生物活性炭滤池的工艺参数试验研究(0001)
活性炭吸附池工艺设计的探讨
活性炭吸附池⼯艺设计的探讨活性炭吸附池⼯艺设计的探讨1 深圳市笔架⼭⽔⼚活性炭吸附池⼯艺设计概况深圳市笔架⼭⽔⼚扩(改)建⼯程于1999年开始⽅案设计,2003年被确定为国家“863”课题“南⽅地区安全饮⽤⽔保障技术”的⽰范⼯程(以下简称⽰范⼯程),⽔⼚扩建⼯程规模20万m3/d,改建⼯程规模32万m 3/d,其中常规净化构筑物按新增20万m3/d规模设计,预处理、深度处理、污泥处理按新建52万m3/d规模设计。
⼯程于2003年8⽉开⼯建设,⽬前正在建设中。
⽰范⼯程以东深引⽔和东部供⽔两⼤⽔源系统为⽔源。
东深引⽔⽔源受到⽣活性有机污染,氨氮、亚硝酸盐、⽣化需氧量(BOD5)、耗氧量(KMnO4法)、溶解氧等项⽬超标。
虽然东深引⽔⼯程经沙湾⽣物硝化预处理后,主要控制指标氨氮去除效果良好,实测值可基本符合《⽣活饮⽤⽔⽔源⽔质标准》⼆级⽔源⽔质标准,但去除效果不稳定,实测氨氮值和总磷值时有超标。
⽽且即使硝化后,N、P等营养物质仍残留⽔中,为藻类等⽔⽣植物的繁殖提供了条件。
⽰范⼯程出⽔⽔质执⾏《城市供⽔⾏业2000年技术进步发展规划》第⼀类⽔司的88项指标,同时课题要求下列指标达到:出⼚⽔浊度低于0.1NTU;⾼锰酸盐指数低于2mg/L;氨氮低于0.5mg/L。
常规净化⼯艺难以满⾜原⽔⽔质不断恶化、⽔源微污染⽇益严重同时出⽔⽔质⽇趋严格的要求。
国内外⼤量的研究试验和⼯程实践证明,采⽤臭氧-活性炭深度处理⼯艺可以有效地去除⽔的⾊、嗅、味,降解有机物,灭活细菌和病原微⽣物,对消毒副产物及其前体物具有很好的去除效果,对内分泌⼲扰物及其前体物具有⼀定的控制作⽤,可明显降低⽔的致突变活性,并提⾼⽔的⽣物稳定性,使饮⽤⽔⽔质得到极⼤改善,因此⽰范⼯程确定采⽤臭氧-活性炭吸附深度处理⼯艺。
由于⽅案设计时,尚⽆正式颁布的活性炭吸附池设计的国家级或⾏业规范,可借鉴的同类型⼯程也很少,因此主要参照北京市第九⽔⼚活性炭吸附池的型式、反冲洗⽔⼒特性并结合笔架⼭⽔⼚新建、扩建系统竖向及平⾯布置进⾏设计。
活性炭过滤器原理及技术参数分析
活性炭颗粒的大小对吸附能力也有影响。
一般来说,活性炭颗粒越小,过滤面积就越大。
所以,粉末状的活性炭总面积最大,吸附效果最佳,但粉末状的活性炭很容易随水流入水族箱中,难以控制,很少采用。
活性炭过滤器原理及技术参数分析一、活性炭过滤器作用原理活性炭是一种很细小的炭粒单位面积有很大的微孔,通常我们叫他毛细管孔。
这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,在与与水中杂质充分接触。
这些杂质能被吸附在微孔中,从而去掉水中胶体等杂质。
活性炭还能吸附水中的CL离子以及臭氧,对水中的有机物也有一定的吸附能力,能明显的对水中的色素进行吸附,在水处理行业一般我们要求碘值在700mg以上,这样的活性炭的吸附能力较强。
二、活性炭过滤器制作结构活性炭过滤器一般采用不锈钢304材质,碳钢材质,因为活性炭吸附水中CL等氧化剂、金属离子,微孔中的细菌以及化学物质,对罐体产生腐蚀,所以一般活性炭过滤器内要衬胶防腐。
三、活性碳过滤器技术参数1、过滤速度:8-12m3/h2、工作温度:常温工作压力3、反洗压缩空气量:18-25L/m2.S4、滤料层高:1000-1200mm 膨胀率50%5、反洗强度:9-15L/m2.S6、反冲洗时间:4-6分钟四、活性炭过滤装置的工作方式:Ⅰ采水:生水自活性炭塔槽上方流入,经活性炭过滤装置下方流出,而得到去除杂质、臭味等水质。
Ⅱ逆洗:目的为逐出活性炭上方之沉积物。
经一段时间的过滤后,若干杂质沉积在活性炭上方排出并除去。
Ⅲ沉整:在逆洗时活性炭会上浮,逆洗完成后将所有阀门关闭使活性炭因重力而沉下。
Ⅳ洗净:在逆洗时恐有杂质附在活性炭下面,用正洗来洗净以免在采水时候污染水质。
活性炭的工作方式就是以上面五步骤循环操作的。
但在各个步骤时间上有一定的分别。
五、活性炭过滤器的工作原理介绍:活性炭的吸附原理是:在其颗粒表面形成一层平衡的表面浓度,再把有机物质杂质吸附到活性炭颗粒内,使用初期的吸附效果很高。
但时间一长,活性炭的吸附能力会不同程度地减弱,吸附效果也随之下降。
生物活性碳工艺
研究指出,活性炭滤池在运行初期能够有效地去除氯仿,但运行时间短,很快就发生穿透。臭氧生物活性碳滤池的运行时间比普通的滤池长3倍,但穿透后其出水氯仿浓度比进水高1倍左右,这种现象主要是生物作用造成的。因此,在采用生物活性碳深度处理工艺时,应尽量避免对原水进行氯化,以防止在后面的炭滤池出水中出现氯仿含量增高的现象。
生物活性炭法的操作方式分为静态和动态两种。静态操作(或序批操作)是指将粉末活性炭(PAC)投入水中不断搅拌,靠活性炭的吸附性能和活性炭表面形成的生物膜降解有机物质,当生物活性炭达到吸附平衡时,再用沉淀或过滤的方法使炭水分离。动态操作(或连续操作)指废水在连续流方式下进行吸附操作,一般使用粒状炭,有固定床、流化床和移动床三种方式。目前固定床的应用最多,流化床次之,移动床应用还较少。
主要运行参数范围及各种要点(以臭氧活性碳工艺为例)
(1)生物活性碳主要运行参数
活性炭粒径(d)颗粒炭0.9~1.2 mm运行周期:3~4年
空床停留时间(t):
20~30 min
预臭氧投加量:1.5~2.5mg/L (当水中有酚、有机磷农药等污染物时,体积负荷(Nv):0.25~0.75KgBOD/(m3·d),O3投加量在4 mg/L以上)
由于生物活性炭技术突出的优越性,目前这一新工艺已经在国外实际应用于受污染水源净化、工业废水处理及再生等方面,在我国有关的研究和应用还比较少,由于生物活性碳技术的影响因素较多、反应过程复杂,到目前为止,对其作用机理的解释存在多种假说,尚不统一,工程运行条件也还不够成熟,但在实际应用中它显示出的优越性是众所公认的。因此很有必要进一步研究经济合理、技术适用又具有一定创新性的生物活性炭对废水的处理技术,以提高污水废水的处理水平,改善废水再生利用率较低的状况。
炭砂双层生物活性滤池最优运行参数的研究
炭砂双层生物活性滤池最优运行参数的研究
煤炭砂双层生物活性滤池技术是一种用于处理含氮水源的生物处理技术,近年来已经受到了广泛关注,并广泛应用于农村污水处理和鱼塘污染控制等领域。
根据污水处理的规律,优化煤炭砂双层生物活性滤池的运行参数非常重要。
首先,通过实验确定煤炭砂双层生物活性滤池的最优拆卸深度:设置拆卸深度不同的实验系统,控制基准水质,逐步加大外加浓度,研究在恒定溶解氧浓度条件下煤炭砂双层生物活性滤池入水悬浮物总量折算比、总磷产率、氨氮去除率等指数,在不同拆卸深度、入水悬浮物质量浓度不断变化条件下,确定出最优拆卸深度,以保证煤炭砂双层生物活性滤池的良好表现。
其次,需要考虑底层煤炭活性滤砂流量的调整。
在拆卸深度最优的情况下,可以通过调整渗透压力来调整底层煤炭活性滤砂的通量,这取决于设置的滤砂和滤器件。
将这些参数综合起来,反映出双层生物活性滤池的运行状况,以确定煤炭砂双层生物活性滤池的最佳运行参数。
综上所述,为确定煤炭砂双层生物活性滤池的最佳运行参数,首先要优化拆卸深度,然后通过控制底层煤炭活性滤砂流量,根据实验结果,综合其他参数确定最佳运行参数。
在操作煤炭砂双层生物活性滤池时,应重视优化最佳运行参数,以提高煤炭砂双层生物活性滤池反应器的处理效果。
0981.活性炭滤池深度处理水中有机物
活性炭滤池深度处理水中有机物摘要:生物活性炭滤池能有效去除常规工艺出水中CODMn、UV254、三氯甲烷生成势和一溴二氯甲烷生成势,但在相同水力停留时间下,新鲜活性炭滤池对这些有机物去除效果更显著。
生物活性炭滤池出水二溴一氯甲烷生成势升高,而新鲜活性炭滤池对二溴一氯甲烷生成势有时有一定的去除效果。
关键词:生物活性炭滤池新鲜活性炭滤池生成势去除效果0 引言以黄河水为源水的自来水厂,通常采用常规工艺进行处理,其水质不甚理想,这是由于黄河水水源的污染日益严重,尤其是痕量有机物污染,通过常规工艺处理虽然可以去除水中许多有毒有害物质,但对水体中有机物的去除效果却不太理想,过滤后的出水仍含有较多的有机污染物。
活性炭深度处理工艺与常规工艺相结合应是一种理想的净水方式。
本研究的主要目的是:通过比较新鲜活性炭滤池和生物活性炭滤池,处理经常规工艺处理后出水中的有机物的去除效果,为将来可能兴建的以黄河为水源的安全供水工程或已有自来水厂的改造及后续运行管理提供一定参考。
1 试验工艺本研究设备为有机玻璃制作的并联的大小不同的2种颗粒活性炭滤池,其中体积较大的活性炭滤池(称为活性炭滤池Ⅰ)内填装有已经连续运行约1.5的旧炭(可以认为挂膜成熟的生物炭),而体积较小的活性炭滤池(称为活性炭滤池Ⅱ)内填装有新炭,2种活性炭滤池的运行参数如表1所示。
试验在以黄河水为源水的S 自来水厂进行,试验原水为黄河水经常规工艺处理出水。
原水pH约为8,水温为20~30℃,整个试验时间为70 d。
2 试验结果与讨论2.1 活性炭滤池对CODMn的去除图1反映了两种活性炭滤池对CODMn的去除效果,可以看出,原水CODMn经常高于3 mg/L,但经过活性炭滤池处理后,其出水都能满足CODMn低于3 mg/L的规定。
虽然活性炭滤池Ⅰ内活性炭是已经运行约1.5d的生物炭,但活性炭滤池Ⅰ对CODMn的去除仍然十分有效,这可能是由于除生物氧化作用外,微生物通过胞外酶降解微孔内吸附的有机物达到对活性炭的生物再生作用,使活性炭在达到饱和容量之后可以继续吸附少量有机物[1]。
水处理的生物活性炭技术探讨
水处理的生物活性炭技术探讨引言随着我国工业化的大力推进,工业污水和生活污水等大量污水向环境中的排放使人们的生活面临着严重的威肋,因此,对这些污水的处理成为了亚待进行的任务在众多污水的处理中,生物活性炭技术的应用表现出了巨大的优势,不仅可以达到除污的良好效果,而且可以使活性炭再生利用,节省了原料,实践证明,生物活性炭技术在水处理中的应用具有广阔的发展前景。
一、生物活性炭技术简介1、简介生物活性炭是当前国内外饮用水深度处理的主流工艺之一。
生物活性炭技术是将臭氧化学氧化、活性炭物理化学吸附、生物氧化降解进行联合使用。
在生物活性炭吸附前增设臭氧预氧化,不仅可以初步氧化水中的有机物及其他还原性物质,以降低生物活性炭滤池的有机负荷;还可以使部分难生物降解有机物转变为易生物降解物质,从而提高生物活性炭滤池进水的可生化性。
生物活性炭还被成功用于处理呈现高藻、高有机物、高氨氮“三高” 特征的太湖水处理中,为类似水厂的深度处理改造提供经验和示范。
生物活性炭深度处理工艺具有诸多的优点,但在应用过程中也会发生活性炭滤池生物泄漏、溴酸盐超标、中间提升泵房运行不稳定等问题,针对上述问题,需要找出防止生物泄漏、溴酸盐超标等设计优化和改进的方法,为臭氧—生物活性炭工艺更加科学合理的运用提供依据。
总之,臭氧化-生物活性炭处理工艺充分发挥了臭氧化和生物活性炭两种水处理技术的优点,并相互促进和补充,是一种高效的除污染技术,能够充分保证饮用水的安全性。
2、优势生物活性炭技术特有的优势主要有:一是能有效的深度处理有机废水。
通常情况下,有机物被微生物的降解具有一个最小的基质浓度,当水中的有机物浓度比这一基质浓度小时,微生物的降解速率不高,基于生物活性炭技术对水中有机物具有良好的吸附作用以及炭表面有机物的富集,从而提升微生物降解速率。
例如在处理城市污水个工业废水等二级水处理时,由于其具有有机物浓度不高、可生化性能差的缺点,应用这一技术能很好的去除有机污染物,最佳能达到回用水水质标淮。
生物粉末活性炭-超滤组合工艺处理微污染原水
生物粉末活性炭-超滤组合工艺处理微污染原水水厂常规处理工艺难以有效去除微污染原水中的氨氮、有机物等物质,而生物粉末活性炭/超滤(BPAC/UF)组合工艺是一种有效的深度处理技术,其结合了活性炭吸附、微生物降解以及膜分别技术各自的优势,对水中氨氮和有机物有较好的去除效果,且该工艺出水水质稳定,操作敏捷性高,具有较好的实用性。
笔者考察了BPAC/UF组合工艺对微污染水中氨氮和有机物等污染物的去除效果,以及化学强化反冲洗对跨膜压差的影响,旨在为该工艺的实际应用供应参考。
一、试验材料与方法1.1 试验装置试验用BPAC/UF小试装置如图1所示,由PVC材质的中空纤维膜组件、反应器、清水箱、浮球阀液位掌握系统、曝气系统、反冲洗系统、排水系统、回流系统、蠕动泵、压力传感器和PLC掌握系统等组成。
其中,反应器由活性炭接触池、斜板沉淀池和膜池3部分组成。
活性炭接触池的有效容积为6.0L,斜板沉淀池的有效容积为8.4L,斜板高度为100mm,倾斜角为60。
,膜池有效容积为2.8L。
反应器留有50mm超高,并在30mm 超高处设有溢流口。
BPAC/UF小试装置以30L/(m2-h)的恒通量运行,进水在活性炭接触池的停留时间约为2h,采用24h连续曝气和搅拌,曝气流量为30L/h,搅拌机转速为20r/min。
粉末活性炭一次性投加,投加量为2g/L,装置运行前,粉末活性炭已经经过1个月的曝气培育,已初步形成絮状物。
每30min进行一次污泥回流,将沉淀池内的活性炭回流到活性炭接触池。
膜池内的水每2d排空一次。
反冲洗间隔为30min,每次以2倍的出水通量反冲洗60s。
试验采用苏州立升净水科技有限公司供应的浸入式PVC中空纤维膜,膜丝有效长度为25cm,有效膜面积为0.063m2,膜纤维内、外径分别为1.0,2.0mm,平均膜孔径为0.02μm,截留分子质量为50ku,最高抽吸工作压力为-80kPa,工作pH 值范围为1~13。
长期运行生物活性炭滤池滤料性能变化与失效因素分析
长期运行生物活性炭滤池滤料性能变化与失效因素分析对于深度处理的水厂中的活性炭工艺单元,活性炭的性能评价是活性炭更换与再生的判断依据之一。
目前该领域的研究主要集中于新炭性能的评价,对长期运行的生物活性炭(Biological Activated Carbon,BAC)失效研究较少。
本文通过对五个不同炭龄的活性炭滤料BAC0(0年)、BAC1(1年)、BAC4(4年)、BAC8(8年)和BAC9(9年)的工艺模拟实验,分析了不同炭龄BAC的吸附作用与生物降解作用。
接着,从出水水质达标和保障正常运行两方面,研究了五个BAC 的处理效果失效和运行失效风险,并分析了BAC失效因素,从而提出指标指导BAC 工艺的换炭处理。
BAC的作用变化研究表明,五个BAC均具有剩余静态吸附容量,但由于解吸作用和生物膜的包裹,实际运行中BAC发挥的吸附作用很少。
长期运行的BAC主要发挥生物作用,对有机物的去除主要是对可降解有机物(Biodegradable Dissolved Organic Carbon,BDOC)的去除。
BAC滤料上的生物量与活性炭孔径10~30 nm的孔容积显著相关,生物量对BAC的处理效果具有较大影响。
BAC的处理效果失效研究表明,对于深圳地区,无法仅根据处理效果判断BAC的失效,活性炭的孔隙结构是影响BAC处理效果的内在因素,滤料孔径10~30 nm的孔容积可作为BAC滤池处理效果变化的指示指标。
孔隙结构会影响生物量,从而影响BAC的处理效果。
长期运行的BAC对有机物仍具有处理效果,运行8年以上的BAC对有机物去除率低于20%,但出水仍满足《生活饮用水卫生标准》(GB5749-2006)。
五个BAC均能应对一定范围的水质波动,对微量污染物苯酚和嗅味物质2-甲基异冰片(2-Methylisoborneol,2-MIB)均具有一定抗冲击负荷能力。
长期运行的BAC对磷、氯、溴、碘和金属元素均能有效富集,吸附的有机物以醇类、醛类、酮类和杂环类为主,无机物以氟化物、硝酸盐、氯化物、硫酸盐为主,存在吸附物解吸引起水质问题的风险。
臭氧_平板陶瓷膜_生物活性炭新型净水工艺研究
45供水篇饮用水源微污染已成为我国面临的普遍问题,且在今后很长一段时间内都会继续存在。
有机物和氨氮是饮用水源中主要的污染物,有机物会导致COD 含量高、生成消毒副产物和为微生物在管道内的生长提供营养物质。
此外,水中嗅味物质的存在会引起用户感官的不适。
而内分泌干扰物(EDCs)、药品和个人护理品(PPCPs)等新兴污染物也开始在水体和自来水厂中检出,由此带来的风险值得重视。
在我国,90%以上的饮用水厂都采用混凝、过滤、消毒的传统处理工艺,不能有效地去除水中的溶解性有机物和氨氮。
为达到新的饮用水卫生标准(GB 5749-2006),很多水厂都面临着升级改造的需求。
在实际应用中,常在传统处理工艺前加入预氧化,臭氧/平板陶瓷膜-生物活性炭新型净水工艺研究□ 清华大学深圳研究生院环境工程与管理研究中心 张锡辉 范小江我国饮用水源面临着多种污染物导致的复合污染,传统的水处理工艺已不能满足要求,而新增深度处理工艺需新建处理单元,工艺流程延长,增加投资和运行成本。
以臭氧/平板陶瓷膜-生物活性炭为核心的新型工艺可以促进净水工艺从“串级”转变为“并级形式”,缩短工艺流程,并可以在水厂现有构筑物的基础上进行升级改造,操作简便,效率高。
在工艺后添加以臭氧活性炭为代表的深度处理工艺,有时甚至在最后添加膜处理工艺。
这使得处理流程冗长,相应的建设和运行成本上升,尤其对于一些用地紧张的水厂更是难以实现。
本文采用耐氧化的平板陶瓷膜,将传统的预氧化、混凝、沉淀、砂滤和臭氧氧化等5个单元通过平板陶瓷超滤膜,集成为一个复合单元,后续采用生物活性炭过滤,如图1所示。
这使得饮用水处理工艺从“串级”发展到“并级”形式。
其中,混凝将微小颗粒物聚合形成絮体,膜过滤将颗粒物完全去除,臭氧可以氧化有机物和提高有机物的可生化性,活性炭可以进一步去除有机物和水中的氨氮,从而达到去除污染物的目的。
本文集成工艺有助于在现有水厂构筑物基础上实现传统工艺向深度处理工艺的升级。
生物活性炭—砂滤处理微污染原水研究(1).
生物活性炭—砂滤处理微污染原水研究(1)试验研究表明,在滤前未预氯化或预氧化的条件下,生物活性炭—砂滤对有机物和氨氮的去除效果是显著的,CODCr和UV254的平均去除率分别为40.4%和48.9%。
当进水氨氮浓度在2 mg/L以下时,其平均去除率为82.5%;浊度的平均去除率约82.4%,出水浊度的平均值为0.51 NTU;CHCl3和CCl4的去除率为38.9%。
关键词:微污染原水生物活性炭砂滤氨氮消毒副产物1 试验流程及原水水质1.1 试验流程采用混凝→沉淀→生物活性炭—砂滤工艺处理微污染原水,试验装置如图1。
该工艺的特点是取消了预氯化或其他预氧化过程(如臭氧氧化),利用生物活性炭提供的巨大比表面积和吸附性能,为微生物氧化降解水中的有机物创造了良好的条件,并能部分去除水中卤代烃类消毒副产物(DBPs)。
1.2 原水水质过滤的原水采用两种水配制而成,其一为武汉大学校园内的河水(含生活污水),并先经混凝沉淀处理(加入混凝剂量为50mg/L,静置沉淀2h);其二为自来水,在使用前先放置2h以去除余氯。
滤前水由这两种水以1∶3的比例配制而成,各种水的具体水质情况见表1。
表1 原水水质分类表水样名称数据范围浊度(NTU) 臭味 pH值 CODCr (mg/L) NH3-N(mg/L)UV254混凝沉淀后的河水最大值 11.21 微臭8.11 41.85 6.85 0.135最小值 9.85 6.85 29.48 2.40 0.099平均值 10.56 7.50 31.26 3.73 0.112自来水最大值 2.67 无 7.80 12.82 0.89 0.086最小值 1.24 6.95 7.84 0.12 0.060平均值 1.87 7.20 10.77 0.57 0.074配制的滤前水最大值 9.62 无 7.60 26.52 2.16 0.116最小值 0.60 6.70 7.77 1.08 0.063平均值 2.90 7.19 12.70 1.54 0.0942 试验装置及设计参数2.1 试验装置生物活性炭—砂滤柱采用双层滤料,上层为颗粒活性炭,下层为石英砂。
活性炭检测
脱氢酶活性
检测依据: 检测依据: 脱氢酶是一类氧化还原酶, 脱氢酶是一类氧化还原酶,它的作用是催 化氢从被氧化的物体中转移到另一个物体 上
脱氢酶活性
我们使用TTC, 我们使用TTC,它接受脱氢酶活化的氢而 被还原成具有稳定颜色的TF, 被还原成具有稳定颜色的TF,可通过比色 的方法,测量反应后颜色深度, 的方法,测量反应后颜色深度,来推测脱 氢酶的活性。 氢酶的活性。
生物量 脱氢酶活性 碘吸附值/ 碘吸附值/亚甲蓝吸附值
碘吸附值/ 碘吸附值/亚甲蓝吸附值
碘吸附值/ 碘吸附值/亚甲蓝吸附值均表示的是活性炭 自身吸附性能的特性。 自身吸附性能的特性。 碘吸附值可以用来估算活性炭的比表面积 亚甲蓝吸附值在一定程度上反映活性炭中 孔的数量
碘吸附值/ 碘吸附值/亚甲蓝吸附值
脱氢酶活性
检测步骤: 检测步骤:
称取碳样 生理盐水 振荡30min 振荡30min 菌悬液
加入1 加入1滴甲醛 终止反应
37℃振荡30min 37℃振荡30min
加入TTC 加入TTC
氯仿萃取
比色
计算得到 脱氢酶活性
脱氢酶活性
表示方法: 表示方法: 1 直接用TF浓度表示 直接用TF浓度表示 2 用酶活表示
检测依据: 检测依据: 亚甲蓝吸附值: 7702.6亚甲蓝吸附值:GB/T 7702.6-1997 碘吸附值: GB/T 7702.7-1997 7702.7碘吸附值:
碘吸附值/ 碘吸附值/亚甲蓝吸附值
检测方法: 检测方法:
烘干碳样 磨细碳样 称取三份碳样 分别加入 碘、亚甲蓝标准溶液
计算碘、亚甲蓝 计算碘、 吸附量
生物量
检测依据: 检测依据: 生物细胞的细胞膜内含有磷脂, 生物细胞的细胞膜内含有磷脂,磷脂在细 胞内基本稳定, 胞内基本稳定,通过萃取液将细胞内磷脂 萃取出来后, 萃取出来后,用比色法测量磷脂中所含的 磷而得出磷脂含量,进而评价生物量大小。 磷而得出磷脂含量,进而评价生物量大小。
毕业论文-活性炭滤池
活性炭滤池的设计计算●活性炭工艺部分及池体设计参数处理水量为s L h m d m Q /625/2250/5400033===,滤池采用下向流V 型滤池,空床流速8-12m/h ,本设计采用8m/h 。
共设计四座滤池,分两组布置。
活性炭滤层厚m H n 5.1=。
采用两段式气水反冲洗,第一步气冲冲洗强度21.12m s l q =气,第二步水冲洗强度)/(822m s L q ⋅=水,第一步气冲洗时间m i n5=气t , 第二步水冲时间min 7=水t ;冲洗时间共计为: 12min 0.2t h ==; 冲洗周期d h T 6144==。
●设计计算由于生物活性炭是再贫营养的环境下降解有机物,氧气需要量不大。
原水中含有一定的溶解氧,同时臭氧分解产生的氧气也增加了水中溶解氧的含量。
所以在活性炭滤池内谁的溶解氧量是足够的,不需设置曝气系统。
●池体设计1、活性炭滤池总面积23.28182250m v Q F L === 2、活性炭滤池个数采用四池并联运行,4=L N ,每池面积为23.7043.281m f ==。
采用双格V 型滤池,池宽按规范标准 B=3.5m , 长m 10=单L ,单格面积352m ,每座滤池面积702m ,总面积2802m 3、接触时间min 4.1119.085.1====h v H T L n L 满足空床接触时间6-20min 4、每座活性炭充填体积V 31055.170m FH V n =⨯== 5、每座填充活性炭的质量G活性炭填充密度3/5.0m t =ρ,则t V G 5.525.0105=⨯==ρ6、活性炭每年更换次数n由于没有水厂实测数据,因此根据经验值,每年更换活性炭一次 7、活性炭滤池的高度L H炭滤池总高度由计算式求得4321h h H h h H ++++=总 式中—总H 吸附滤池的总高度m m 1配水系统高度—h ,取1.0mm h 承托垫层厚度—2,采用长柄滤头系统,承托层采用砾石分层级配粒径2-16mm 。
生物活性炭(PACT)工艺研究
生物活性炭(PACT)工艺研究1 引言生物活性炭法(PACT)是指将粉末活性炭投加到好氧系统的回流污泥中,通过含炭污泥中粉末活性炭(PAC)与活性污泥中微生物的相互作用,提升对废水中污染物的去除效果.目前较多应用在印染废水、化工废水、垃圾渗滤液的处理中.研究表明,PACT工艺的促进机理主要在于系统内“吸附-降解-再生-再吸附”的协同作用,涉及到复杂的吸附与生物降解同步作用过程,因此在具体微观机理和动力学模型方面仍有研究空间.此外,对PACT工艺的宏观生物强化效果,也缺乏全方位的表征,使得PACT工艺在实际运行中缺乏相应的针对性.本文以印染园区实际综合废水为处理对象,主体处理工艺为水解酸化+A2/O工艺,通过平行对比A2/O与A2/O(PACT)中试运行效果,从常规处理指标(尤其是低温运行条件下)入手对比PACT工艺的强化作用,再通过毒性、重金属指标、GC-MS、紫外-可见光光谱等表征手段,重点研究PACT系统的生物强化特性,探讨PACT工艺的主要作用目标和规律.本研究对深入理解PACT工艺作用机理、提高PACT作用效率以及实现园区综合废水的有效处理,具有较大的借鉴意义.2 材料与方法2.1 实验水样及材料实验以苏南某印染废水为主(印染废水占85%,化工废水占10%,生活污水占5%左右)的园区集中污水处理厂水解酸化处理出水为试验对象(进水).由于进水水质不尽相同,因此其具体水质指标见相应实验结果.粉末活性炭为100目木质炭(溧阳东方活性炭厂),经检测(ASAP2010,Micromeritics,美国),该粉末活性炭的内部性质为:BET 比表面积532.26 m2 · g-1,微孔(<2 nm)体积0.1 cm3 · g-1,中孔(2~50 nm)体积0.449 cm3 · g-1,平均孔径3.8 nm.2.2 实验装置及运行条件本研究的实验装置如图 1所示.图 1 实验装置结构图中试实验装置含A2/O反应器以及二沉池,其中A2/O反应器有机玻璃材质,有效容积为1.0 m3. 二沉池为竖流式沉淀池,表面负荷0.63 m3 · m-2 · h-1. A2/O反应器实验装置内分5格,HRT比为2 ∶ 2 ∶ 2 ∶ 2 ∶ 1,其中前二格可以实现回流及搅拌,形成A2/O 反应器.运行条件:废水处理量1.0 m3 · d-1,即系统HRT=24 h.污泥回流和硝化液回流比均为100%.根据之前的实验结论,PACT工艺中粉末活性炭的投加量为100 mg · L-1,分两次均匀干式投加,总投加量为100 g · d-1.启动时活性污泥投加量为1500 mg · L-1(MLSS 当量),污泥MLSS超过4000 mg · L-1时适当排泥.装置运行时溶解氧控制在3.0 mg · L-1.除特殊说明外,实验条件均为常温,检测数据为1个月平均值.2.3 实验与分析方法总有机碳的检测仪器为岛津TOC-V CPH.毒性的检测使用仪器为deltaTOX,仪器可以精确检测光子数来推断发光细菌存活量,其中光损失数代表水样的毒性(详见表 1).金属离子含量的检测采用电感耦合等离子光谱(ICP-AES),型号J-A1100.表1 光损失数与毒性关联性采用GC-MS检测废水中所含有机物,仪器型号及具体检测方法参考相关文献报道.紫外-可见吸收光谱仪型号为岛津UV-2201.分子量测试采用凝胶渗透色谱(GPC)方法进行测试,仪器:Waters 515型凝胶色谱仪,Waters 2410示差折光检测器,标准品:聚乙二醇(PEG).柱子:Waters Ultrahydrogel 500和Ultrahydrogel 120两柱串联(7.8 mm×300 mm);流动相:0.1 mol · L-1硝酸钠水溶液;流速:0.8 mL · min-1;进样量:50 μL; 柱温:40℃.采用扫描电镜(S-3400N II,Hitachi,日本)对实验中相关活性污泥进行表征.其他实验分析指标中,包括MLSS、COD等均按照国标法进行测试.3 结果和讨论3.1 常规指标去除效果从反应器常规运行角度出发,比较了投加粉末活性炭前后A2/O反应器处理效果的变化,具体见表 2.表2 A2/O与A2/O(PACT)对常规指标的去除效果对比分析由表对比可知,PACT工艺对COD去除率的提升超过10%,同时在色度去除方面具有较高的强化作用,但在氨氮、总氮和总磷的强化去除方面,PACT系统的促进效果均不明显.通过计算,在实际处理浓度较低的综合印染废水水解酸化出水时,PACT的处理效果可以达到0.6~1.0 kg · kg-1活性炭.此外,活性炭的投加对生化系统污泥的形态也有促进效果,可以有效降低SVI指数,控制污泥膨胀.在此基础上,重点考察了低温条件下(10℃以下)A2/O反应器的长期稳定运行效果,尤其是在粉末活性炭投加前后对COD的去除效果对比,具体见图 2(横坐标为实验日期).图 2 不同条件下A2/O系统对COD去除情况表3 不同条件下的COD去除效果(平均值)在进入低温运行条件后,由于园区企业整体的前端预处理效果变差,导致进水COD猛增,原水的平均值达到378.34 mg · L-1,水解酸化作用也由于受气温的影响,效率大大降低,对COD的去除率只有31%,低于常温条件下的37.4%,导致后续A2/O对COD的去除率不高,仅为43%.但对比PACT工艺,在进水和水解酸化效率相差不大的情况下,由于在A2/O中添加了粉末活性炭,强化了生化作用,其对COD的去除率达到55.8%.这也表明在低温条件下,投加粉末活性炭可以有效提高A2/O系统处理效果的稳定性,相关文献也有类似报道.3.2 毒性及重金属指标检测A2/O与A2/O(PACT)出水TOC、毒性、BOD5/COD的对比检测结果如表 4所示.表4 A2/O与A2/O(PACT)毒性去除效果对比分析对比可知,废水经过水解酸化之后具有较高的毒性,说明水解酸化环境不适合发光细菌生存.A2/O处理之后,有毒物质基本被去除殆尽,因此出水基本没有毒性,而投加活性炭的A2/O(PACT),其出水毒性更低,同时TOC和B/C也更低,从另外一个角度证明了A2/O(PACT)对生化降解的强化作用.A2/O与A2/O(PACT)对废水中金属离子的去除效果对比如表 5所示.表5 A2/O与A2/O(PACT)金属离子去除效果对比分析结果表明:废水中Cd、Co、Cr、Pb等重金属均未检出,表明印染废水中重金属离子含量较低.而对比A2/O(PACT)的结果表明,PACT工艺对金属离子的去除并无明显的强化作用.3.3 GC-MS分析GC-MS检测过程的总离子流图见图 4,进水中总计检出32种有机污染物,其中烷烃及氯代烷烃类7种,烯1种,醚2种,酯4种,醇4种,苯及苯胺类9种,杂环类3种,酸类2种,经过A2/O处理后,有机污染物得到有效的处理,表 5中罗列了部分检出的具可比性的关键有机污染物.由表 6可知,经PACT生物强化之后,A2/O(PACT)出水中有机物明显减少,尤其对苯胺、萘以及杂环类(喹啉)物质的去处效果更佳,明显优于常规A2/O工艺.这与粉末活性炭的吸附功能息息相关(Imai et al., 1995;Orshansky et al., 1997).此外,水解酸化之后废水中含胺类物质很多,说明印染废水含氮染料得到有效降解,这与印染废水性质相吻合.表6 A2/O与A2/O(PACT)特征有机污染物去除效果对比分析图 3 水样GC-MS总离子流图3.4 紫外-可见光光谱扫描对A2/O和A2/O(PACT)出水进行UV-VIS光谱扫描,检测结果如图 4所示.图 4 UV-VIS全波段扫描对比图结果表明:全波段吸光强度的基本趋势进水>> A2/O> A2/O(PACT).对比投加粉末活性炭前后的光谱可知,A2/O(PACT)在谱图上显示有明显的强化去除效果,尤其是在250~300 nm 吸光段,这些均反应到显色有机物的去除上,与常规分析相吻合.此外,UV-VIS光谱在465 nm(E4)和665 nm(E6)处的吸光度单独列出,对比E4/E6,其值如表 7所示.表7 UV-VIS光谱在465 nm(E4)和665 nm(E6)处的吸光度比值E4/E6的值正比废水中分子量大小(Chin et al., 1994).检测结果体现为随着生物强化处理的深入,大分子量的有机物越来越少,说明大分子物质(染料类,显色物质等)存在强化降解的过程,相比之下,A2/O(PACT)对这些物质的去除效果更好.3.5 分子量分布检测GPC的测试结果表 8所示.表8 A2/O与A2/O(PACT)出水分子量分布对比分析废水在检测中均检出2峰.经过分析可知,废水中的物质分子量集中在500~1000 Da,比例超过60%,对比进水的分子量分布,A2/O处理后,由于形成一些难降解的高分子有机物如类腐殖质、胞外聚合物等,所以高分子量部分(>800 Da)略有升高,低分子量部分(<100 Da)略有降低,但幅度不大.而对比A2/O和A2/O(PACT)出水可知,800~1000 Da部分的大分子物质有所降低,说明高分子的显色有机物得到更有效的去除,这与E4/E6检测结果相吻合.具体参见污水宝商城资料或更多相关技术文档。
生物质炭活性炭的制备及其对苯酚废水吸附的研究
生物质炭活性炭的制备及其对苯酚废水吸附的研究一、摘要随着工业化和城市化进程的加快,水污染问题日益严重,尤其是含有有害有机物的工业废水,如苯酚废水,对环境和人类健康构成了严重威胁。
传统的废水处理方法往往存在处理效率低、成本高、二次污染等问题。
开发高效、经济的废水处理技术具有重要意义。
生物质炭活性炭作为一种新型吸附材料,因其来源广泛、成本低廉、环境友好等特点,在废水处理领域展现出巨大的应用潜力。
本文首先系统综述了生物质炭活性炭的制备方法,包括物理活化法、化学活化法和微波活化法等,并对各种方法的优缺点进行了比较分析。
通过实验研究了生物质炭活性炭对苯酚废水的吸附性能,考察了吸附时间、溶液pH值、吸附剂用量等因素对吸附效果的影响。
还通过动力学和等温吸附模型对吸附过程进行了深入分析,探讨了吸附机理。
研究结果表明,生物质炭活性炭对苯酚废水具有较好的吸附效果,吸附容量大,吸附速度快,且易于再生。
这为苯酚废水的处理提供了一种高效、经济的新方法,同时也为生物质炭活性炭在废水处理领域的应用提供了理论依据和实践参考。
二、概述生物质炭活性炭作为一种新型的环境友好型吸附材料,以其独特的孔隙结构和表面性质,在废水处理领域展现出巨大的潜力。
本文旨在探讨生物质炭活性炭的制备方法及其对苯酚废水的吸附性能。
通过对生物质炭活性炭的制备过程进行详细阐述,包括原料的选择、炭化、活化等关键步骤,分析不同制备条件对活性炭结构和性能的影响。
本文将重点研究生物质炭活性炭对苯酚废水的吸附性能,通过批量吸附实验,考察吸附时间、溶液pH值、初始浓度等因素对苯酚去除率的影响。
本文还将采用吸附等温线和动力学模型对实验数据进行拟合,以揭示生物质炭活性炭对苯酚的吸附机制。
通过对比实验和实际应用案例,评估生物质炭活性炭在苯酚废水处理中的实际应用潜力,为其在环境治理领域的广泛应用提供理论依据和技术支持。
三、材料与方法本研究采用了生物质炭与活性炭两种吸附材料,其中生物质炭来源于当地常见的农业废弃物,如秸秆、木屑等,经过碳化处理制得。
生物活性炭工艺的研究进展
LI 等[22] 报 道 ,最 优 EBCT 相 比 臭 氧
行的生物膜对可生物降解有机物的去除
BAC 的过程的接触时间是 15 分钟。当
浓度较低(<50mg/L)的水样时,降低了
氯的投加,减少 THMs 的生成。
1
生物活性炭降解有机物
存在于生物膜基质中的分子进行部分生
物降解[10]。未被生物膜内微生物完全生
1.1去除溶解性有机碳
Dussert 等 认为 BAC 过滤器去除
物降解的物质扩散到 AC 微孔中,吸附到
水中溶解性有机碳(DOC)的过程可以
的载体,具有巨大的比表面积、良好的吸
附性能及发达的孔隙结构等特点 。微
(周期 B)。这个阶段大约持续 2~3 个
生物在活性炭表面形成一层稳定的生物
月,需要对 AC 介质进行生物繁殖。在此
所有地表水和地下水都含有天然有
膜,活性炭转化为生物活性炭。在合适
期间,DOC 吸附和生物降解过程是并行
机物(NOM),NOM 是一种复杂的有机
理吸附作用的同时,进行微生物的生物
相对稳定的状态到达周期 C,周期 C 称
降解。
为是构成水中总有机碳(TOC)的最大组
BAC 是一种简单、环保的工艺,在
为稳态期。由于 AC 的物理吸附能力已
成部分[3]。当氯作为消毒剂使用时,氯
AC 吸附的基础上进行生物降解,增加
经耗尽,生物降解是去除 DOC 的主要过
生物膜中细菌含量高、DOC 去除效果好
去除随着 EBCT 的增加而增加。同时,
有关[17]。因此,pH 和 DO 水平的控制至
EBCT 的增加需要更大的空间和更多的
关重要。
介质。因此,在 BAC 过滤器的设计阶段
曝气生物活性炭滤池深度处理高浓度氨氮原水_尹超
第8卷第3期环境工程学报Vol .8,No .32014年3月Chinese Journal of Environmental EngineeringMar .2014曝气生物活性炭滤池深度处理高浓度氨氮原水尹超陆少鸣李东李晓梅(华南理工大学环境与能源学院,广州510006)摘要实验研究曝气生物活性炭滤池对于高浓度氨氮原水的处理效果以及工艺运行稳定情况。
以某自来水厂常规工艺沉淀池出水预加硫酸铵作为研究对象,原水氨氮平均浓度3.67mg /L ,实验条件:温度31.2ħ,pH 7.13,滤速8 12m /h ,气水比0.5和1。
采用3种不同工况条件进行实验,确定滤速10m /h 和气水比0.5的为最佳运行工况。
在此工况下曝气生物活性炭滤池对于氨氮和COD Mn 的平均去除率分别达到87.5%和19.2%,亚硝酸盐积累率为0.9%;出水氨氮浓度达到生活饮用水卫生标准GB5749-2006。
同时炭滤池的出水浊度相比进水略微上升。
关键词曝气生物活性炭滤池高浓度氨氮深度处理中图分类号X703文献标识码A文章编号1673-9108(2014)03-0924-05Advanced treatment of raw water with high ammonia nitrogen by aeration-BAC filterYin ChaoLu ShaomingLi DongLi Xiaomei(College of Environment and Energy ,South China University of Technology ,Guangzhou 510006,China )Abstract This pilot scale experiment was to research on the treatment of raw water with high ammonia ni-trogen by aeration-BAC filter and on the stability of the process.The sedimentation tank effluents of the conven-tional process added with ammonium sulfate was used as raw water ,of which the ammonia average concentrationwas 3.67mg /L.Filtration rate of 10m /h and air-water ratio of 0.5were considered as the best while filtrationrate of 8to 12m /h ,air-water ratio of 0.5to 1were selected as the test conditions.The result shows that the aer-ation-BAC filter is an effective treatment process ,with ammonia nitrogen and COD Mn reduced by 87.5%and 19.2%,respectively ,and the average accumulation rate of nitrite nitrogen is 0.9%.The ammonia nitrogen of the effluent can meet the drinking water health standards GB5749-2006.In addition ,the turbidity of the effluent ofaeration-BAC filter compared to the raw water rises slightly.Key words aeration-BAC filter ;high ammonia nitrogen ;advanced treatment 基金项目:国家水体污染控制与治理科技重大专项(2009ZX07423-003)收稿日期:2013-02-25;修订日期:2013-04-13作者简介:尹超(1989 ),男,硕士研究生,研究方向为给排水技术。
生物质裂解残炭制备活性炭的研究(一)——正交实验法研究活化工艺条件
生物质裂解残炭制备活性炭的研究(--)——正交实验法研究活化工艺条件陈健李庭琛颜涌捷任铮伟张素平(华东理工大学能源化i系,上海,200237)摘要:用生物质裂解残炭制备活性炭.应用正交实验法对诸多影响因子进行考察,在优化工艺条件(活化温度770‘780X2、活化时间4小时、水/原料=200、氨气/水=O.5)下,可以得到碘值691.94mg.g-l,亚甲蓝值280.93mg.g-l左右的活性炭产品。
关键词:生尊质i裂解咎炭÷适够活性誊f正套拳验}碘辏—坷珥氆酌}Vv、∥o1.前言生物质…是一种清洁可再生能源,在能源危机和环境问题日益严重的今天,开发利用生物质能源具有很重大的战略意义。
我田这样的人口大国、农业大国、能源消耗大国,利用生物质资源改善能源状况,更具现实意义。
如何充分利用生物质资源是人们一直在探索和研究的方向。
开发利用生物质资源是一项资源综合利用的系统工程。
在利用流化床技术快速裂解生物质制取液体燃料的实验研究中,除了液相产品之外,还产生了固相产物——裂解残炭(约占总量的13%125%)01。
这些固相残炭产物,质地疏松,颗粒均匀。
传统的处理方法是焚烧,但是不经济,利用率也不高。
观察其特性,发现这是一种制各生物质活性炭的良好材料。
尤其它本身是木质素材料在400~500℃下裂解形成的一种炭素前驱体,因此只需要一步活化就可以制得活性炭产品”1本实验研究意在通过正交实验“1的方法,在活化工艺过程中对影响活性炭吸附性能的因子进行综合评价,得出关键的影响因子,并进行优选,从而得出优化的活化工艺条件。
2.实验2.1原料生物质裂解残炭工业性成分情况见表2一1.。
可以看出.裂解过程中大部分有机物组分已被转化。
裂解过程相当于传统活性炭生产中的炭化过程,裂解残炭是一种炭索前驱体”3。
由生物质流化裂解制生物油得到的残炭粒径≤O.45m”1,所以需要粘结成型制作试样。
使用生物质裂解过程中产生的重质焦油作粘结剂,其成分主要为碳和有机物,在高温时有机物挥发分解后的残余物为固定碳。
生物活性炭滤池(BAC)深度处理印染废水的研究
生物活性炭滤池(BAC)深度处理印染废水的研究作者:陈俊来源:《建筑建材装饰》2014年第11期摘要:以印染废水二级生物处理出水为研究对象,采用上向流曝气活性炭生物滤池(BAC)进行深度处理,为保证滤池高效运行,研究不同气水比对污染物去除效果的影响。
该研究为曝气活性炭生物滤池作为印染废水深度处理工艺提供了理论基础,为实际运用与工程设计提供了设计参数。
关键词:生物活性炭滤池(BAC);深度处理;气水比前言随着水资源日益匮乏,以及自来水价格、废水处理成本的不断上涨,印染废水回用是我国节能环保的一个必然的趋势。
其中生物活性炭(BAC)被认为是深度处理含染料有机废水最有效的方法。
目前,它与高级氧化预处理、膜分离组成的联用技术是目前国内外研究热点内容,生物活性炭工艺是将活性炭吸附和生物处理相结合的处理工艺,它利用活性炭高比表面积、高孔隙率的特点,能迅速吸附水中溶解性有机物、富集微生物,为微生物的聚集和繁殖提供了良好的场所。
微生物降解吸附到活性炭上的有机污染物,从而达到深度处理的效果。
BAC工艺是活性炭吸附与生物膜法的结合的联用技术,就其工艺形式来说属于曝气生物滤池的范畴。
该工艺是一项污水处理新技术,集过滤、吸附、生物氧化于一体,具有抗冲击负荷、处理效率高、出水水质好、建设投资和运行成本低、其模块化结构便于现有污水处理工艺的后期升级改造等优点。
该工艺可独立建立,也可与其他污水处理工艺组合应用,是一种可替代传统的污水处理工艺、适合我国国情的污水处理法。
印染废水经过二级生化处理后,其出水存在基质浓度低、难生物降解等问题,而BAC工艺在低浓度、难降解的有机废水特别是染色废水处理方面有较大优势。
因此,为使BAC工艺更好地运用于印染废水的深度处理中,有必要对其工艺参数的优化进行相应研究。
1试验装置本研究试验装置生物活性炭滤池(BAC)滤柱采用直径80mm的有机玻璃制成,总高为1800mm,采用法兰连接,在距离反应器底部30cm、50cm、70cm和90cm处分别设置水样取样口,采样口间距为200mm,活性炭采用果壳类活性炭,粒径为3×5mm,炭装填高1.2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物活性炭滤池的工艺参数试验研究生物活性炭滤池的工艺参数试验研究随着水源污染的日益严重,为了克服常规处理工艺的不足,满足不断提高的饮用水水质标准,对常规处理工艺出水再进行深度净化将成为自来水厂的选择之一。
生物活性炭技术能有效去除水中有机物(尤其是可生物降解部分)和嗅味等,从而提高饮用水化学和微生物安全性,目前它已作为自来水深度净化的一个重要途径而被水工业界重视[1,2]。
该技术要点是:以粒状活性炭为载体富集水中的微生物而形成生物膜,通过生物膜的生物降解和活性炭的吸附去除水中污染物,同时生物膜能通过降解活性炭吸附的部分污染物而再生活性炭,从而大大延长活性炭的使用周期。
生物活性炭滤池的工艺参数直接影响其处理效果和成本,并且合适的参数值还和滤池边水水质有一定关联,在大规模应用前进行针对性的研究很有必要。
1.试验研究方法l.1 试验工艺流程及装置本次试验为中试规模,试验工艺流程为预臭氧化十混凝、沉淀、过滤+臭氧--生物活性炭,试验装置(图1)设于深圳大涌水厂内,包括常规处理、臭氧化和活性炭滤池处理系统。
活性炭滤池横截断面尺寸为500×500mm,高度为4.92m,内部均分两格,采用小阻力配水系统。
装填ZJ-15型柱状活性炭(山西新华化工厂产品),该炭碘值和亚甲兰吸附值分别为961和187mg/g,堆积密度460g/L。
活性炭在使用之前,先用未加氯的砂滤出水浸泡1周,再用未加氯的砂滤出水反洗清洁,然后装池。
生物活性炭滤池采用下向流型式,进水溶解氧含量一般在7.50mg/L左右,能充分保证生物降解对溶解氧的需求。
滤池采用两段式气水反冲洗,即首先以空气擦洗、再以未加氯的砂滤出水反冲,反冲洗周期为7天。
臭氧采用Ozonia公司的CFS-1A型臭氧发生器现场制备,以空气为气源、以自来水为冷却介质。
预臭氧化的臭氧接触时间和投加量分别为4.5min和1.5mg/L左右,水在塔内流速40m/h左右。
主臭氧化的臭氧接触时间和投加量分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5mg/L和6mg/L左右。
1.2 试验设计在参考现有文献的基础上,本研究首先采用2.0m和2.5m炭床高度,分别进行空床接触时间10、12min的对比试验。
然后选定炭床高度,分别进行空床接触时间7.5、10、12、15、20min的对比试验。
1.3 试验方法试验期间水温较高(26-31℃,平均29℃),生物活性炭滤池采用自然挂膜,生物膜成熟时间约为15天。
进行上述各组条件的试验时间均为7天,其中2天为过渡适应期,5天为稳态试验期。
试验期间生物活性炭滤池进水水质如表1所示:表1 生物活性炭滤池进水水质数值指标水温(℃)PH值浊度(NTU)色度CODMn(mg/L)含藻量(万个体数/L)最小26 7.38 0.13 <5 0.69 5.0 最大31 7.97 0.38 5 2.08 24 平均29 7.768 0.237 -- 1.393 11.3注:表1中实测期间色度<5的次数约占1/32. 试验结果与分析2.1 炭床高度当生物活性炭滤池空床接触时间分别为12min和10min时,2.0m 和2.5m炭床高度的BAC池进出水浊度、CODMn的历时变化情况见图2--3,图中5/23——6/2、6/2——6/9分别对应12min和10min的试验结果。
由图2——3:虽然二池出水浊度、CODMn的历时变化有所差异,但平均而言差异并不明显。
当空床接触时间为12min时,在2.0m和2.5m池进水浊度、CODMn均值分别同为0.327NTU、1.498mg/L的条件下,二池出水浊度、CODMn均值分别为0.293NTUT 0.309NTU、0.995mg/L和1.01mg/L。
当空床接触时间为10min时,在2.0m和2.5m 池进水浊度、CODMn均值分别同为0.368NTU、1.596mg/L的条件下,二池出水浊度、CODMn均值分别为0.314和0.314TNU、1.304和1.402mg/L。
由此可认为在本试验条件下,如果空床接触时间、进水水质等其它件相同,炭床高度对BAC池出水浊度、CODMn影响较小。
虽然图2--3也反映出BAC池出水浊度和CODMn有稍高于进水相应值的情形,但其中的主要原因可能在于进水水质的波动及生物膜脱落及微生物代谢产物,此外低浊度分析也是值得进一步研究的问题。
实验结果(表2)还表明,在空床接触时间等其它试验条件相同时,炭床高度对BAC池出水色度、PH值的影响不大;但对嗅阈值却有一定影响,在空床接触时间同为10min时,炭床高度2.5m池的出水嗅阈值超过深水集团管道直饮水水质标准(Q/ZLS001-1998)3的上限标准,这表明较高的滤速不利于除臭。
表2 炭床高度对嗅阈值、色度、PH值的影响指标接触时间12min 10min进水2.0m出水2.5m出水进水2.0m出水2.5m出水嗅阈18 2 2 20 2 4值色度10-20(15) ≤5 ≤5 25-40(31) ≤5 ≤5PH值7.72 7.43 7.50 7.43 7.37 7.44注:表2中嗅阈值、PH值栏数值为均值。
综合12min和10min的试验结果,可以看出,在空床接触时间、进水水质等主要试验条件相同的前提下,炭床高度对BAC池的净水效果总体相同;但较大的炭床高度不利于嗅阈值的控制。
事实上的BAC 池去除污染物主要靠生物吸附降解和物化吸附,而这些过程都需要一定的时间,在进水水质和污染物与生物颗粒接触时间相同时,污染物的降解程度理应相同。
当然生物活性炭颗粒的机械截留也有一定作用,较大炭床高度的BAC池的出水水质略差,其原因可能就在于较大滤速不利于机械截留作用的发挥。
此外,炭床高度的增大还将会对BAC池的反冲洗提出更高的要求,有基于此,建议生产中BAC池的适宜炭床高度可取2.0m。
2.2 空床接触时间·空床接触时间与出水浊度当BAC池的空床接触时间在7.5-2.0min之间变化时,BAC池进出水浊度变化情况如表3所示。
观察表3中的试验数据,不难发现BAC池的出水浊度比较稳定,平均在0.22NTU以下;此均值和BAC池的进水浊度均值(0.25NTU以下)较为接近,也限BAC池能稍微降低水的浊度,但空床接触时间对浊度的去除没有明显影响。
由此可见,BAC 池的订功效不在于除浊。
表3 BAC池空床接触时间与出水浊度接触时间(min)进水浊度(NTU)出水浊度(NTU)平均去除率(%)最大值最小值平均值最大值最小值平均值7.5 0.18 0.13 0.142 0.17 0.14 0.156 -9.9010 0.32 0.16 0.244 0.25 0.19 0.218 10.7012 0.32 0.16 0.244 0.32 0.17 0.222 9.0215 0.25 0.13 0.196 0.27 0.15 0.190 3.0620 0.18 0.13 0.142 0.18 0.12 0.136 4.23·空床接触时间与出水CODMn当BAC池的空床接触时间在7.5--20min之间变化时,BAC池进出水CODMn变化情况不及浊度值稳定(表4)。
由表4可见,在空床接触时间相同、进水水质相近的情况下,增大BAC池的空床接触时间,BAC池对CODMn的去除效果随之改善,表现为CODMn平均去除率的提高。
在生物膜工艺中,延长空床接触时间意味着延长基质和生物膜的接触时间,有利于基质的生物降解;从生物膜降解机理上来看,接触时间缩短意味着进入BAC池的基质量增加,导致生物膜在单位时间内接触的基质增加,而进水水质一定使得生物膜对基质的降解速率相对稳定,最终导致出水CODMn浓度增加,处理效果下降。
此外,接触时间的延长也有利于污染物的物化吸附去除。
表4达式BAC池进出水的CODMn变化接触时间(min)进水CODMn(mg/L) 出水CODMn(mg/L)平均去除率(%)最大值最小值平均值最大值最小值平均值7.5 1.68 0.91 1.27 1.60 0.71 1.10 13.110 2.08 1.4 1.726 1.67 0.96 1.254 27.3512 2.08 1.4 1.726 1.67 0.33 1.21 29.9015 1.59 0.69 1.292 1.11 0.65 0.754 41.6420 1.68 0.91 1.27 0.96 0.44 0.78 38.6从表4还可以看出,BAC池空床接触时间的增加幅度影响BAC池对CODMn去除率的提高程度,空床接触时间的增幅大对CODMn去除效果的改善程度较为明显反之收效一般,但接触时间增大到一定程度时,CODMn去除率的提高有限,这主要是由于进水中可生物降解及吸附的物质所占的比例一定。
此外,对比接触时间15min和20min的CODMn平均去除率,发现前者稍高于后者,笔者认为主要原因可能在于BAC池运行前的成熟条件不同。
进行接触时间20min的试验前,采用的气冲强度较大(14L/m2.S),生物膜脱落明显,又限于当时条件、只经12h即取样化验;而进行其余接触时间的试验之前,采用的气冲强度小于14L/m2.s,生物膜脱落程度较轻,且经48h成熟期后再取样化验。
这说明BAC池的反冲洗及其充分成熟对保证其成功运行极为重要,在实际生产中需对气水联合反冲洗后的初始处理水量作必要的小幅减小。
·空床接触时间与出水含藻量深度处理作为改善饮用水水质的有效途径,除藻也是其重要任务之一,尤其是对于原水取自富营养化水源的自来水厂。
本研究以含藻量作为优选BAC池空床接触时间的另一重要分析指标,臭氧——生物活性炭作为一个整体,因臭氧化条件固定,故不影响对试验结果的分析。
BAC池进出水含藻量的检测结果(表5)表明,在进水含藻量为10万个体数/L左右、BAC池空床接触时间从75min增加到15min时,BAC池出水含藻量从8.5万个体数/L逐渐降低到2.43万个体数/L,对应除藻率从23%逐渐增加到73.5%,但增加程度逐渐降低。
试验期间,发现活性炭表面并未完全长有生物膜,因此生物处理和活性炭处理是生物活性炭的两大除藻途径。
生物除藻的可能机理有以下几种:生物膜的吸附、附着,生物载体之间的生物絮凝和机械截留,微生物的氧化分解,原、后生动物的捕食等。
最近的研究又表明,在短短(0--10nm)范围内,细菌等微生物的疏水性产生的微观疏水引力远远大范德华引力,藻类向炭粒的迁移和粘附将是影响生物活性炭除藻的一个重要环节。
在一定范围内延长BAC池空床接触时间,将会增加藻类和生物活性炭的接触机会,利于藻类寻求合适的附着点,促使上述各机理作用的发挥,从而加强该系统对藻类的去除效果;而接触时间15min和20min的除污染效果对比(表4和表5)又表明此结论须以BAC池充分成熟为前提条件。