分数乘法的简便计算
分数乘法的简便方法
分数乘法的简便方法分数乘法是数学中常见的操作,但是对于一些人来说可能比较复杂。
然而,有一些简便的方法可以帮助我们更快速地完成分数乘法的计算。
在本篇文章中,我将介绍几种简便的方法,以便读者能够更容易地理解和应用分数乘法。
第一种简便方法是使用乘法法则。
乘法法则告诉我们,两个分数相乘时,我们只需要将两个分数的分子相乘,并将它们的分母相乘。
例如,如果我们要计算1/4乘以3/5,我们只需要将1乘以3,并将4乘以5,最后得到3/20。
这种方法非常简单,适用于大多数情况。
第三种简便方法是将一个分数分解为两个较小的分数相乘。
这种方法特别适用于分数中含有大数的情况。
例如,如果我们要计算7/8乘以3/4,我们可以将7/8分解为1/2乘以3/4,然后将1/2乘以3/4、这样,我们可以分别计算1乘以3和2乘以4,得到3/8、这种方法可以帮助我们更快地完成计算,并减少出错的可能性。
第四种简便方法是使用化简分数的方法进行计算。
有时候,我们可以将一个分数化简为较简单的形式,然后再进行计算。
例如,如果我们要计算2/6乘以3/8,我们可以先将2/6化简为1/3,然后再进行计算。
这样,我们可以得到1/3乘以3/8,结果为1/8第五种简便方法是使用数学特性和模式。
有时候,我们可以通过观察数学特性和模式来得到计算结果。
例如,如果我们要计算2/3乘以1/2,我们可以观察到分子和分母都是小于2的数,因此计算结果应该小于1、又因为1/3乘以1/2等于1/6,所以2/3乘以1/2应该小于1/6、通过观察和分析,我们可以得到更接近的计算结果。
综上所述,分数乘法有许多简便的方法可以帮助我们更快速地进行计算。
从乘法法则到将分数转化为小数,再到分解分数和使用特性模式等方法,都可以帮助我们更轻松地完成分数乘法的运算。
选择适合自己的方法,并不断练习和应用,相信大家能够在分数乘法中取得更好的成绩。
分数乘法简算方法技巧
分数乘法简算方法技巧分数乘法是数学中的一种基本运算方法,它可以用于计算两个分数的乘积。
在进行分数乘法时,我们可以运用一些简算方法和技巧,使计算更加快捷和准确。
我们来看一下如何进行普通的分数乘法。
假设我们要计算两个分数的乘积,分别为a/b和c/d。
我们可以按照以下步骤进行计算:步骤一:将两个分数的分子相乘,得到新的分子。
步骤二:将两个分数的分母相乘,得到新的分母。
步骤三:将得到的新分子和新分母组成一个新的分数,即为所求的乘积。
下面,我们就来介绍一些简算方法和技巧,帮助我们更快地完成分数乘法。
一、化简分数在进行分数乘法之前,我们可以先化简分数。
化简分数是指将分子和分母的公因数约去,使得分数的形式更简洁。
例如,如果分子和分母都可以被2整除,那么我们可以将它们都除以2,化简为最简分数。
二、利用乘法交换律在进行分数乘法时,我们可以利用乘法交换律,改变分数的顺序,使得计算更加简便。
例如,对于分数a/b和c/d,我们可以将它们交换位置,变为c/d和a/b进行计算。
三、利用分数的倒数在进行分数乘法时,我们可以利用分数的倒数,将除法转化为乘法,从而简化计算。
具体做法是将一个分数的分子和另一个分数的分母相乘,再将结果的分子和分母组成一个新的分数。
四、利用分数的乘法规律在进行分数乘法时,我们可以利用分数的乘法规律,将分数的分子和分母分别相乘,再将结果的分子和分母组成一个新的分数。
这样可以避免进行复杂的计算。
五、合理安排计算顺序在进行多个分数的乘法时,我们可以合理安排计算顺序,先计算相邻的分数,再依次向外计算。
这样可以减少计算的复杂性和繁琐性。
六、注意符号的运用在进行分数乘法时,我们需要注意符号的运用。
正数和正数相乘,结果为正数;负数和正数相乘,结果为负数;负数和负数相乘,结果为正数。
因此,在计算分数乘法时,要注意符号的运算规律。
以上就是关于分数乘法简算方法技巧的介绍。
通过合理运用这些方法和技巧,我们可以更快地进行分数乘法的计算,提高计算的准确性和效率。
用简便方法计算分数乘法数学题
用简便方法计算分数乘法数学题“哎呀,这分数乘法题可真让人头疼啊!”这是很多同学在面对分数乘法数学题时的心声。
别担心,今天我就来给大家讲讲用简便方法计算分数乘法数学题。
咱就拿一道实际的题来说吧,比如计算 3/4 乘以 8/9。
第一种简便方法就是约分。
先看分子分母有没有可以约分的数,这道题中 4 和 8 可以约,约掉 4 后,8 变成 2,4 变成 1。
然后分子 3 和分母 9 也可以约,约掉 3 后,3 变成 1,9 变成 3。
这样式子就变成了 1/1 乘以2/3,结果就是 2/3。
再比如 2/5 乘以 15/8,5 和 15 可以约,约掉 5 后,15 变成 3,5 变成 1。
然后 2 和 8 也能约,约掉 2 后,8 变成 4,2 变成 1。
式子就成了1/1 乘以 3/4,答案就是 3/4。
第二种方法是把分数转化成小数来计算,不过这种方法不是所有情况都适用哦。
比如 1/2 乘以 0.4,先把 1/2 化成小数 0.5,然后 0.5 乘以 0.4 等于 0.2。
还有一种方法呢,就是利用乘法分配律。
比如说计算 3/4 乘以 99 又1/2。
我们可以把 99 又 1/2 拆分成 99 加上 1/2,然后用乘法分配律,3/4 分别乘以 99 和 1/2,3/4 乘以 99 等于 3/4 乘以 100 减去 3/4 乘以 1,也就是 75 减去 3/4,等于 74 又 1/4,3/4 乘以 1/2 等于 3/8,最后把这两个结果相加,74 又 1/4 加上 3/8,通分后得到 74 又 7/8。
同学们,简便方法计算分数乘法就是要多观察题目,找到合适的方法。
就像走路一样,找到了近路,就能更快地到达目的地。
再给大家出道题巩固一下哈,计算 4/5 乘以 18 又 1/3。
大家自己动手试试哦,相信你们一定能掌握这些简便方法的。
六年级上册分数乘法的简便运算
《六年级上册分数乘法的简便运算》同学们,咱们六年级上册数学里的分数乘法简便运算可有趣啦!先来说说乘法交换律。
比如说,计算2/3 × 3/4 × 4/5 ,咱们可以把3/4 和4/5 交换一下位置,先算2/3 × 4/5 ,再乘以3/4 ,这样是不是更简单?再看看乘法结合律。
就像计算1/2 × (2/3 × 3/4),咱们可以先算括号里的2/3 × 3/4 ,然后再和1/2 相乘。
给大家讲个小故事。
有一次,咱们班的小明同学做一道分数乘法题,题目是3/5 × 5/6 × 2/3 ,他一开始是从左往右依次计算,算得可费劲啦。
后来老师告诉他可以用乘法交换律,先算3/5 × 2/3 ,再乘以5/6 ,一下子就简单多了,小明很快就算出了答案,可高兴啦!还有乘法分配律。
比如说,计算2/5 × (1/2 + 1/3),咱们可以把2/5 分别乘以1/2 和1/3 ,然后再把结果相加。
咱们班的小红同学,之前做这种题总是出错。
有一次考试,就因为这个丢了不少分。
后来她专门找了很多类似的题目来练习,终于掌握了这个方法。
比如说,计算3/8 × (2/3 - 1/4),咱们就可以用乘法分配律,先算3/8 × 2/3 ,再减去3/8 × 1/4 。
大家在做分数乘法简便运算的时候,一定要仔细观察题目,看看能不能用这些运算定律。
比如说,看到有能约分的数字,就可以先约分,这样计算起来更轻松。
多做一些练习题,慢慢地就能熟练掌握啦。
可以和小伙伴们一起比赛做题,看谁做得又快又准。
总之,分数乘法的简便运算并不难,只要咱们多练习,多思考,一定能把它学好!。
分数乘分数的简便方法
分数乘分数的简便方法分数乘分数是数学中的一种基本运算,它在我们的日常生活中有着广泛的应用。
对于一些简单的分数乘法,我们可以使用一些简便的方法来进行计算,从而提高计算的效率。
本文将介绍一些常用的分数乘分数的简便方法。
我们来看一下分数乘法的定义。
分数乘法是指将两个分数相乘,计算结果仍为一个分数。
分数由分子和分母两部分组成,分子表示被分割的数量,分母表示分割的份数。
在进行分数乘法时,我们需要将两个分数的分子和分母分别相乘,然后将所得的积作为新分数的分子,两个分数的分母相乘后作为新分数的分母。
下面是一个例子:1/2 × 2/3 = (1×2)/(2×3) = 2/6接下来,我们介绍一种简便的方法来进行分数乘分数的计算。
这种方法主要是利用分数的乘法交换律和分数的约分性质。
具体步骤如下:Step 1:将两个分数的分子和分母分别相乘,得到新分数的分子和分母。
Step 2:判断新分数是否可以约分,如果可以约分,则进行约分操作。
Step 3:如果新分数无法约分,则直接得到最简形式的新分数。
下面我们通过一个例子来说明这个方法的具体操作:例子:3/4 × 5/6Step 1:分子相乘:3 × 5 = 15,分母相乘:4 × 6 = 24Step 2:判断新分数是否可以约分,由于15和24没有公因数,所以无法约分。
Step 3:将新分数写成最简形式:15/24通过这种简便的方法,我们可以快速而准确地进行分数乘分数的计算。
除了上述方法外,还有一种特殊情况的分数乘法可以更加简化计算。
当两个分数的分母相同,而分子不同时,我们只需要将两个分数的分子相乘,然后将所得的积作为新分数的分子,两个分数的分母保持不变。
下面是一个例子:例子:2/5 × 3/5由于两个分数的分母相同,都为5,所以我们只需要将分子相乘得到新分数的分子,分母保持不变,即:2 ×3 = 6所以,2/5 × 3/5 = 6/5通过这种特殊情况的分数乘法,我们可以更加简便地进行计算,省去了一些步骤。
分数乘法简便运算方法
分数乘法简便运算方法
那可真是超棒的数学小妙招!咱先说说步骤哈。
第一步,观察分数的特点,要是有能约分的,那可就爽歪歪啦!比如一个分数的分子能和另一个分数的分母约分,这时候就赶紧动手。
第二步,约分完了再相乘,那计算起来可就轻松多啦。
注意事项呢?可得看仔细喽!约分的时候千万别约错啦,不然结果可就大错特错喽。
还有啊,计算的时候要认真,别马虎,一马虎就容易出错。
这就好比走钢丝,得小心翼翼的,不然就掉下去啦。
那这过程安全稳定不?当然啦!只要你按照步骤来,认真约分,仔细计算,就像盖房子一样,一砖一瓦都弄扎实了,那肯定稳稳当当的。
不会出现啥意外情况,放心大胆地用就好啦。
再说说应用场景和优势。
哎呀呀,那可多了去啦。
比如在做数学作业的时候,用简便运算方法,能省好多时间呢。
考试的时候更是厉害啦,别人还在那儿苦哈哈地算呢,你已经用简便方法快速得出答案啦,这不是美滋滋嘛。
这就像跑步比赛,你有一双超级跑鞋,别人还光着脚跑呢,你说你能不赢嘛。
来个实际案例瞅瞅。
比如说计算四分之三乘以五分之四,先观察,分子三跟分母五没啥关系,但是分子四和分母四可以约分呀,约完分就变成三分之一乘以一,结果就是三分之一。
看,多简单。
要是不用简便方法,
硬算的话,那可麻烦多啦。
所以说呀,分数乘法简便运算方法真的超好用。
咱可得好好掌握这个小妙招,让数学学习变得轻松又有趣。
(完整)六年级上册分数乘法的简便计算练习题(含分数相乘)
(完整)六年级上册分数乘法的简便计算练习题(含分数相乘)1. 分数相乘的基本原理分数相乘是将两个分数相乘得到的结果。
计算分数相乘的方法很简便,只需按照以下步骤进行操作:1. 将两个分数的分子相乘得到新的分子;2. 将两个分数的分母相乘得到新的分母;3. 简化新的分数(如果需要)。
2. 练题题目1将1/3乘以2/5,计算得到的结果是多少?题目2将4/9乘以3/7,计算得到的结果是多少?题目3将2/5乘以6/7,计算得到的结果是多少?题目4将7/8乘以9/10,计算得到的结果是多少?题目5将5/6乘以1/4,计算得到的结果是多少?题目6将3/4乘以2/3,计算得到的结果是多少?题目7将2/3乘以4/5,计算得到的结果是多少?题目8将5/6乘以7/8,计算得到的结果是多少?题目9将1/2乘以3/5,计算得到的结果是多少?题目10将2/3乘以2/7,计算得到的结果是多少?3. 答案题目1答案1/3乘以2/5的结果是2/15。
题目2答案4/9乘以3/7的结果是12/63。
题目3答案2/5乘以6/7的结果是12/35。
题目4答案7/8乘以9/10的结果是63/80。
题目5答案5/6乘以1/4的结果是5/24。
题目6答案3/4乘以2/3的结果是6/12。
题目7答案2/3乘以4/5的结果是8/15。
题目8答案5/6乘以7/8的结果是35/48。
题目9答案1/2乘以3/5的结果是3/10。
题目10答案2/3乘以2/7的结果是4/21。
《分数乘法的简便计算》教学设计
《分数乘法的简便计算》教学设计一、教学目标1、本节课安排在例3学习了“求一个数的几分之几用乘法”的基础之上,在列式和计算中发现算式中数据的特点,体会先约分再计算的的优越性和简洁性,提高运算技巧。
也为例5学习分数乘小数先约分再计算打下基础。
2、根据数据特点,灵活选用计算方法,提高运算能力。
3、在解决问题的过程中,发现算式中数据的特点,能用简便的方法进行计算,提高运算技巧。
4、能运用所学知识解答生活中简单的分数乘法问题。
二、教学重点使学生能快速正确地进行分数乘法计算,掌握分数乘法计算过程中的约分方法三、教学难点熟练掌握约分方法,提高计算的能力。
四、课前准备教学资源《分数乘法——解决问题》PPT课件五、教学过程(一).预习任务(1)算一算。
12×30=25×44=125×3+125×5=(2)无脊椎动物中游泳最快的是乌贼,它的速度是9/10千米/分。
李叔叔的游泳速度是乌贼的4/45。
李叔叔每分钟游多少千米?①上面信息中的两个分数,分别表示什么意思?②根据上面信息提出一个数学问题。
(二)课堂设计1.交流课前任务,导入新课师:谁来汇报一下,上面这句话中,两个分数分别表示什么意思?生交流课前学习。
师:提出的问题是什么?(李叔叔每分钟游多少千米?)师:要求李叔叔每分钟游多少千米?就是求什么?怎样列式?引导学生发现:要求李叔叔每分钟游多少千米?就是求“9/10千米的4/45是多少?”师:这节课我们接着学习分数乘法的有关计算。
【设计意图:通过课前学习,导入直接交流来理解题意,做到去情景化,抽象出数学的本质,发现问题提出问题,为学习分数乘法的简便方法做铺垫。
】2.问题探究(1)尝试解决,感悟多种算法根据已有知识经验独立计算。
(师巡视收集资源)a.不先约分计算b.先约分计算再让学生独立计算,最后组织交流。
强调能约分的要先约分再乘。
3.做一做练习教材第5页“做一做”第3题。
一头鲸长28m,一个人身高是鲸体长的2/35。
分数简便计算公式大全
分数简便计算公式大全一、分数加减法简便运算。
1. 同分母分数加减法简便运算。
- 法则:同分母分数相加减,分母不变,分子相加减。
- 例如:(3)/(7)+(2)/(7)=(3 + 2)/(7)=(5)/(7);(5)/(9)-(1)/(9)=(5-1)/(9)=(4)/(9)。
- 简便运算情况:如果是多个同分母分数相加或相减,可以直接将分子进行运算。
- 例如:(1)/(8)+(3)/(8)+(2)/(8)=(1 + 3+2)/(8)=(6)/(8)=(3)/(4);(7)/(11)-(2)/(11)-(1)/(11)=(7-2 - 1)/(11)=(4)/(11)。
2. 异分母分数加减法简便运算。
- 法则:先通分,将异分母分数化为同分母分数,然后按照同分母分数加减法法则进行计算。
- 通分方法:找到几个分母的最小公倍数作为通分后的分母。
- 例如:计算(1)/(2)+(1)/(3),2和3的最小公倍数是6,(1)/(2)=(1×3)/(2×3)=(3)/(6),(1)/(3)=(1×2)/(3×2)=(2)/(6),则(1)/(2)+(1)/(3)=(3)/(6)+(2)/(6)=(5)/(6)。
- 简便运算情况:- 当分母成倍数关系时,可直接利用倍数关系通分。
例如计算(1)/(3)+(1)/(6),6是3的2倍,(1)/(3)=(2)/(6),则(1)/(3)+(1)/(6)=(2)/(6)+(1)/(6)=(3)/(6)=(1)/(2)。
- 对于一些特殊的分数组合,可以利用分数的拆分进行简便运算。
例如(1)/(2)-(1)/(3)=(3 - 2)/(6)=(1)/(6),(1)/(3)-(1)/(4)=(4-3)/(12)=(1)/(12)等。
如果计算(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20),可以将分数拆分为(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+(1)/(4×5),然后根据(1)/(n(n + 1))=(1)/(n)-(1)/(n+1)进行简便运算,原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+((1)/(4)-(1)/(5)) = 1-(1)/(5)=(4)/(5)。
分数乘除法简便运算100题(有答案)
分数乘除法简便运算100题(有答案)分数乘除法简便运算100题(有答案)1. 计算:2/3 × 4/5 = ?答案:8/152. 计算:1/2 × 3/4 = ?答案:3/83. 计算:5/6 × 2/3 = ?答案:5/94. 计算:3/4 × 1/2 = ?答案:3/85. 计算:2/3 × 1/4 = ?答案:1/66. 计算:4/5 × 1/3 = ?答案:4/157. 计算:1/2 × 2/3 = ?答案:1/38. 计算:3/4 × 5/6 = ?答案:5/89. 计算:5/6 × 3/4 = ?答案:5/810. 计算:1/3 × 4/5 = ?答案:4/1511. 计算:3/5 × 2/3 = ?答案:2/512. 计算:4/7 × 3/5 = ?答案:12/3513. 计算:2/3 × 4/7 = ?答案:8/2114. 计算:5/6 × 1/4 = ?答案:5/2415. 计算:2/5 × 3/4 = ?答案:3/1016. 计算:3/5 × 1/2 = ?答案:3/1017. 计算:4/7 × 2/3 = ?答案:8/2118. 计算:1/3 × 5/6 = ?答案:5/1819. 计算:3/7 × 4/5 = ?答案:12/3520. 计算:6/7 × 2/3 = ?答案:4/721. 计算:1/2 ÷ 2/3 = ?答案:3/422. 计算:3/5 ÷ 4/7 = ?答案:21/2023. 计算:4/5 ÷ 2/3 = ?答案:12/1024. 计算:3/7 ÷ 1/2 = ?答案:6/725. 计算:2/3 ÷ 3/5 = ?答案:10/926. 计算:5/7 ÷ 4/5 = ?答案:25/2827. 计算:2/5 ÷ 1/3 = ?答案:6/528. 计算:4/7 ÷ 3/4 = ?答案:16/2129. 计算:3/4 ÷ 5/6 = ?答案:9/1030. 计算:1/3 ÷ 6/7 = ?答案:7/1831. 计算:3/4 ÷ 2/5 = ?答案:15/832. 计算:4/7 ÷ 1/3 = ?答案:12/733. 计算:5/7 ÷ 3/4 = ?答案:20/2134. 计算:2/5 ÷ 5/6 = ?答案:12/2535. 计算:1/2 ÷ 3/5 = ?答案:5/636. 计算:3/5 ÷ 2/3 = ?答案:9/1037. 计算:4/5 ÷ 1/2 = ?答案:8/538. 计算:3/7 ÷ 4/5 = ?答案:15/1439. 计算:1/2 ÷ 1/3 = ?答案:3/240. 计算:2/3 ÷ 4/5 = ?答案:5/641. 计算:5/6 ÷ 3/4 = ?答案:20/1842. 计算:3/4 ÷ 1/2 = ?答案:3/243. 计算:4/7 ÷ 2/3 = ?答案:6/744. 计算:1/3 ÷ 5/6 = ?答案:2/545. 计算:3/5 ÷ 4/7 = ?答案:21/2046. 计算:4/5 ÷ 2/3 = ?答案:6/547. 计算:2/3 ÷ 3/5 = ?答案:10/948. 计算:5/7 ÷ 1/2 = ?答案:10/749. 计算:2/5 ÷ 1/3 = ?答案:6/550. 计算:1/2 ÷ 2/3 = ?答案:3/451. 计算:3/4 ÷ 5/6 = ?答案:9/1052. 计算:4/7 ÷ 3/4 = ?答案:16/2153. 计算:1/3 ÷ 6/7 = ?答案:7/1854. 计算:5/6 ÷ 4/5 = ?答案:25/2455. 计算:2/3 ÷ 3/5 = ?答案:10/956. 计算:3/5 ÷ 2/3 = ?答案:9/1057. 计算:4/5 ÷ 1/2 = ?答案:8/558. 计算:3/7 ÷ 5/6 = ?答案:18/3559. 计算:1/2 ÷ 1/3 = ?答案:3/260. 计算:2/3 ÷ 4/5 = ?答案:5/661. 计算:5/6 ÷ 3/4 = ?答案:20/1862. 计算:4/7 ÷ 2/3 = ?答案:6/763. 计算:1/3 ÷ 5/6 = ?答案:2/564. 计算:3/4 ÷ 1/2 = ?答案:3/265. 计算:4/5 ÷ 3/7 = ?答案:28/1566. 计算:2/5 ÷ 5/6 = ?答案:12/2567. 计算:1/2 ÷ 3/5 = ?答案:5/668. 计算:3/5 ÷ 2/3 = ?答案:9/1069. 计算:5/7 ÷ 4/5 = ?答案:25/2870. 计算:2/3 ÷ 1/4 = ?答案:8/371. 计算:4/5 ÷ 1/2 = ?答案:8/572. 计算:3/7 ÷ 2/3 = ?答案:9/1473. 计算:5/6 ÷ 3/4 = ?答案:10/974. 计算:1/3 ÷ 6/7 = ?答案:7/1875. 计算:3/4 ÷ 5/6 = ?答案:9/1076. 计算:4/7 ÷ 3/4 = ?答案:16/2177. 计算:2/5 ÷ 1/3 = ?答案:6/578. 计算:5/7 ÷ 2/3 = ?答案:15/1479. 计算:1/2 ÷ 4/5 = ?答案:5/880. 计算:3/5 ÷ 5/6 = ?答案:18/2581. 计算:4/5 ÷ 3/7 = ?答案:28/1582. 计算:2/3 ÷ 5/6 = ?答案:4/583. 计算:5/6 ÷ 1/4 = ?答案:10/384. 计算:3/4 ÷ 1/2 = ?答案:3/285. 计算:4/7 ÷ 3/4 = ?答案:16/2186. 计算:1/3 ÷ 5/6 = ?答案:2/587. 计算:2/5 ÷ 2/3 = ?答案:3/588. 计算:1/2 ÷ 3/5 = ?答案:5/689. 计算:3/5 ÷ 4/7 = ?答案:21/2090. 计算:4/5 ÷ 2/3 = ?答案:6/591. 计算:5/7 ÷ 1/2 = ?答案:10/792. 计算:1/4 × 2/3 = ?答案:1/693. 计算:2/3 × 3/5 = ?答案:2/594. 计算:3/4 × 7/9 = ?答案:21/3695. 计算:4/5 × 3/7 = ?答案:12/3596. 计算:1/2 × 1/3 = ?答案:1/697. 计算:3/4 × 2/5 = ?答案:3/1098. 计算:5/6 × 4/7 = ?答案:20/4299. 计算:2/3 × 5/6 = ?答案:10/18100. 计算:4/5 × 1/2 = ?答案:4/10通过以上100道分数乘除法简便运算题,我们可以巩固和提高对分数乘除法的理解和运用能力。
分数乘除法简便运算题目
分数乘除法简便运算题目一、分数乘法简便运算题目及解析1. 题目- 计算:(3)/(8)×(5)/(6)×(8)/(3)- 解析:- 观察到式子中有(3)/(8)和(8)/(3),根据乘法交换律a× b = b× a,我们可以交换(5)/(6)和(8)/(3)的位置,得到(3)/(8)×(8)/(3)×(5)/(6)。
- 然后根据乘法结合律(a× b)× c=a×(b× c),先计算(3)/(8)×(8)/(3) = 1,再计算1×(5)/(6)=(5)/(6)。
2. 题目- 计算:(4)/(9)×(3)/(16)+(5)/(12)×(4)/(9)- 解析:- 观察式子发现,两项乘法中都有(4)/(9),根据乘法分配律a× c + b× c=(a + b)× c,这里a=(3)/(16),b = (5)/(12),c=(4)/(9)。
- 先计算括号内的(3)/(16)+(5)/(12),通分得到(9 + 20)/(48)=(29)/(48)。
- 再计算(29)/(48)×(4)/(9)=(29)/(108)。
3. 题目- 计算:12×((5)/(6)-(3)/(4))- 解析:- 根据乘法分配律a×(b - c)=a× b - a× c,这里a = 12,b=(5)/(6),c=(3)/(4)。
- 先计算12×(5)/(6)=10,再计算12×(3)/(4) = 9。
- 最后计算10 - 9 = 1。
二、分数除法简便运算题目及解析1. 题目- 计算:(4)/(5)÷(3)/(10)×(6)/(7)- 解析:- 根据分数除法的运算法则,除以一个分数等于乘以它的倒数,所以(4)/(5)÷(3)/(10)=(4)/(5)×(10)/(3)=(8)/(3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分数乘法的简便计算》教案设计
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。
按照此规则,学生仔细确定运算顺序后计算下面各题。
(课件出示)(1)+×(2)×-
(3)-×(4)×+
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示:××,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示:+×,学生先观察题目,然后指名说说这道题适
用哪个运算定律,为什么?(适用乘法分配率,因为×4和×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1)先让学生观察题目中的已知数的特点,想想怎样做简便?应用了什么运算定律。
再独立完成练习。
教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。
这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。