《点阵中的规律》上课讲义
小学五年级数学《点阵中的规律》教案三篇
![小学五年级数学《点阵中的规律》教案三篇](https://img.taocdn.com/s3/m/76300ba8d5d8d15abe23482fb4daa58da0111c0a.png)
小学五年级数学《点阵中的规律》教案小学五年级数学《点阵中的规律》教案三篇作为一名默默奉献的教育工作者,就难以避免地要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。
如何把教案做到重点突出呢?以下是小编精心整理的小学五年级数学《点阵中的规律》教案三篇,欢迎大家分享。
小学五年级数学《点阵中的规律》教案三篇1教学目标:1、能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;2、发展归纳与概括的能力;3、了解数学发展的历史,感受数学文化的魅力。
教学重点:引导学生发现和概括点阵中的规律。
教学难点:寻求多种解决问题的方法,体会图形与数的联系。
教学过程:一、创设情境,生成问题1、观察图形中的规律上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。
请看屏幕,仔细观察,你能从这一组图形中发现规律吗?(出示幻灯片3)3:生观察说规律,可提示,师总结)2、观察一组数的规律。
看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 …)如果有困难不能出色完成,那我们今天就来一起研究,从而导入3、出示点子图同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。
那我们该怎么办呢?(生想办法)好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形——点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。
让我们马上开始!二、探索交流,解决问题1、渗透不同的观察方法(1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。
(2)指名说怎么观察的?它们之间有什么变化?(副板书:横竖看、斜着看、拐弯看)(3)设问,那第5个点阵有多少个点?请画出此图形。
2、小组探究同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。
《点阵中的规律》课件
![《点阵中的规律》课件](https://img.taocdn.com/s3/m/bf9bfdf868dc5022aaea998fcc22bcd126ff42f8.png)
点阵与透明技术的结合可以实现透明显示,使显示设备具有透明度 ,实现更加丰富的视觉效果。
点阵与传感器技术的结合
点阵与传感器技术的结合可以实现触摸感应功能,提高人机交互的 体验。
点阵的未来展望
点阵技术的发展趋势
随着科技的不断发展,点阵技术将不 断进步,实现更加高效、节能、环保 的显示效果。
点阵技术的市场前景
随着应用的不断拓展,点阵技术的市 场需求将不断增长,为相关产业的发 展提供广阔的市场空间。
THANKS
感谢观看
递归规律
总结词
递归规律是指点阵中的图形通过自我复制或自我相似的方式构成。
详细描述
递归规律是指点阵中的图形通过自我复制或自我相似的方式构成。这种规律在自 然界和数学中都非常常见,如分形、自相似结构等。递归规律可以通过数学公式 和算法来描述和实现,具有高度的复杂性和美感。
分形规律
总结词
分形规律是指点阵中的图形具有自相似 性,即在不同尺度上具有相似的结构和 形态。
点阵技术可以应用于医疗设备的显示 ,如医学影像、手术导航等,提高医 疗诊断和治疗的准确性和效率。
点阵在智能家居中的应用
点阵技术可以应用于智能家居的显示 和控制,实现家居设备的智能化和人 性化。
点阵与其他技术的结合
点阵与柔性技术的结合
点阵与柔性技术的结合可以实现柔性显示,使显示设备更加轻薄 、可弯曲,满足更多场景的需求。
点阵的分类
根据点的大小和形状
可以分为大点阵和小点阵,以及圆形、方形、三角形等不同 形状的点阵。
根据点的排列规律
可以分为有序点阵和无序点阵,以及周期性点阵和非周期性 点阵。
点阵的应用
01
02
03
点阵中的规律PPT课件
![点阵中的规律PPT课件](https://img.taocdn.com/s3/m/e4235310bf23482fb4daa58da0116c175e0e1e14.png)
规律二
在某些点阵中,每一列的点的数量也 可能相等,或者呈现特定的等差数列 关系。
对角线规律
规律一
观察点阵中的对角线,可以发现从左上角到右下角,或者从右上角到左下角, 点的数量也呈现递增或递减的规律。
规律二
在某些特殊的点阵中,对角线上的点的数量可能相等,或者呈现特定的等差数 列关系。
点阵技术的未来展望
融合多种技术
点阵技术将与其他显示技术如OLED、LCD等融合 发展,形成更加多样化的显示产品。
智能化发展
点阵技术将与人工智能、物联网等技术相结合, 实现智能化控制和交互,提高用户体验。
绿色环保
随着环保意识的提高,点阵技术将更加注重环保 和节能设计,减少对环境的负面影响。
THANKS FOR WATCHING
矩阵变换算法
将点阵视为矩阵,通过矩 阵变换的方式生成点阵。
随机生成算法
随机在点阵中生成点,以 达到一定的密度和分布。
点阵的应用场景
数据可视化
加密和安全
点阵可以用于数据可视化,将数据点 以点的形式呈现出来。
点阵用于加密和安全领域,如二维码、 条形码等。
图像处理
点阵用于图像处理中的像素表示,如 灰度图像和彩色图像。
根据点阵中点的密度, 可以分为稀疏点阵和 密集点阵。
根据点阵中点的排列 方式,可以分为一维 点阵、二维点阵等。
点阵的特点
01
02
03
点阵具有周期性
点阵中的点按照一定的规 则周期性地排列,形成了 一定的周期性结构。
点阵具有对称性
点阵中的点可以按照一定 的对称轴或对称中心进行 排列,形成了一定的对称 性。
《点阵中的规律》课件
![《点阵中的规律》课件](https://img.taocdn.com/s3/m/398c4c84d4bbfd0a79563c1ec5da50e2524dd1c3.png)
Keynote
Apple Keynote也是一款优秀 的点阵制作软件,支持多种动
画效果和演示方式。
Google Slides
Google Slides是Google推 出的在线协作工具,也适用于
点阵制作。
其他专业设计软件
如Adobe Photoshop、 Illustrator等,适合对点阵有
更高要求的设计师使用。
点阵的设计流程
布局设计
根据需求,进行点阵的整体布 局设计,包括页面的大小、方 向和基本框架。
调整优化
完成初步设计后,对点阵进行 多次调整和优化,确保信息的 准确传达和良好的视觉效果。
需求分析
明确点阵的目的、受众和信息 内容,为设计提供指导方向。
元素制作
根据布局,制作点阵中的各个 元素,如文字、图断加大,有望为点阵制造技术的发展 提供更多的政策支持和资金扶持。
THANKS
感谢观看
点阵的分类
总结词
点阵可以分为规则点阵和不规则点阵两类。
详细描述
规则点阵是指点的排列具有明显的规律性,如正方形、三角形、六边形等几何 形状的点阵。不规则点阵则没有明显的规律性,点的排列呈现自然或随机的状 态。
点阵的应用
总结词
点阵在平面设计、计算机图形学、艺术等领域有广泛应用。
详细描述
点阵在平面设计中的应用包括制作各种图案、标志、商标等 。在计算机图形学中,点阵可以用于生成图像、制作动画等 。在艺术领域,点阵可以用于创作抽象艺术作品,以及进行 点阵艺术的创作和展示。
。
一致性
保持点阵中各个元素的 一致性,如字体、颜色 、布局等,以增强视觉
效果。
对比度
合理运用对比度,突出 重点内容,使信息层次
四年级数学上册说课稿《点阵中的规律》
![四年级数学上册说课稿《点阵中的规律》](https://img.taocdn.com/s3/m/90b1f65abd64783e09122b82.png)
四年级数学上册说课稿《点阵中的规律》第一部分:教材分析1、教材地位作用尝试与猜测这部分内容是《标准》中的数形结合思想在教材中的具体体现,它从“中国古代名题”延伸到“普遍联系找规律”,其中内容广,想法深,理念新是教材的一大特色。
《点阵中的规律》看起来似乎对学生很陌生,与其他知识没有必然的联系,是一节相对独立的数学活动课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。
使学生通过观察、推理等活动,在生动的情景中找出图形的变化规律,培养学生的观察、想象与归纳概括能力,提高学生合作交流与创新的意识。
2、教学目标基于以上的认识和新课标对第一学段的数学学科要求,我从“知识与技能、过程与方法、情感态度与价值观”三个方面制定本课的教学目标:(1)、让学生在生动有趣的活动中观察、寻找图形的特点,从而探索出点阵中的规律,并体会到图形与数的联系; (2)、通过活动教学培养了学生归纳、概括和逻辑抽象思维的能力,让学生感受数学与生活的密切联系。
(3)、增强学生审美观念,培养学生的审美能力。
3、教学重点:引导学生发现和概括点阵中的规律。
4、教学难点:寻求多种解决问题的方法,体会图形与数的联系。
第二部分:教法学法设计教法安排本节课我运用了活动教学形式,通过创设找朋友的游戏情境,给学生提供较大的思维空间,大胆放手让学生主动去探索新知,引导他们通过独立思考、组内合作学习,以及组间相互汇报、交流、提问、评价等方式,归纳总结出中的规律,充分体会图形与数的联系。
学法体现五年级学生善于动手操作、探究能力较强,根据这一年龄特点,将自主探究和小组合作进行综合运用,让学生通过想一想,说一说,粘一粘等形式,体验自主学习,探究新知,尝到发现数学的滋味。
第三部分:设计思路为了体现以学生为本的课堂教学理念,针对瞬息万变的课堂教学实际,我对教学内容进行了理性的重组:首先利用常见的五子棋、跳棋让学生理解什么是点阵,再通过生动有趣的找朋友活动,为学生呈现了形似正方形、长方形、三角形的部分点阵图,让学生发现概括点阵中的规律,从而计算出后面图形点的数量。
《点阵中的规律》上课讲义
![《点阵中的规律》上课讲义](https://img.taocdn.com/s3/m/86642a8f7f1922791688e8d3.png)
《点阵中的规律》五年级上册《点阵中的规律》教学实录一、谈话引入师:从小我们就学数数、用数字,那么对于数字的发明和发展过程,你们都哪些了解?(学生交流课前搜集的相关信息)生1:古时候人们用石子来计数,比如打一只兔子就摆一块石子。
生2:还有用绳子打结的,有几个人就打几个结。
生3:我知道我们现在用的数字是印度人发明的,从阿拉伯传到我国的,所以叫阿拉伯数字。
……师:大家了解的信息真不少!阿拉伯数字的发明,使我们的记录和计算更加方便,但是在表现数字的特征方面,有时候图形会更加直观。
今天老师请来了一位图形朋友——点(老师在黑板上画点),看到这个点,你能快速地想到哪个数字?生齐:1。
师:不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的图形中的规律,还给这些图形取了一个好听的名字,叫点阵。
同学们想不想过一把当数学家的瘾,自己来寻找这些规律?生齐:想。
师:今天,我们就一起来探究点阵中隐含的规律。
(板书课题:点阵中的规律)二、探究正方形点阵中的规律1、探究一组正方形点阵的规律。
师:我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。
(依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?)生:第一个是1个点;第二个是4个点;师:在心里想第三个、第四个点阵图是什么样子。
(示图)与你的想像一样吗?生1:一样。
就是9个点。
生2:我知道第四个点阵有16个点,肯定是的。
(随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生不用数,已经忍不住地说出了点数。
说明学生已经发现了这组正方形点阵中的规律。
但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。
)师:除了能说出各个点阵的点数之外,仔细观察点阵图:你们还有什么其它的发现?生1:第一个点阵是1个点,其余的都是正方形的。
《点阵中的规律》教案
![《点阵中的规律》教案](https://img.taocdn.com/s3/m/9da6d975b5daa58da0116c175f0e7cd18425188e.png)
1.理论介绍:首先,我们要了解点阵的基本数学、计算机等领域有着广泛的应用。它是我们认识和研究几何图形变换的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过观察和分析点阵图形,找出点的排列规律,并运用这些规律解决实际问题。
在实践活动方面,虽然学生们表现出较高的热情,但在实验操作过程中,我发现部分学生动手能力较弱。为了提高学生的实践能力,我计划在今后的教学中,多安排一些实践活动,让学生在实践中不断巩固所学知识。
最后,关于教学总结和回顾环节,我觉得自己在引导学生总结和梳理知识点方面做得还不够。在今后的教学中,我将更加注重这一环节,帮助学生系统地掌握点阵知识。
五、教学反思
在今天《点阵中的规律》的教学过程中,我发现学生们对点阵的概念和规律表现出较大的兴趣。通过观察、分析和实践活动,他们能够逐步掌握点阵的知识。但在教学过程中,我也注意到了一些需要改进的地方。
首先,关于点阵概念的讲解,我发现在引导学生从具体实例中抽象出一般性规律时,部分学生仍然感到困难。这说明我在讲解过程中可能需要更加形象、具体的举例,以便让学生更好地理解点阵的概念。
2.提升学生的逻辑推理能力:指导学生运用坐标特征,推导点阵中点的坐标规律,增强逻辑思维和推理能力。
3.增强学生的数学建模能力:让学生将所学点阵规律应用于解决实际问题,培养数学建模和运用数学知识解决实际问题的能力。
4.发展学生的数学抽象能力:在探索点阵规律的过程中,培养学生从具体实例中抽象出一般性规律的能力,提高数学抽象思维水平。
解决方法:通过逐步引导、举例说明,让学生从简单点阵开始观察,逐步过渡到复杂点阵。
(2)点阵规律的灵活运用:在解决实际问题时,学生可能难以将点阵规律与问题有效结合。
点阵中的规律课件
![点阵中的规律课件](https://img.taocdn.com/s3/m/c8cc1154a66e58fafab069dc5022aaea998f412f.png)
利用计算机图形学技术,根据确定的点阵基本单元和排列方式, 构建出相应的三维点阵模型。
周期性规律分析
观察点阵的周期性
通过观察三维点阵模型,发现其是否具有周期性规律,即是否存 在一种或多种重复的排列模式。
分析周期性规律的特点
对观察到的周期性规律进行深入分析,探究其特点、周期长度、重 复单元等。
THANKS
感谢观看
性。
确定周期性规律
通过测量和计算,确定点阵中周 期性规律的数学表达式,如周期
长度、周期方向等。
预测未知区域
利用已知的周期性规律,预测和 推断点阵中未知区域的结构和特
征。
非周期性规律分析
观察非周期性现象
01
在二维点阵中寻找不具有周期性的图案或结构,分析其特殊性
和复杂性。
提取特征参数
02
针对非周期性现象,提取相关的特征参数,如形状、大小、密
根据点阵中点的排列方式和周期性结 构的不同,可以将点阵分为简单点阵 、复式点阵和混合点阵等多种类型。
点阵基本性质
01
02
03
周期性
点阵中的点按照一定的规 律周期性排列,这种周期 性是点阵最基本的性质之 一。
对称性
点阵中的点排列具有对称 性,即点阵图形在某些对 称操作下保持不变。
密集性
点阵中的点排列紧密,没 有空隙,这使得点阵具有 较高的空间利用率。
探究非周期性规律与周期性规律的关系
分析非周期性规律与周期性规律之间的联系和区别,进一步加深对三维点阵中规律的理解 。
06
点阵中规律应用举例
晶体结构分析
晶体点阵的构成
晶体内部原子、分子或离子按照一定规律排列形成点阵结构,是晶 体最基本的特征之一。
五年级上册数学说课稿-点阵中的规律-北师大版
![五年级上册数学说课稿-点阵中的规律-北师大版](https://img.taocdn.com/s3/m/f033274cb4daa58da0114a76.png)
《点阵中的规律》说课稿尊敬的各位评委大家好:我说课的内容是北师大版小学数学五年级上册第五单元第三课时《点阵中的规律》。
我将从以下五个方面来进行说课。
1、教材分析2、教学目标及重难点3、教法、学法4、教学环节5、板书设计首先对教材进行简单的分析:《点阵中的规律》是“尝试与猜测”这部分知识中的一个内容,是《标准》中的数形结合思想以及“策略多样化”在教材中的具体体现,内容广、想法深、理念新是教材的一大特色。
表面上看,对学生似乎有些陌生,与其他知识没有必然的联系,是一节相对独立的数学活动课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。
说教学目标:基于以上的认识和新课标要求,我如下教学目标:知识与技能:通过观察图形,探索、归纳、概括点阵中的规律,体会图形与数的联系;过程与方法:通过学生猜想、尝试,培养学生多角度分析问题的思维方式。
情感态度价值观:增强学生审美观念,培养学生的审美能力。
说教学方法:根据本节课的教材内容和编排特点,为了更有效地突出重点|突破难点,按照学生的认知规律,我采用了情景教学法、启发诱导法,从问题的提出到问题的解决都竭力把参与认知过程的主动权教给学生,使学生全面参与、全员参与、全程参与,真正确立起主体地位。
说学习方法:五年级学生动手操作、探究能力较强,根据这一年龄特点,将自主探究、动手操作和小组合作进行综合运用,让学生通过观察、猜想、验证、归纳等形式,发现点阵中的规律,使学生真正成为学习活动的主人。
说教学环节:为了很好地完成教学目标,我设计了以下四个教学环节。
(一)创设情境,激发兴趣——认识点阵(二)尝试探究,互动交流——探究正方形点阵(三)灵活应用,加深理解——自探长方形点阵(四)自我设计,实践应用。
(一)创设情境,激发兴趣——认识点阵我是这样导入新课的,同学们,看,这时什么图形,点是数学中最基本的图形,由点可以组成很多漂亮的图案,让学生直观地看到:象这样把点按一定的规律排列起来的图形在数学中可称之为“点阵”,从而引出课题:点阵中的规律。
《点阵中的规律》(教案)五年级上册数学北师大版
![《点阵中的规律》(教案)五年级上册数学北师大版](https://img.taocdn.com/s3/m/7f5dc8305bcfa1c7aa00b52acfc789eb172d9e32.png)
《点阵中的规律》教案一、教学目标1. 让学生理解点阵中蕴涵的规律,感受数学与生活的密切联系。
2. 培养学生的观察能力、分析能力和推理能力。
3. 培养学生合作交流的意识,体验数学学习的乐趣。
二、教学内容1. 点阵的概念2. 点阵中的规律3. 规律的应用三、教学重点与难点1. 教学重点:让学生发现点阵中的规律,并能运用规律解决问题。
2. 教学难点:引导学生从不同的角度观察和分析点阵,发现规律。
四、教学过程1. 导入新课1.1 利用多媒体展示一些点阵的图片,引导学生观察并说出这些图形的共同特点。
1.2 学生汇报观察结果,教师总结:这些图形都是由点组成的,我们称之为点阵。
2. 探究新知2.1 出示一个简单的点阵,引导学生找出其中的规律。
2.2 学生独立思考后,小组内交流讨论,总结出规律。
2.3 各小组汇报发现的规律,教师点评并总结。
2.4 出示一个稍复杂的点阵,让学生尝试运用刚刚发现的规律解决问题。
2.5 学生独立思考后,小组内交流讨论,共同解决问题。
3. 巩固练习3.1 出示一些不同形状的点阵,让学生找出其中的规律。
3.2 学生独立完成后,全班交流答案,教师点评。
4. 总结延伸4.1 让学生谈谈本节课的收获。
4.2 教师总结:通过本节课的学习,我们发现了点阵中的规律,并学会了运用规律解决问题。
希望大家在今后的学习中,能够多观察、多思考,发现更多的数学规律。
五、作业布置1. 完成课后练习题。
2. 观察生活中的点阵,找出其中的规律,并记录下来。
六、教学反思本节课通过引导学生观察和分析点阵,发现其中的规律,培养了学生的观察能力、分析能力和推理能力。
在小组合作交流中,学生学会了倾听、表达和分享,提高了合作意识。
但在教学过程中,部分学生对于规律的发现和应用还存在一定的困难,需要在今后的教学中加强个别辅导。
重点关注的细节:探究新知在《点阵中的规律》的教学过程中,探究新知是非常关键的一个环节。
在这一环节中,学生需要通过观察和分析点阵,发现其中的规律,并学会运用规律解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《点阵中的规律》五年级上册《点阵中的规律》教学实录一、谈话引入师:从小我们就学数数、用数字,那么对于数字的发明和发展过程,你们都哪些了解?(学生交流课前搜集的相关信息)生1:古时候人们用石子来计数,比如打一只兔子就摆一块石子。
生2:还有用绳子打结的,有几个人就打几个结。
生3:我知道我们现在用的数字是印度人发明的,从阿拉伯传到我国的,所以叫阿拉伯数字。
……师:大家了解的信息真不少!阿拉伯数字的发明,使我们的记录和计算更加方便,但是在表现数字的特征方面,有时候图形会更加直观。
今天老师请来了一位图形朋友——点(老师在黑板上画点),看到这个点,你能快速地想到哪个数字?生齐:1。
师:不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的图形中的规律,还给这些图形取了一个好听的名字,叫点阵。
同学们想不想过一把当数学家的瘾,自己来寻找这些规律?生齐:想。
师:今天,我们就一起来探究点阵中隐含的规律。
(板书课题:点阵中的规律)二、探究正方形点阵中的规律1、探究一组正方形点阵的规律。
师:我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。
(依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?)生:第一个是1个点;第二个是4个点;师:在心里想第三个、第四个点阵图是什么样子。
(示图)与你的想像一样吗?生1:一样。
就是9个点。
生2:我知道第四个点阵有16个点,肯定是的。
(随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生不用数,已经忍不住地说出了点数。
说明学生已经发现了这组正方形点阵中的规律。
但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。
)师:除了能说出各个点阵的点数之外,仔细观察点阵图:你们还有什么其它的发现?生1:第一个点阵是1个点,其余的都是正方形的。
生2:我发现从第一个图开始点子数分别是加3、加5、加7。
生3:我发现它们的点子数能写成1×1、2×2、3×3、4×4。
师:你们真了不起!这种形状的点阵就是正方形点阵,大家不但用数字表示每个点阵的点数,还能用算式来表示这组点阵的规律。
根据刚才发现的规律,想一想:第五个点阵是什么样子呢?自己画出来,并用算式表示点数。
(学生活动:独立画出第五个5×5的点阵图,全班交流。
)师:照这样的规律继续画下去,第9个点阵的点数如何用算式来表示?第100个呢?第n个呢?在小组内交流一下。
生:第九个点阵表示为9×9;第100个点阵表示为100×100;第n个点阵就表示为n×n。
(结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。
)师:那么你们觉得每个正方形点阵的点子总数与什么有关系?在小组内讨论交流。
生1:点子总数与正方形点阵每一排的点子数有关系。
生2:就是边长乘边长。
生3:还与是第几个有关系,第一个就是1×1,第二个就是2×2,第三个就是3×3,一直这样数下去。
(学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)师:说得真好!每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。
2、同一个点阵的不同划分中的规律。
师:刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。
请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?与同桌交流你的想法。
生1:我发现都是用折线分开的。
生2:我发现从短的线开始,每条线内的点分别是1、3、5、7、9。
生3:这个正方形点阵的点数用算式表示就是:1+3+5+7+9=25。
师:大家的发现真不少!那如果把每条线所包围的点子数记下来,如何用算式来表示?学生汇报:第一条线: 1 = 1;第二条线: 1+3 = 4;第三条线: 1+3+5 = 9;第四条线: 1+3+5+7 = 16;第五条线: 1+3+5+7+9 = 25;师:你们觉得这组算式有什么特点?生1:一个算式比一个算式多加一个数。
生2:它们的得数正好是刚才那一排点阵的点子数。
生3:都是连续的奇数在相加。
师:是从几开始的连续奇数呢?生:是从1开始的连续奇数在相加。
师:如果按这样的划分方法划分第六个正方形点阵,它的点数该如何用算式来表示?生:1+3+5+7+9+11 = 36。
师:刚才我们是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?如何用算式表示?在小组内研究一下。
学生汇报:生1:我们是用横线划分的,算式是:5+5+5+5+5+5 = 25。
生2:还可以用竖线划分,算式也是:5+5+5+5+5+5 = 25。
生3:这些都可以写成是5×5 = 25。
生4:我们的方法不一样。
我们是用斜线划分的,用算式表示就是1+2+3+4+5+4+3+2+1。
师:这种划分方法有新意!仔细观察这个算式,你们发现了什么?生1:算式里最大的数是5。
生2:这个算式是从1开始加到5再加回到1。
生3:这个算式的两边是对称的,5在中间。
生4:这个点阵的点数是就中间那个数字5乘5的积。
师:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?生1:第六个点阵的点数是1+2+3+4+5+6+5+4+3+2+1。
生2:第九个点阵的点数是1+2+3+4+5+6+7+8++9+8+7+6+5+4+3+2+1。
生3:第n个点阵的点数是……,我说不完。
师:说不完,我们可以借助什么来表示?生:用省略号,这样表示:1+2+3+……+n+……+3+2+1。
师:你太聪明了,帮我们解决了一个大难题,谢谢你。
(在这里让学生寻找正方形点阵的不同划分方法,把教材分散处理的关于正方形点阵的不同划分方法集中探究,便于学生思维的延续和拓展,不至于出现思维上的断层。
这样设计既符合学生的探究心理和学习习惯,又给学生提供了自主探究的空间,体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。
培养了学生从不同的角度去发现问题,总结概括规律的能力。
)三、延伸应用,形成策略师:除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?生1:长方形点阵。
生2:三角形点阵。
生3:圆形点阵。
生4:椭圆形点阵。
师:请大家尝试运用前面学会的方法探究长方形点阵规律。
在小组内合作研究:如何用算式表示每个长方形点阵的点子数?(学生分组活动)学生汇报:生:这四长方形点阵的可以用算式1×2;2×3;3×4;4×5来表示。
师:根据自己发现的规律,请你独立画出第五个长方形点阵并用算式表示出点数。
(学生独立画图并写出算式,互相交流。
)生:第六个长方形点阵的点子总数用算式表示是5×6。
师:你们觉得自己所写的算式中的数字与图形之间有什么关系?在小组内讨论交流。
生1:乘法算式中的第二个因数总是比第一个因数多1。
生2:第一个算式的后面一个数是第二个算式开头的一个数,有点像词语接龙。
生3:算式中的第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。
师:这个算式与点阵的排列序号有关吗?生1:第一个点阵是1×2,第二个点阵是2×3,第三个点阵是3×4,是第几个点阵就是用几去乘。
生2:是用点阵的排列序号去乘比它大1的数。
师:照这样继续写,你能写出第n个长方形点阵的点数吗?生齐:n×(n+1)。
师:看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。
下面请大家认真观察给出的四个三角形点阵的规律,快速画出第五个三角形点阵并说出点数。
生:(举起自己的点阵图)有15个点。
师:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。
(学生活动)全班交流:生1:我是横着分的,算式是1+2+3+4+5=15。
生2:我是斜着划分的,算式也是1+2+3+4+5=15。
生3:我是竖着划分的,算式跟他们一样,也是1+2+3+4+5=15,就是连续的自然数的和。
生4:我的是用折线划分的,算式可以写为1+5+9=15,就是每次都多4个。
(对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。
而对于第四种划分方法,是我没有预想到的。
有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。
我真的很庆幸给了他一个机会,他用如此精彩的回答回报了我,也许课堂教学永远的魅力就在于这预设外的惊喜吧。
)师:同学们真的很了不起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。
那么你们觉得应该从哪些方面来探究点阵的规律呢?生1:我会仔细看清点阵是什么形状的。
生2:我觉得应该数清每一行的点子数是多少。
生3:我认为还要看清前后两个点阵的变化。
……(在这里不需要学生说出多么专业的、深奥的数学方法,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生是用自己的语言在表述自己的想法,就是对学生思维训练层次的一个提升,一种飞越。
)联系生活:师:点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。
你还知道什么地方运用了点阵的相关知识?生1:五子棋。
生2:解放军阅兵式的方队。
生3:节日里摆放的花坛生4:我们参加市八运会排练的团体操。
师:看来生活中用到点阵知识的地方还真不少。
课后自己也设计一幅美丽的点阵图,下节课我们一起展评。
(在这里,把学生的课堂学习延伸到课外,链接到学生已有的相关生活经验,使得原本陌生的数学知识与学生的日常生活自然对接,体现了数学与生活的密切联系。
学生课后的自主设计作业,给了学生极大的创造空间,真正体现数学来源于生活,又应用于生活。
)北师大版五年级数学《点阵中的规律》教学设计教学目标:1、能在具体的观察活动中,发现点阵中隐含的规律,体会到图形与数的联系2、了解数学发展的历史,感受数学文化的魅力。
3、发展归纳与概括的能力,培养学生推理、观察、概括能力。
教学重点:直观感知“点阵”的有序排列。
引导学生发现与概括规律教学难点:发现“点阵”中隐含的规律,体会图形与数的联系。
总结概括规律。
教学准备:课件。