l ( ) L 2m 2m
Bz Bz 0 x y
Bz 0 z
热平衡时原子速度满足下列关系
1 3 2 2 2 m(vx v y vz ) kT 2 2
即
mv 3kT
2
在磁场区域 x 方向:
d vt1
1 Fz 2 t1 2 m
z方向: z1
t1 时刻,原子沿
z 方向的速度为
如基态氢原子在磁场中速度v=104m/s,磁场纵向范围L=10cm。 求裂距S. 解:
原子物理习题解答
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z=的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
原子物理学习题课
原子物理学习题第一章 原子的核式结构1.选择题:(1)原子半径的数量级是:CA .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中 DA. 绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:DA. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?BA. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):DA.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-15(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?CA.2B.1/2C.1 D .42.简答题:(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(3)为什么说实验证实了卢瑟福公式的正确性,就是证实了原子的核式结构?(4)普朗能量子假说的基本内容是什么?与经典物理有何矛盾?(5)为什么说爱因斯坦的光量子假设是普朗克的能量子假设的发展.(6)何谓绝对黑体?下述各物体是否是绝对黑体?(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)解:由公式, )2/(sin /')()41('42220220θπεr S Mv Ze Nnt dN =)2/(sin /')2()41(422220θπεαr S E Ze Nnt = ①当︒=60θ时, 每秒可纪录到的α粒子2'dN 满足:01455.030sin 10sin )2/(sin )2/(sin ''44241412=︒︒==θθdN dN 故 241210909.210201455.0'01455.0'⨯=⨯⨯==dN dN (个)② 由于2/1'αE dN ∝,所以 413108'4'⨯==dN dN (个)③ 由于2'nZ dN ∝,故这时:31211342442112441410/10/''--⨯⨯==A Z N A Z N Z n Z n dN dN A A ρρ 55310227793.19197137.2''4221421112444=⨯⨯⨯⨯⨯⨯=⋅⋅=dN A Z A Z dN ρρ(个)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.证明:由库仑散射公式:2cot 2412020θπεMv Ze b =,当︒=90θ时,12cot =θ,这时2020241Mv Ze b πε= 而对心碰撞的最小距离:b Mv Ze Mv Ze r m 22241])2/sin(11[24120202020=⋅=+=πεθπε 证毕。
新版原子物理褚圣麟课后答案
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb bZ eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学习题标准答案(褚圣麟)很详细
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求
、
、
、
4F
各
3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013
米
106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t
原子物理第三章习题答案
原子物理第三章习题答案第三章量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少?解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----=?==秒米千克λhp 能量为:λ/hc hv E==焦耳151083410986.110/1031063.6---?==。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meV h 2/=λ 对于电子:库仑公斤,19311060.11011.9--?=?=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--?=?=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----?==3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-?-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h c m eV eVm h -?-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-?-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
原子物理学三章课后习题答案
第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:222cot42Mv b Zeθπε= 而动能212k E mv =则20222cot442k E Mv b b Ze Zeθπεπε== 由此,瞄准距离为20cot 24kZe b E θπε=其中:79Z =12-1-108.854210A s V m ε-=⨯⋅⋅⋅191.6021910e C -=⨯0150θ=, 0cotcot 750.26802θ==3.14159π=6197.687.6810 1.6021910k E MeV J -==⨯⨯⨯得到:219215022126190cot 79(1.6021910)cot 4(4 3.141598.854210)(7.6810 1.6021910)k Ze b m E οθπε---⨯⨯==⨯⨯⨯⨯⨯⨯⨯153.969710m -=⨯2.已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:2min202121()(1)4sin Ze r Mv θπε=+ 2min0211()(1)4sin k Ze r E θπε=+ 其中,0150θ=, 0sinsin 750.965932θ==把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.6810 1.60219100.96593r m ---⨯⨯=⨯⨯+⨯⨯⨯⨯⨯⨯143.014710m -=⨯4. 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
原子物理第三章课后习题
第三章原子的量子态:玻尔模型3.1.The work function for cesium is 1.9eV.(a)Determine the threshold frequency and threshold wavelength of the photoelectric effect of cesium.(b)If one wants to obtain a photoelectron with energy of 1.5eV,what wavelength of light is required?铯的逸出功为1.9eV ,试求:(1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射?Solution :(a)A photoelectric current flows only when the frequency of the incident light exceeds a certain threshold frequency for the mental cesium.When the frequency of the incident light υequals the threshold frequency of cesium 0υ,that is,0υυ=,the stopping potential 00V =,no electron can escape from the mental surface,which means the kinetic energy of the electron 0k E =.According to the equation:k E h υφ=-When 0k E =,we can obtain the threshold frequency of cesium:The threshold wavelength of cesium:(b)If the energy of a photoelectron is 1.5eV,the wavelength of light is:3.3What minimum kinetic energy must an electron have in order to allow an inelastic collision between the electron and a lithium ion 2Li +in its ground state to take place?欲使电子与处于基态的锂离子2Li +发生非弹性散射,电子至少具有多大的动能?Solution :An inelastic collision is one in which the incoming electron collides with a lithium ion and excites a lithium ion in its ground state to a higher energy state.In order to calculate the minimum kinetic energy of an electron,we need to calculate the energy when a lithium ion jumps from ground state 1n '=(with energy n E ')to the first excitedOr3.5(a)In the case of thermal equilibrium,the distribution of the atoms in different energy states is given by the Boltzmann distribution,namely,the number of atoms in an excited state with energy of n E is()1/11,n E E kT n n g N N e g --=Where 1N is the number of atoms in the state with energy 1E ,k is the Boltzmann constant,and n g and 1g are the statistical weights (determinedby how many different ways one can put the electrons in each of the two states with energies n E and 1E )of the corresponding states.For hydrogenatoms at a pressure of 1atm and a temperature of 20℃,how large must the container be to let one atom be in the first excited state?Take the statistical weights of the hydrogen atoms in the ground state and in the first excited state to be 12g =and 28g =,respectively.Remember from thermodynamics PV RT γ=where γ=number of atomspresent/Avogadro ’s number=/A N N .原子在热平衡条件下处于不同能量状态的数目是按玻尔兹曼分布的,即处于能量为n E 的激发态的原子数为:()111,n E E kT n n g N N e g --=式中1N 是能量为1E 状态的原子数,k 为玻尔兹曼常数,n g 和1g 为相应能量状态的统计权重,试问:原子态的氢在一个大气压、20℃温度的条件下,容器必须多大才能有一个原子处在第一激发态?已知氢原子处于基态和第一激发态的统计权重分别为122,8g g ==(b)Let electrons collide with hydrogen gas at room temperature.In order to observe the H αline,what is the minimum kinetic energy of theelectrons?电子与室温下的氢原子气体相碰撞,要观察到H α线,电子的最小动能为多大?Solution :(a)In order to let one atom be in the first excited state(n=2),that is,21n N N ==,according to the expression:()1/11,n E E kT n n g N N e g --=We can obtain the number of atoms in the ground state:()21/1122E E kT g N N e g -=Where,the energy for an electron of a hydrogen atom jumps from ground state to the first excited state is:122112131(13.6)10.224E E E E eV eV ⎛⎫∆=-=-=-⨯-= ⎪⎝⎭According to the equation:111AN PV RT N kT N ==Hence,we obtain the volume of the container :12/12121E kT g N e N g V kT kTP P ∆==Substituting the following data:223121812511.3810/2931410.2 1.634101.0110N k J KT Kg g E eV JP Pa--==⨯==∆==⨯=⨯The volume of the container is:14932.610V m =⨯(b)In order to observe the H αline,that is,the electron transits from n=3to n=2,the energy to move an electron in the ground state of hydrogen to stateSo the minimum kinetic energy of the electrons should equal 12.09eV.3.6In the range of wavelengths from 950A to 1250A,what spectral lines are included in the absorption spectrum of a hydrogen atom?在波长从950A 到1250A 的光带范围内,氢原子的吸收光谱中包含哪些谱线?Solution :The energy to move an electron in the ground state of hydrogen atom 1n '=(with energy n E ')to a higher state n (with energy n E ):1112211113.61n n E E E E eV n n ⎛⎫⎛⎫∆=-=-=- ⎪ ⎪⎝⎭⎝⎭According to the equation,the wavelength of a transition of energy E:Where,1n E h E E υ==-(jumps from ahigher state to the ground state,an electromagnetic wave ofenergy h υwould be emitted )There is a correspondence between λand E .For a given minimum λ,there corresponds a definite maximum E ,that is,when 950A λ= ,we can get the maximum Then,we can get the quantum number n:Which means the electron can jump from n=4,n=3,n=2ton=1,respectively.①②The wavelength for an electron jumps from n=3to n=1:③The wavelength for an electron jumps from n=2to n=1:3.8The photon emitted by a transition in ionized helium He +from its first excited state to its ground state can ionize a hydrogen atom in its ground state and make it emit an electron.Determine the velocity of the electron.一次电离的氦离子He +从第一激发态向基态跃迁时所辐射的光子,能使处于基态的氢原子电离,从而放出电子,试求该电子的速度。
原子物理学第三次作业答案 (4)
1第三章 碱金属原子结构及光谱 碱金属原子的能级:E n = E n,l = - 2)(l n Rhcδ- = - 22*nR h c Z(和l, n 有关)四个主要线系(Na ):1, 锐线系(nS →3P , n =4,5,6,…, ) ∆ l =-1nS 能级能量:E n,s = - 2)(s n Rhc δ-; 3P 能级能量:E 3,p = - 2)3(p Rhcδ- ;nS →3P 的波数:由,E n,s - E 3,p = h ν=hc/λ= hc σσ = 2)3(p Rδ--2)(s n Rδ-2,主线系(nP →3S, n =3,4,5,…, ) ∆ l =1 3,漫线系(nD →3P , n =3,4,5,…, ) ∆ l =1 4,柏格曼线系(nF →3D, n =4,5,6,…, ) ∆ l =1除 nS 外, 所有能级都是双重能级。
问题:双重能级怎样产生?电子轨道运动的磁矩: l , μl =-me 2l =-g l m e 2l ,g l =1 (G 因子)电子自旋角动量: s , 自旋磁矩:μs =-g s me 2s ,g s =2 .电子的总角动量: j = s + l , s 和 l 的相互作用造成能级的精细结构分裂。
∆E l ,s =2,l n A { j (j +1)- l (l +1)- s (s +1) }j =l + s ,l + s -1,。
,| l - s | (两个角动量耦合的一般规律)m j = j , j -1, …,0, -1, …, -(j -1),-j (共2j +1个值)量子数j 的选择定则: ∆ j = ±1, 0 ( 0 ↔0除外); (∆ l = ±1) 原子核的自旋角动量:I原子的总角动量: F = I + j ,I 和J 的相互作用造成能级的超精细结构分裂。
原子核的自旋磁矩: μI =g IPMe 2I , g I : 核的G 因子;M P :质子的质量。
原子物理学杨福家1-6章-课后习题标准答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理 杨福家 第三章讲解及习题
已知粒子波函数 N exp 2a 2b 2c ,试求:(1)归一化
常数 N;(2)粒子的 x 坐标在 0 到 a 之间的几率;(3)粒子的 y 坐标和 z 坐标分别在-b→+b 和-c→+c.之间的几率. 解: (1)因粒子在整个空间出现的几率必定是一,所以归一化条件是:
3-7 一原子的激发态发射波长为 600nm 的光谱线, 测得波长的精度为
解: 依
Et h
求Δt
ww
w.
∵ ∴
2 600 10 9 10 7 1.6 10 9 s t 8 2E 2 hc 4c 4 3.14 3 10 tE
2
m
理乘c
p
1 1 1 1 E 2 m0 2 c 4 Ek ( Ek 2m0 c 2 ) ( Ek m0 c 2 ) 2 m0 2 c 4 ( E E0 )( E E0 ) c c c c
(1)相对论下粒子的德布罗意波长为:
ww
w.
c
(
(2)若粒子的德布罗意波长等于它的康顿波长
即:
2 0
dv N
y b
2
2
e
2
x 2a
dx e
z
a
案
N 2a e
a
d x 2b e
0
d y 2c e
b 0
网
x
课
(2) 为: N
2
粒 子 的
x 2a
N 2 4abc e 1 1
原子物理学习题答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
原子物理学课后答案
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
原子物理学第3章习题
2 d 2u Vu Eu 2 2m dx
设
d 2u 2m(V0 E ) u 2 2 dx
u Aekx Be kx
2m(V0 E ) k2 2
利用波函数的有界性知道: x < 0 时,如果 B ≠ 0,那么 x → − 时 波函数 趋于 无穷。所以在x < 0 时 B =0。 类似道理 x > L 时,A = 0 。 因此 x < 0 时,u = A ekx x > L 时,u = B e−kx 在 0 < x < L 区域,V = 0。代入 薛定谔方程中
n y y nx x nz z 8 ( x, y, z ) sin sin sin abc a b c 2 2 2 ny 2 nz 2 h nx E ( 2 2 2) 2m a b c
可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的 波函数之积。而粒子的能量相当于三个一维箱中粒子的能量 之和
因此能量 E 满足的关系式为
E n L 2mE 0 arcsin V0 2 2 2
n=1,2,3,……N1
或
E n L 2mE 3 arcsin( ) V0 2 2 2
n= 3,4,5,…..N2
其中
2 L 2mE N1 int( 1) h
h eV (1 ) 2 4m0 c 2m0 eV h (1 0.489 106 V ) 2m0 eV
12.25 6 (1 0.489 10 V ) A V
4.试证明氢原子稳定轨道上正好能容纳下整数个电子的德布 罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆 轨道,试证明之 证明 对氢原子圆轨道来
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 波长 1 A 为的X光光子的动量和能量各为多少?
解:根据德布罗意关系式,得
动量为
p
h
6.63 1034 1010
6.631024千克 米 秒1
能量为
E hv hc /
6.631034 3108 / 1010 1.9861015焦耳
2.经过10000伏特电势差加速的电子束的德布罗意波长是多少 ?用上述电压加速的质子束的德布罗意波长是多少?
式应改V为: 12.V25
(1
0.489
106V
)
A
其中V是以伏特为单位的电子加速电压。试证明之。
证明:德布罗意波长 h / p
虑相对论效应时,其动能与其动量之间有如下关系
EK2 2EK m0c2 p2c2
而被电压V加速的电子的动能为
EK eV
p2
(eV )2 c2
2m0eV
p 2m0eV (eV )2 / c2
h/ p
h 1
2m0eV
1
eV 2m0c2
h 2m0eV
(1
eV 4m0c2 )
h (1 0.489106V ) 2m0eV
12.25
(1
0.489
106V
)
A
V
4.试证明氢原子稳定轨道上正好能容纳下整数个电子的德布 罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆 轨道,试证明之
证明 对氢原子圆轨道来
些不连8续的值
V(X)
Y Axis Title
6
V0
V0
4
E
0
L
x
2
解:以下将在两种不同坐标系下解答本问题。其中第一种维
持原坐标0 0 不变;2 另一种4 为将横6 坐标8向右平10移L/2,即取 x = x − L/2,在这个坐标系X中Axis,Title−L/2 < x < L/2 时 V=0、在其它
Vz )]
0
分离变量法将偏微分方程分成三个常微分方程
(x, y, z) X (x)Y ( y)Z(z)
并将两边同除以 X (x)Y ( y)Z(z),得
(1 X
d2X dx2
2m h2
Vx
)
(1 Y
d 2Y dy 2
2m h2
Vy
)
(
1 Z
d 2Z dz 2
2m h2
Vz
)
2m h2
E
1 X
进一步推导
tan = / k tan(L+)= −/ k 由 tan = / k > 0,得 0 < < /2、和 3/2 < < 2 由 tan (L+) = tan (−) 得
L+ = n − 即 = n/2 − L/2 n L 2mE
=
2
2
n = 1, 2, 3, ……
又由tan = / k 得d2X Βιβλιοθήκη x22m h2Vx
2m h2
Ex
1 Y
d 2Y dy 2
2m h2
Vy
2m h2
Ey
1 Z
d 2Z dz 2
2m h2
Vz
2m h2
Ez
其中E Ex Ey Ez , Ex , Ey , Ez皆为常数。
d2X dx2
2m h2
(
Ex
Vx ) X
0
连续条件 X (0) X (l) 0
p2 E
2m E p2
2m
自由粒子的动量p可以取任意连续值,所以它的能量E也可以有 任意的连续值
7.粒子在一维对称势场中,势场形式如下图。
即:0 < x < L 时 V = 0;x < 0 和 x > L 时 V = V0。 ((12))利试用推10上导述粒关子系在式,E 以< 图V0 解情法况证下明总,能粒量子的E 能满量足的E 关只系能式取。一
arctan E arcsin E (0 )
V0 E
V0
2
或 arcsin( E )( 3 )
V0
2
因此能量 E 满足的关系式为
0 arcsin E n L 2mE
V0 2
2
2
n=1,2,3,……N1
或
arcsin( E ) n L 2mE 3
V0 2
•
r
dr
dt
mr 2
•
d
dt )
dt
dt
mv2dt mvds
hds r
h
ds
ds
n
5.带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一
串小雾滴,雾滴德线度约为1微米。当观察能量为1000电
子伏特的电子径迹时其动量与精典力学动量的相对偏差不
小于多少? 解:根据测不准原理
px h 2
经典力学的动量为
u1 = Aekx
x > L,
u3 = Be−kx
A 待定 C、 待定 B 待定
波函数的连续性 要求:
x = 0 处,u1 = u2 ; du1/dx = du2/dx x = L 处,u2 = u3 ; du2/dx = du3/dx
将上述连续性条件应用于波函数 得
A = C sin Ak = C cos B e−kL = C sin(L+) −B k e−kL = C cos(L+)
p 2mEK
p
h
3.09 105
p 2x 2mEK
6.证明自由运动的粒子的能量可以有连续的值
证明:自由粒子的波函数为
i ( pr Et )
Aeh
代入薛定谔方程,得
h2
2
[
Ae
i h
(
pr Et )
]
E
2m
h2
2 A( d 2
d2
d )e E 2
i h
(
px
x
p
y
y
pz
z
Et
)
2m
dx2 dy2 dz2
计算出粒子可能具有的能量
解:由题意知
Vx 0, 0 x a; Vy 0, 0 y b;
Vz 0, 0 z c; Vx , x 0和x a Vy , y 0和y b Vz , z 0和z c
势箱内波函数满足方程
2
2x2
2
2y2
2
2z2
2m h2
[
E
(Vx
Vy
x > L 时,u = B e−kx
在 0 < x < L 区域,V = 0。代入 薛定谔方程中
d 2u dx2
2mE
2
u
设
2mE 2
2
u C sin(x )
在 0 < x < L 区域,V = 0。代入 薛定谔方程中
d 2u 2mE dx2 2 u
由定态薛定谔方程解得的波函数为:
x < 0, 0< x < L,
•
pr 0, p mr2 mvr
所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波 长。椭圆轨道的量子化条件是:
其中
•
•
pr m r, p mr 2
( prdr p d) nh, n n nr
•
•
而
( prdr p d) (m rdr mr 2 d)
(m
V0
则能量E 的解可通过 f2 与f1 的交点、与f3 的交点的横坐标求出
f 2
f(x)
5
n=10
n=3 n=2 n=1
4
3
f 3
2
f
1
1
0
0.00
0.25
0.50
0.75
1.00
x
做各函数曲线如上图所示。。从f2 函数 与 f1 及f3 函数的交点的 横坐标可求出能量E的解。解的个数与 0 < x < 1区间内交点的个
Xn
2 sin nx x,
aa
Ex
2h2 2 a2
nx2 , nx
1, 2,3
同样,有
Yn
2 sin ny y
bb
Ey
2h2 2 b2
ny2, ny
1, 2,3
Zn
2 sin nz z
cc
Ez
2h2 2 c2
nz2 , nz
1, 2,3
(x, y, z) 8 sin nx x sin ny y sin nz z
区间 V =V0 (1)E 满足关系的推导:本题中的势场与时间无关,所以是
定态问题,而且是一维的。先写出定态薛定谔方程的一般形
式
2 d 2u
2m
dx2
Vu
Eu
d 2u dx2
2m(V0
2
E)
u
设
2m(V0
2
E)
k2
u Aekx Bekx
利用波函数的有界性知道: x < 0 时,如果 B ≠ 0,那么 x → − 时 波函数 趋 于 无穷。所以在x < 0 时 B =0。 类似道理 x > L 时,A = 0 。 因此 x < 0 时,u = A ekx
abc a
b
c
E
2h2
2m
(
nx 2 a2
ny2 b2
nz 2 c2
)
可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的 波函数之积。而粒子的能量相当于三个一维箱中粒子的能量 之和
知识回顾 Knowledge
Review
祝您成功!