上海风华初级中学数学三角形填空选择单元测试卷(解析版)
上海风华初级中学数学分式填空选择单元测试卷(解析版)
上海风华初级中学数学分式填空选择单元测试卷(解析版)一、八年级数学分式填空题(难)1.若222222M ab b a b a b a b a b---=--+,则M =________. 【答案】2a【解析】【分析】把等式两边变为同分母的分式,分母相同分子也相同,即可得出答案·. 【详解】222222M ab b a b a b ---- =2222M ab b a b-+- a b a b -+=2()()()a b a b a b -+-=22222a ab b a b-+-, 22222M ab b a ab b -+=-+所以M=2a故答案为:2a【点睛】本题考查分式的减法运算、平方差公式、完全平方公式,利用等式两边分母相同,分子也相同求解是解题的关键.2.如果111a b +=,则2323a ab b a ab b-+=++__________. 【答案】15-【解析】【分析】 由111a b +=得a+b=ab ,然后再对2323a ab b a ab b-+++变形,最后代入,即可完成解答. 【详解】 解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b ab a b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-. 【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.3.已知210a a --=,且423223215211a xa a xa a -+=-+-,则x =______. 【答案】27【解析】【分析】 先根据a 2-a-1=0,得出a 2,a 3,a 4的值,然后将等式化简求解.【详解】解:由题意可得a 2−a−1=0∴a 2=a+1∴a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2,a 3=a ⋅a 2=a(a+1)=a 2+a=a+1+a=2a+1, ∵423223215211a xa a xa a -+=-+- ∴2264321521211a a a a x x a +-+=-++- 22663151211a a x x a a +-∴=-++ ()()22116631512a a x a a x ⨯+-=-⨯++整理得()2-38110ax a +⨯+=∴381x = 27x ∴=故答案为:27.【点睛】本题主要考查了分解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键.4.若方程256651130x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1.【解析】【分析】 通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解.【详解】 256651130x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+,解得:112k x +=, ∵方程256651130x x k x x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1.【点睛】本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.5.当m =____________时,解分式方程533x m x x-=--会出现增根. 【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.7.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围是__________. 【答案】m >-6且m ≠-4【解析】试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.试题解析:分式方程去分母得:2x+m=3(x-2),解得:x=m+6,根据题意得:x=m+6>0,且m+6≠2,解得:m>-6,且m≠-4.考点: 分式方程的解.8.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降价20%,于是他比上一次多买了10支铅笔,用了4元钱,那么小明两次共买了铅笔________支.【答案】40或90【解析】【分析】因y元买了x只铅笔,则每只铅笔yx元;降价20%后,每只铅笔的价格是45yx元,依题意得45yx(x+10)=4,变形可得x=105yy-,即可得y<5;再由x、y均是正整数,确定y只能取3或4,由此求得x的值,即可得小明两次所买铅笔的数量.【详解】因y元买了x只铅笔,则每只铅笔yx元;降价20%后,每只铅笔的价格是(1-20%)yx元,即45yx元,依题意得:45yx(x+10)=4,∴y(x+10)=5x∴x=105yy -,∴5-y>0,即y<5;又∵x、y均是正整数,∴y只能取3和4;①当y=3时, x=15,小明两次共买了铅笔:15+15+10=40(支)②当y=4时, x=40,小明两次共买了铅笔:40+(40+10)=90(支)故答案为40或90.【点睛】本题考查了方程的应用,解决根据题意列出方程45yx(x+10)=4确定x、y的值是解决问题的关键.9.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】 分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k ≤12且k ≠0, 故答案为:k ≤12且k ≠0 【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x ≥0且x ≠1.其中x ≠1容易漏掉,为易错点.10.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m ,结果共用8天完成这一任务,则原计划每天铺设管道的长度为_________.【答案】60 m【解析】设原计划每天铺设x m 管道,则加快施工进度后,每天铺设(20x +)m ,由题意可得,120600120820x x -+=+,解得:60x =,或5x =-(舍去),故答案为:60 m .二、八年级数学分式解答题压轴题(难)11.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费, 请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】【分析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则:解得:x=16经检验,x=16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a=960∴a=24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.12.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?【答案】王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【解析】【分析】王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时. 【详解】设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x ,由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∴315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【点睛】本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.13.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.14.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11n n +的形式,而()11111n n n n =-++,这样就把()11n n +一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++ ①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 【答案】()()()3412n n n n +++【解析】【分析】(1)根据题目的叙述的方法即可求解;(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解; ②根据()()()()()11111..1221212n n n n n n n =-+++++把所求的每个分式化成两个分式的差的形式,然后求解.【详解】解:(1)112⨯+123⨯+134⨯+…+120161017⨯ =1-12+12-13+13-14+…+12016-12017 =1-12017=20162017;(2)①∵()1A n n ++()()12B n n ++=()()()2n 12A B n A n n ++++ =()()1n 12n n ++, ∴120A B B ⎧=⎪⎨⎪+=⎩, 解得1212A B ⎧=⎪⎪⎨⎪=-⎪⎩. ∴A 和B 的值分别是12和-12; ②∵()()1n 12n n ++=12•()11n n +-12•()()1n 12n n ++ =12•(1n -1n 1+)-12(11n +-12n +) ∴原式=12•112⨯-12•123⨯+12•123⨯-12•134⨯+…+12•()11n n +-12•()()112n n ++ =12•112⨯-12•()()112n n ++ =14-()()1212n n ++ =()()()3412n n n n +++.【点睛】本题考查了分式的化简求值,正确理解()()1n 12n n ++=12•()1n 1n +-12•()()112n n ++是关键.15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【答案】(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根,所以把2x =代入上面的等式得()3221m +-=-1m =-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值.。
上海风华初级中学数学轴对称填空选择单元测试卷(解析版)
上海风华初级中学数学轴对称填空选择单元测试卷(解析版)一、八年级数学全等三角形填空题(难)1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC2.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S 四边形AEDF =S △ACD =12×AD×CD=12×12BC×12BC=18BC 2, 故④不正确.故答案为①②. 点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.2.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.【答案】6:8:3【解析】【分析】由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F∵P 是三条角平分线的交点∴PD=PE=PF∵AB=30,BC=40,CA=15∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3故答案为6∶8∶3.【点睛】本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.3.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =______(用含α的式子表示)【答案】1206α︒-【解析】【分析】在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.【详解】解:如图所示,在AC上截取AD=AB,连接DI,点I是△ABC的角平分线的交点所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,在△ABI和△ADI中,AB=ADBAI=DAIAI=AI⎧⎪∠∠⎨⎪⎩∴△ABI≌△ADI(SAS)∴DI=BI又∵AB+BI=AC,AB+DC=AC∴DI=DC∴∠DCI=∠DIC设∠DCI=∠DIC=β则∠ABI=∠ADI=2∠DCI=2β在△ABC中,∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a,∴180=3066β︒︒=--a a在△ABI 中,180︒∠=-∠-∠AIB BAI ABI121802αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α︒-【点睛】本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.4.如图,ABE △,BCD 均为等边三角形,点A ,B ,C 在同一条直线上,连接AD ,EC ,AD 与EB 相交于点M ,BD 与EC 相交于点N ,连接OB ,下列结论正确的有_________.①AD EC =;②BM BN =;③MN AC ;④EM MB =;⑤OB 平分AOC ∠【答案】①②③⑤.【解析】【分析】由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.【详解】解:∵△ABE ,△BCD 均为等边三角形,∴AB=BE ,BC=BD ,∠ABE=∠CBD=60°,∴∠ABD=∠EBC ,在△ABD 和△EBC 中,AB BE ABD EBC BD BC ⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△EBC (SAS ),∴AD=EC ,故①正确;∴∠DAB=∠BEC ,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM 和△EBN 中,MAB NEB AB BEABE EBN ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△ABM ≌△EBN (ASA ),∴BM=BN ,故②正确;∴△BMN 为等边三角形,∴∠NMB=∠ABM=60°,∴MN ∥AC ,故③正确;若EM=MB ,则AM 平分∠EAB ,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;如图作,,BG AD BH EC ⊥⊥∵由上可知△ABD ≌△EBC ,∴两个三角形对应边的高相等即BG BH =,∴OB 是AOC ∠的角平分线,即有OB 平分AOC ∠,故⑤正确.综上可知:①②③⑤正确.故答案为:①②③⑤.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.5.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.【答案】252【解析】【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.【详解】∵90ABC ∠=︒,AB=BC,∴∠A=45︒,∵D 为AC 边上中点,∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,∵DE DF ⊥,∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,∴∠ADE=∠BDF,∴△ADE ≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴ABC ∆的面积为212BC ⋅=252, 故答案为:252. 【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.6.在△ABC 中,∠ABC =60°,∠ACB =70°,若点O 到三边的距离相等,则∠BOC =_____°.【答案】115或65或22.5【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=12∠ABC=30°,1OCB2∠=∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=12∠EBC=60°,1OCB2∠=∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=12∠EBA=12×(180°﹣60°)=60°,1OCB2∠=∠ACB=37.5°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;如图,此时∠BOC =22.5°,故答案为:115或65或22.5.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.7.已知在△ABC 中,AD 是BC 边上的中线,若AB=10,AC=4,则AD 的取值范围是_____.【答案】3<AD <7【解析】【分析】连接AD 并延长到点E ,使DE=DA ,连接BE ,利用SAS 证得△BDE ≌△CDA ,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE 的取值范围,进而求出AD 的取值范围.【详解】如图,连接AD 并延长到点E ,使DE=DA ,连接BE ,∵在△ABC 中,AD 是BC 边上的中线∴BD=CD在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS )∴BE=CA=4在△ABE 中,AB+BE>AE ,且AB ﹣BE <AE∵AB=10,AC=4,∴6<AE <14故答案为3<AD<7【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.8.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC时,四边形FBCD周长最小为5+6+5=169.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,点D是射线OA上的一个动点,则PD的最小值为_____.【答案】2【解析】【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】当PD⊥OA时,PD有最小值,作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=12PC=12×4=2(在直角三角形中,30°角所对的直角边等于斜边∴PD=PE=2,故答案是:2.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.10.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B (6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN 的最小值是______.【答案】3【解析】【分析】在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.【详解】解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.∵ON’=ON,∠N’OM=∠NOM,OM=OM,∴△N’OM≌△NOM,∴MN’=MN,∴MA+MN=MA+MN’,∵A点固定,∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,∴MA+MN’的最小值为AD,∵∠OAB=∠AOB=15°,OB=6,∴∠ABD=30°,AB=6,∴AD=0.5×6=3,∴MA+MN的最小值为3,故答案为3.【点睛】理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.二、八年级数学全等三角形选择题(难)11.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.12.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR=PS,∵PR⊥AB,PS⊥AC,∴点P在∠BAC的角平分线上,∴PA平分∠BAC,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.13.下列四组条件中,能够判定△ABC和△DEF全等的是()A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D【答案】D【解析】根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;不符合“SAS”定理,不对应,不能判断全等;D、AC=DF,BC=DE,∠C=∠D,可利用“SAS”判断全等;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()A.①②④B.①②③C.①②④⑤D.①②③⑤【答案】D【解析】试题解析:①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD与AC交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG⊥CF,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF,∴△ADP'≌△ADF(ASA),∴AF=AP'=AC+CP'=AC+CG,故②正确;③如图:∵∠EDA=∠CDA,∠CAD=∠EAD,从而△CAD ≌△EAD ,故DC=DE ,③正确;④∵BF ⊥CG ,GD ⊥CF ,∴E 为△CGF 垂心,∴CH ⊥GF ,且△CDE 、△CHF 、△GHE 均为等腰直角三角形,∴HF=CH=EH+CE=GH+CE=GH+2CD ,故④错误;⑤如图:作ME ⊥CE 交CF 于点M ,则△CEM 为等腰直角三角形,从而CD=DM ,CM=2CD ,EM=EC ,∵∠MFE=∠CGE ,∠CEG=∠EMF=135°,∴△EMF ≌△CEG (AAS ),∴GE=MF ,∴CF=CM+MF=2CD+GE ,故⑤正确;故选D点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.15.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,AQ PQ =,PR PS =,下面三个结论:①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).A .①②B .②③C .①③D .①②③【答案】A【解析】连接AP ,由题意得,90ARP ASP ∠=∠=︒,在Rt APR 和Rt APS 中,AP AP PR PS=⎧⎨=⎩, ∴△APR ≌()APS HL ,∴AS AR =,故①正确.BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,∴PQ AB ∥,故②正确;在Rt BRP 和Rt CSP 中,只有PR PS =,不满足三角形全等的条件,故③错误.故选A .点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.16.在边长为1的正方形网格中标有A 、B 、C 、D 、E 、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是( )A .△ACFB .△ACEC .△ABDD .△CEF 【答案】C【解析】【分析】 利用勾股定理先分别求得△ABC 的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.【详解】在△ABC中,AB=22+=10,BC=2231+=2,AC=22,11A、在△ACF中,AF=22+=5≠10,5≠2,5≠22,则△ACF与△ABC不全21等,故不符合题意;B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.【点睛】本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.17.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】【详解】①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=12∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=2a ,∴tan ∠CAE=212CE AC a a==-+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP ,∴CP=CE ,故④正确,⑤错误.∵△APC ≌△APF ,∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,∴S △ACD =S △AEF ,∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12S △ABC ,∴矛盾,假设不成立.故⑤错误..故选D.18.如图,AD 是△ABC 的外角平分线,下列一定结论正确的是()A .AD+BC=AB+CD ,B .AB+AC=DB+DC,C .AD+BC <AB+CD , D .AB+AC <DB+DC【答案】D【解析】【分析】在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC<DB+DC.【详解】解: 在BA的延长线上取点E, 使AE=AC,连接ED,∵AD是△ABC的外角平分线,∴∠EAD=∠CAD,在△ACD和△AED中,AD ADEAD CADAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(SAS)∴DE=DC,在△EBD中,BE <BD+DE,∴AB+AC<DB+DC故选:D.【点睛】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、DC的长度为边的三角形是解题的关键,也是解本题的难点.19.如图,Rt ACB中,90ACB︒∠=,ABC的角平分线AD、BE相交于点P,过P作PF AD⊥交BC的延长线于点F,交AC于点H,则下列结论:①135APB︒∠=;②PF PA=;③AH BD AB+=;④S四边形23ABDE S ABP=,其中正确的个数是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.【详解】解:∵在△ABC中,∠ACB=90°,∴∠CAB+∠ABC=90°∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD=12CAB∠,∠ABE=12ABC∠∴∠BAD+∠ABE=111+=()45 222CAB ABC CAB ABC∠∠∠+∠=︒∴∠APB=180°-(∠BAD+∠ABE)=135°,故①正确;∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=AB,PA=PF,故②正确;在△APH与△FPD中∵∠APH=∠FPD=90°∠PAH=∠BAP=∠BFPPA=PF∴△APH≌△FPD(ASA),∴AH=FD,又∵AB=FB∴AB=FD+BD=AH+BD,故③正确;连接HD,ED,∵△APH≌△FPD,△ABP≌△FBP∴APH FPD S S =,ABP FBP S S =,PH=PD ,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD∴HD ∥EP ,∴EPH EPD S S =∵ABP BDP AEP EPD ABDE S S SS S =+++四边形 ()ABP AEP EPHPBD S S S S =+++ ABP APH PBDS S S =++ ABP FPD PBD SS S =++ ABP FBP S S =+2ABP S =故④错误,∴正确的有①②③,故答案为:B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS 、SAS 、AAS 、ASA 、HL ,注意AAA 和SAS 不能判定两个三角形全等.20.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )A .AC =DEB .AB =DEC .∠B =∠ED .∠D =∠A【答案】B【解析】在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.21.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G ∴∠=∠13∠∠∴=故选:A .【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.22.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30° ∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.23.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF,∵△ABC是等腰直角三角形,∴∠FCB=∠A=45,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF=故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.24.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.A .1B .1或3C .1或7D .3或7 【答案】C【解析】【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP=16-2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故选C .【点睛】本题考查全等三角形的判定,判定方法有:ASA ,SAS ,AAS ,SSS ,HL .25.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC,则四边形ABCD是平行四边形,能判定△ABD≌△CDB,故C选项正确;D.若添加∠A=∠C,根据AB∥CD,则∠ABD=∠CDB,且BD公用,能判定△ABD≌△CDB,故D选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.26.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.27.如图(1),已知AB AC=,D为BAC∠的角平分线上一点,连接BD,CD;如图(2),已知AB AC=,D,E为BAC∠的角平分线上两点,连接BD,CD,BE,CE;如图(3),已知AB AC=,D,E,F为BAC∠的角平分线上三点,连接BD,CD,BE,CE,BF,CF;……,依此规律,第6个图形中有全等三角形的对数是()A.21 B.11 C.6 D.42【答案】A【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB ACBAD CADAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.故选:A.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.28.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.29.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF【答案】A【解析】【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=12BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.30.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.。
上海数学三角形填空选择单元测试卷(解析版)
上海数学三角形填空选择单元测试卷(解析版)一、八年级数学三角形填空题(难)1.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.2.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.【答案】17 22m<<【解析】【分析】作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.【详解】解:如图,延长AD到E,使DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.3.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.4.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.5.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40 .【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.6.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A=∠1+∠2【解析】【分析】根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.7.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.8.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A 点出发最后回到出发点A 时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.9.三角形三边长分别为 3,1﹣2a ,8,则 a 的取值范围是 _______.【答案】﹣5<a <﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)11.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.【详解】解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,∴∠ABP=∠PBC,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)∠P=180°-(∠PBC+∠PCB)∴∠P=90°+12∠A;故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB)=180°-12(∠FBC+∠ECB)=180°-12(∠A+∠ACB+∠A+∠ABC)=180°-12(∠A+180°)=90°-12∠A.故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.12.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【答案】C【解析】【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.13.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.14.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.15.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°【答案】A【解析】【分析】由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC,∴∠B=∠C,又∵DM平分∠BDE,EN平分∠DEC,∴∠BDM=∠EDM,∠CEN=∠DEN,∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,∠C=∠ENM-∠CEN=∠ENM-∠DEN,∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,∵四边形DMNE内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A.16.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【答案】D【解析】【分析】根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.本题考查图形规律题,解此题的关键在于根据题中图形找到规律.17.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.B.C.D.不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333 =S△ABC=1111••••2222BC AH AB PD BC PE AC PF ==+∴1111 3?3?3?3? 2222AH PD PE PF ⨯=⨯+⨯+⨯∴PD+PE+PF=AH=33即点P到三角形三边距离之和为33.故选B.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【答案】B【解析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.的度数19.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3等于()A.50°B.30°C.20°D.15°【答案】C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠3=50°,∴∠3=∠4-30°=20°,故选C.20.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.。
上海风华初级中学八年级数学上册第一单元《三角形》检测卷(有答案解析)
一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 3.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 5.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( ) A .2B .9C .13D .15 6.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 7.若一个多边形的每个内角都等于160°,则这个多边形的边数是( ) A .18B .19C .20D .21 8.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,109.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .810.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 11.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 12.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm二、填空题13.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.14.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.15.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.16.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.17.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.18.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).19.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题21.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)22.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.23.如图,在ABC 中,AD 平分BAC ∠,E 为AD 上一点,过点E 作EF AD ⊥交BC 的延长线于点F .(1)若40B ∠=︒,70ACB ∠=︒,求F ∠的度数;(2)请直接写出F ∠与B ,ACB ∠之间的数量关系:______.24.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数. 25.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由. 26.如图,AD ,AE 分别是△ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β).请直接写出用α、β表示∠DAE 的关系式 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、1+2<4,不能构成三角形;B 、5+6=11,不能构成三角形;C 、3+3>3,能构成三角形;D 、8+4=12,不能构成三角形.故选:C .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.3.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.4.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∠ABC=30°,∴∠ABD=∠CBD=12DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.B解析:B【分析】根据三角形三边关系得出a的取值范围,即可得出答案.【详解】解:8-5<a<8+53<a<13,故a的值可能是9,故选:B.【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.6.C解析:C【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.7.A解析:A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.8.C解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A、1+2=3,不能构成三角形,故不符合题意;B、1+3=4<5,不能构成三角形,故不符合题意;C、2+3=5>4,可以构成三角形,故符合题意;D、2+6=8<10,不能构成三角形,故不符合题意,故选:C.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.9.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S △BEF =12S △BCE =12×10=5cm 2. 故选:A .【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.10.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.11.B解析:B【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案.【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒,180A B C ∠+∠+∠=︒,90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意,故选:B .【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.12.C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<,∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题13.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.14.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P 在目标A 的正上方飞行员测得目标B 的俯角为30°∴∠A=∠CPB=∵CP ∥AB ∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∠=90︒-∠B=60︒,∴APB故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.15.90°或40°【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC=∠BAD解析:90°或40°.【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD.【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC =∠BAD−∠CAD =65°−25°=40°.故答案为:90°或40°.【点睛】本题考查了三角形的高线的概念:可能在三角形内部,也可能在三角形的外部.注意本题要分两种情况讨论.16.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.17.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1 5(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°.故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.18.360°【分析】连接BE先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB 继而在四边形ABEF中利用内角和定理进行求解即可【详解】连接BE∵∠C+∠D+∠DPC=180°∠PBE+∠PEB+∠解析:360°【分析】连接BE,先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB,继而在四边形ABEF中利用内角和定理进行求解即可.【详解】连接BE,∵∠C+∠D+∠DPC=180°,∠PBE+∠PEB+∠BPE=180°,∠DPC=∠BPE,∴∠C+∠D=∠PBE+∠PEB,在四边形ABEF中,∠A+∠ABE+∠BEF+∠F=(4-2)×180°=360°,∴∠A+∠ABP+∠PBE+∠PEB+∠PEF+∠F=360°,∴∠A+∠ABP+∠C+∠D+∠PEF+∠F=360°,故答案为:360°.【点睛】本题考查了三角形内角和定理以及四边形内角和的应用,正确添加辅助线,准确识图,熟练应用相关知识是解题的关键.19.25【分析】依据角平分线的定义即可得到∠DBC的度数再根据三角形外角的性质即可得到∠CAE的度数【详解】解:∵∠ABC=30°BD平分∠ABC∴∠DBC=∠ABC=×30°=15°又∵AE⊥BD∴∠解析:25【分析】依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.【详解】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°-15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB-∠C=75°-50°=25°,故答案为:25.【点睛】本题考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.20.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于解析:4 9【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆ ∵13AE AD = E AB ∆和BDE ∆的高相等∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系. 三、解答题21.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.22.(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.23.(1)15°;(2)()12F ACB B ∠=∠-∠ 【分析】(1)结合题意,根据三角形内角和性质,得BAC ∠;再根据AD 平分BAC ∠,得BAD ∠;利用三角形外角和性质,得ADC ∠;最后结合EF AD ⊥计算,即可得到答案;(2)结合(1)的解题思路计算,即可得到答案.【详解】(1)∵40B ∠=,70ACB ∠=∴180180407070BAC B ACB ∠∠∠=--=-︒-︒=︒︒︒∵AD 平分BAC ∠ ∴11703522BAD BAC ∠=∠=⨯︒=︒ ∴75ADC B BAD ∠=∠+∠=︒∵EF AD ⊥∴90907515F ADC ∠=︒-∠=︒-︒=︒; (2)∵180BAC B ACB ∠∠∠=--∵AD 平分BAC ∠ ∴()1121118090222B BAD BA ACB B A C CB ∠=∠-∠-∠∠⨯-==-∠ ∴111190902222B ACB B AC ADC B B BAD B -∠-∠=+∠-∠=∠+∠=∠+∠ ∵EF AD ⊥ ∴()111902922900B ACB DC B B A AC F ⎛⎫∠=-∠=-= ⎪+∠∠∠-∠⎭-⎝ 故答案为:()12F ACB B ∠=∠-∠. 【点睛】本题考查了三角形内角和、三角形外角、角平分线、直角三角形的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、直角三角形两个锐角互余的性质,从而完成求解.24.(1)∠A=15°,∠B=75°,∠C =90°;(2)130°【分析】(1)将∠C 用∠A 表示,然后利用三角形内角和即可求解∠A ,然后在依次求出∠B ,∠C 即可;(2)根据题意作出示意图,然后根据四边形内角和即可求出∠DHE ,根据对顶角相等即可求解∠BHC .【详解】(1)∵∠C-∠B=15°,即∠C =15°+∠B又∵∠B=5∠A∴∠C =15°+5∠A∵∠A+∠B+∠C=180°∴∠A+5∠A +15°+5∠A =180°解得∠A=15°∴∠B=75°,∠C =90°∴∠A=15°,∠B=75°,∠C =90°(2)根据题意作出下图,∵BD AC ⊥,CE AB ⊥∴∠BDA =90°,∠CEA=90°∵在四边形AEHD 中,∠A+∠HDA+∠HEA+∠DHE =360°∴∠DHE=360°-∠A-∠HAD-∠HEA=360°-50°-90°-90°=130°∴∠BHC=∠DHE=130°∴∠BHC =130°.【点睛】本题考查了三角形的内角和和四边形内角和,重点是熟记多边形内角和公式. 25.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D ,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D ; 理由②:连接AC 并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D .理由如下:理由①:∵在四边形ABCD 中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D ;理由②:如下图,连接AC 并延长,∵∠BAC+∠B=∠BCE ,∠DAC+∠D=∠DCE (三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D .【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.26.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-,故答案为:1122βα-.【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。
2024届上海市静安区风华初级中学中考联考数学试题含解析
2024届上海市静安区风华初级中学中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃3.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.14.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这15名运动员成绩的中位数、众数分别是()A.4.65,4.70B.4.65,4.75C.4.70,4.70,D.4.70,4.756.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤7.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )A.1个B.2个C.3个D.4个8.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是()人数 3 4 2 1分数80 85 90 95A.85和82.5 B.85.5和85 C.85和85 D.85.5和809.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁10.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .1二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:9x 3﹣18x 2+9x= .12.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm 刻度线与量角器的0°线在同一直线上,且直径DC 是直角边BC 的两倍,过点A 作量角器圆弧所在圆的切线,切点为E ,则点E 在量角器上所对应的度数是____.13.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.14.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.15.计算:(π﹣3)0﹣2-1=_____.16.因式分解:3x 2-6xy+3y 2=______.三、解答题(共8题,共72分)17.(8分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.18.(8分)如图,抛物线y =﹣x 2+5x+n 经过点A (1,0),与y 轴交于点B .(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.19.(8分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)20.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.21.(8分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D (0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.23.(12分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C 是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B .考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2、B【解题分析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义3、C【解题分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【题目详解】210 10x x -≤⎧⎨+⎩①>②∵解不等式①得:x≤0.5,解不等式②得:x >-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C .【题目点拨】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键. 4、D【解题分析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:.故选D.5、D【解题分析】根据中位数、众数的定义即可解决问题.【题目详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【题目点拨】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.6、C【解题分析】根据二次函数的图象与性质即可求出答案.【题目详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a-<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>b2a-时,y随着x的增大而增大,故⑤错误;故选:C.【题目点拨】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7、D【解题分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【题目详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8、B【解题分析】根据众数及平均数的定义,即可得出答案.【题目详解】解:这组数据中85出现的次数最多,故众数是85;平均数=110(80×3+85×4+90×2+95×1)=85.5.故选:B.【题目点拨】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.9、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.10、D【解题分析】过A 作AH ∥CD 交BC 于H ,根据题意得到∠BAE =90°,根据勾股定理计算即可.【题目详解】∵S 2=48,∴BC =43,过A 作AH ∥CD 交BC 于H ,则∠AHB =∠DCB .∵AD ∥BC ,∴四边形AHCD 是平行四边形,∴CH =BH =AD =23,AH =CD =1.∵∠ABC +∠DCB =90°,∴∠AHB +∠ABC =90°,∴∠BAH =90°,∴AB 2=BH 2﹣AH 2=1,∴S 1=1. 故选D .【题目点拨】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、9x 2(1)x【解题分析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解12、60.【解题分析】首先设半圆的圆心为O ,连接OE ,OA ,由题意易得AC 是线段OB 的垂直平分线,即可求得∠AOC =∠ABC =60°,又由AE 是切线,易证得Rt △AOE ≌Rt △AOC ,继而求得∠AOE 的度数,则可求得答案.【题目详解】设半圆的圆心为O ,连接OE ,OA ,∵CD =2OC =2BC ,∴OC =BC ,∵∠ACB =90°,即AC ⊥OB ,∴OA =BA ,∴∠AOC =∠ABC ,∵∠BAC =30°,∴∠AOC =∠ABC =60°,∵AE 是切线,∴∠AEO =90°,∴∠AEO =∠ACO =90°,∵在Rt △AOE 和Rt △AOC 中,AO AO OE OC=⎧⎨=⎩, ∴Rt △AOE ≌Rt △AOC (HL ),∴∠AOE =∠AOC =60°,∴∠EOD =180°﹣∠AOE ﹣∠AOC =60°,∴点E 所对应的量角器上的刻度数是60°,故答案为:60.【题目点拨】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.13、9.26×1011【解题分析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.14、甲.【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【题目详解】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差.故答案为:甲.【题目点拨】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.15、【解题分析】分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.【题目详解】解:(π﹣3)0﹣2-1=1-=.故答案为:.【题目点拨】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.16、3(x ﹣y )1【解题分析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1. 考点:提公因式法与公式法的综合运用三、解答题(共8题,共72分)17、y=2x +2x ;(-1,-1).【解题分析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.18、(1)254y x x =-+-;(2)(04)或(0,4).【解题分析】试题分析:(1)将A 点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:①PB=AB ,先根据抛物线的解析式求出B 点的坐标,即可得出OB 的长,进而可求出AB 的长,也就知道了PB 的长,由此可求出P 点的坐标;②PA=AB ,此时P 与B 关于x 轴对称,由此可求出P 点的坐标.试题解析:(1)∵抛物线25y x x n =-++经过点A (1,0),∴4n =-,∴254y x x =-+-;(2)∵抛物线的解析式为254y x x =-+-,∴令0x =,则4y =-,∴B 点坐标(0,﹣4),,①当PB=AB 时,,∴OP=PB ﹣4.∴P (04),②当PA=AB 时,P 、B 关于x 轴对称,∴P (0,4),因此P 点的坐标为(04)或(0,4).考点:二次函数综合题.19、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解题分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【题目详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【题目点拨】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.20、(1)见解析;(2)3【解题分析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.【题目详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=23.【题目点拨】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
上海风华初级中学数学全等三角形单元测试卷(解析版)
上海风华初级中学数学全等三角形单元测试卷(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,=∴△BDM ≌△CDE (SAS ),∴MD=ED ,∠MDB=∠EDC ,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN ,在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩==,=∴△MDN ≌△EDN (SAS ),∴MN=EN=CN+CE ,∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.2.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt△CMG中,2222543MG CM CG=-=-=,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.3.如图,在ABC中,点A的坐标为()0,1,点B的坐标为()0,4,点C的坐标为()4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.故答案为(-4,2)或(-4,3).4.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.5.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】7【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF === ∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.6.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
上海风华初级中学小学数学一年级下册第一单元经典练习卷(培优专题)
一、选择题1.下图中有个三角形,个正方形,个平行四边形,个长方形。
横线上分别填()。
A. 1 1 2 3B. 3 1 0 3C. 1 3 2 22.图案中,除了有正三角形、正方形外,还可以找到()A. 正五边形B. 正八边形C. 正十二边形3.用平行四边形和三角形按下面的顺序拼合起来,如果两种图形各用4个,拼起来的图形是()。
A. 长方形B. 平行四边形C. 梯形D. 三角形。
4.用一定不能画出()。
A. B.5.如图是一个无盖正方体盒子的表面展开图,A、B、C为其上的三个点,则在正方形盒子中∠ABC等于()A. 45°B. 60°C. 90°D. 120°6.下面图形中与其他图形不是同类的是( )A. B. C. D.7.用两根8厘米和两根6厘米的小棒,一定能摆成一个平行四边形。
A. 对B. 错8.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长与原长方形的周长相比,()。
A. 变长B. 变短C. 不变9.一副完整的七巧板由()种图形构成。
A. 3种B. 4种C. 1种10.我们学过的图形中没有( )。
A. B. C.11.用画出( )。
A. 长方形B. 三角形C. 圆12.像这样先折后再沿着虚线剪下一个()图形。
A. 正方形B. 长方形C. 平行四边形D. 圆13.下图是小男孩用手中的长方体和笔,最多可以画出()个不同的长方形。
A. 6B. 4C. 314.三角形是()。
A. B. C.15.下图中有()个三角形。
A. 4B. 5C. 6二、填空题16.图中有________个,有________个,有________个,________个。
17.有________个,有________个,有________个,有________个,有________个。
18.数一数。
________个________个________个________个________个19.数一数,填一填。
上海市风华初级中学2024—2025学年上学期期中考试八年级数学试题
上海市风华初级中学2024—2025学年上学期期中考试八年级数学试题一、单选题1.下列方程一定是关于x 的一元二次方程的是()A .21210x x ⎛⎫++= ⎪⎝⎭B .()211x x x +=+C .()10x x -=D .210ax x ++=2)0m n ⋅<,那么化简结果正确的是()A .B .-C .-D .3.把式子分母有理化过程中,错误的是()A==+B=C==D=4.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值()A .1或1-B .12C .1D .1-5.下列命题中,是假命题的是()A .两个全等的三角形一定关于某点成中心对称B .周长相等的两个等边三角形全等C .三角形的一个外角大于任何一个与它不相邻的内角D .同一平面内,过一点有且只有一条直线与已知直线垂直6.已知a 、b 、c 是三角形三边的长,则关于x 的一元二次方程()220ax b c x a +-+=的实数根的情况是()A .有两个相等的实数根B .有两个不相等的实数根;C .没有实数根D .无法确定二、填空题7=.82x <的解集是.9.比较大小:(填“>”“<”“=”)10.若方程240x mx ++=的两根之差的平方为48,则m 的值为.11.若关于x 的方程()2210kx k x k -++=有实根.则实数k 的取值范围是.12.某商场三月份的销售额是100万元,计划五月份销售额达到121万元,若每个月的增长率都是x ,则可以列方程是.13.一个三角形的两边长分别为3和5,其第三边是方程213400x x -+=的根,则此三角形的周长为.14.二次三项式在实数范围内因式分解:2223x xy y --=.15.写出命题“两个全等三角形的面积相等”的逆命题.16.如图所示,若将左图正方形剪成四块,恰能拼成右图的矩形,设2a =,则这个正方形的面积是.17.等腰ABC V 中,AB AC =,点D 、点E 分别在边BC 、边AC 上,AD AE =,设BAD α∠=,EDC β∠=,则α与β的数量关系是.18.已知ABC V 中,AB AC =,90BAC ∠=︒,直线l 经过点A ,过点B 、C 分别作BD l ⊥,CE l ⊥,垂足为点D 、点E ,则垂线段BD 、CE 的长度与线段DE 的长度满足的数量关系是.三、解答题190+.20.化简求值:已知a b =⎤⋅⎥⎦的值.21.解方程8(x+2)2=12(3x+1)222.用配方法解方程:22510x x -+=23.已知关于x 的方程220()211x m x m ++++=有两个不相等的实数根,请判断关于y 的方程20y y m --=是否有两个相等的实数根,并说明理由.24.某建筑工程队,在工地一边的靠墙处(利用墙,墙长50米),用130米长的建筑材料围成一个占地总面积为825平方米的3个长方形仓库(如图),为了便于搬运货物,现决定在与墙平行的边BC 上,每个仓库预留出1个长度为1米的门,求与墙垂直的边AB 的长.25.已知:如图,ABC V 中,AD 平分BAC ∠交BC 于点D ,CF AB ∥且CD 平分FCA ∠,联结FD 并延长交边AB 于点E ,说明CF AC AE =-的理由.26.求证:不等边三角形一边的两端到这边的中线所在直线的距离相等.(要求:根据命题,画出图形,再写出已知、求证,完成证明)27.如图,已知等边ABC V ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形时,直接写出BEC ∠为______度.。
2024届上海市静安区风华初级中学数学八上期末考试试题含解析
2024届上海市静安区风华初级中学数学八上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,ABC 中,90C ∠=︒ ,60BAC ∠=︒,AD 平分BAC ∠,若15BC =,则点D 到线段AB 的距离等于( )A .6B .5C .8D .102.如图,在△ABC 中,AB =AD =DC ,∠BAD =26°,则∠C 的度数是( )A .36°B .77°C .64°D .38.5°3.下列大学校徽主体图案中,是轴对称图形的是( )A .B .C .D .4.如图(1)所示在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a +2b )(a ﹣b )=a 2+ab ﹣2b 25.具备下列条件的ABC ∆中,不是直角三角形的是( )A .ABC ∠+∠=∠B .A BC ∠-∠=∠ C .::1:2:3A B C ∠∠∠=D .3A B C ∠=∠=∠6.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差: 甲 乙 丙 丁 平均数(cm )185 180 185 180 方差 2.5 2.5 6.4 7.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A .甲B .乙C .丙D .丁7.下列各数中,能化为无限不循环小数的是( )A .13B .15C .17D .2π 8.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD 的周长为18,ECF 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .489.在下列实数3.141592681100,1π5711327 ) A .2个 B .3个C .4个D .5个 10.王师傅想做一个三角形的框架,他有两根长度分别为11cm 和12cm 的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么他可以把( )分为两截.A .11cm 的木条B .12cm 的木条C .两根都可以D .两根都不行二、填空题(每小题3分,共24分)11.4的平方根是 .12.如图,把Rt ABC ∆绕点A 逆时针旋转40,得到''Rt AB C ∆,点'C 恰好落在边AB 上,连接'BB ,则''BB C ∠=__________度.13.如图,在△ABC 中,∠C =90°,∠B =30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD =3,则BD 的长为______.14.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.15.如图,ABC 中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD 的周长为14cm ,则ABC 的面积是______2cm .16.因式分解:2269x xy y -+=________.17.已知3a b +=,2ab =a b b a的值为_________. 18.比较大小:32 .三、解答题(共66分)19.(10分)如图,一个直径为 10cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外 1cm ,当筷子倒向杯壁时 (筷子底端不动),筷子顶端刚好触到杯口,求筷子长度.20.(6分)先化简,再求值:已知21x =+,求221121x x x x x x x+⎛⎫-÷ ⎪--+⎝⎭的值. 21.(6分)如图,在平面直角坐标系中,点O 是坐标系原点,在△AOC 中,OA =OC ,点A 坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 ;(2)求直线AC 的函数关系式;(3)求点B 的坐标.22.(8分)鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.(1)求鼎丰超市11月份这种保温杯的售价是多少元?(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?23.(8分)已知:如图,∠B =∠D ,∠1=∠2,AB =AD ,求证:BC =DE .24.(8分)观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a ,b ,c.根据你发现的规律,请写出:(1)当a=19时,求b ,c 的值;(2)当a=2n+1时,求b ,c 的值;(3)用(2)的结论判断15,111,112,是否为一组勾股数,并说明理由.25.(10分)如图,(1)在网格中画出ABC ∆关于y 轴对称的111A B C ∆;(2)在y 轴上确定一点P ,使PAB ∆周长最短,(只需作图,保留作图痕迹)(3)写出ABC ∆关于x 轴对称的222A B C ∆的各顶点坐标;26.(10分)计算:(1)(1+)(1-)(1+)(1-); (2)(+)2(-)2; (3)(+3-)(-3-).参考答案一、选择题(每小题3分,共30分)1、B【分析】过点D 作DE ⊥AB 于E, 根据角平分线的性质和直角三角形的性质可得DC=DE,∠ABC=30°,然后根据30°所对的直角边是斜边的一半可得BD=2DE ,最后根据BD +DC=BC 和等量代换即可求出DE 的长.【题目详解】解:过点D 作DE ⊥AB 于E,∵AD 平分BAC ∠,∠C=90°, 60BAC ∠=︒∴DC=DE,∠ABC=90°-∠BAC=30°在Rt △BDE 中,BD=2DE∵BD+DC=BC=11∴2DE+DE=11解得:DE=1,即点D到线段AB的距离等于1.故选B.【题目点拨】此题考查的是角平分线的性质和直角三角形的性质,掌握角平分线的性质、直角三角形的两个锐角互余和30°所对的直角边是斜边的一半是解决此题的关键.2、D【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【题目详解】∵AB=AD,∠BAD=26°,∴∠B=12(180°-∠BAD)=12(180°-26°)=77°,∵AD=DC,∴∠C=∠CAD,在△ABC中,∠BAC+∠B+∠C=180°,即26°+∠C+∠C+77°=180°,解得:∠C=38.5°,故选:D.【题目点拨】本题主要考查等腰三角形的性质:等腰三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.3、C【解题分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【题目详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【题目点拨】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.4、A【分析】由题意可知左图中阴影部分的面积= a 2﹣b 2,右图中矩形面积=(a+b )(a-b ),根据二者相等,即可解答.【题目详解】解:由题可得:a 2﹣b 2=(a ﹣b)(a+b).故选:A .【题目点拨】本题主要考查平方差公式的几何背景,解题的关键是运用阴影部分的面积相等得出关系式.5、D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【题目详解】A 、由180A B C ∠+∠+∠=和A B C ∠+∠=∠可得:∠C=90°,是直角三角形,此选项不符合题意; B 、由A B C ∠-∠=∠得A B C =+∠∠∠,又180A B C ∠+∠+∠=,则∠A=90°,是直角三角形,此选项不符合题意;C 、由题意,318090123C ∠=⨯=++,是直角三角形,此选项不符合题意;D 、由180A B C ∠+∠+∠=得3∠C+3∠C+∠C=180°,解得:1807C ∠=,则∠A=∠B=5407≠90°,不是直角三角形,此选项符合题意,故选:D .【题目点拨】 本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键.6、A【分析】先比较平均数,平均数相同时选择方差较小的运动员参加. 【题目详解】∵==x x x x 甲乙丁丙>,∴从甲和丙中选择一人参加比赛,∵2222=S S S S 甲乙丁丙<<,∴选择甲参赛,故选:A .【题目点拨】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.7、D【解题分析】根据无理数的概念进行选择判断.【题目详解】解:A.13属于无限循环小数; B.10.25= 属于有限小数; C.17 属于无限循环小数; D.2π属于无限不循环小数. 故选D .【题目点拨】本题考查无理数的概念,比较简单.8、B【解题分析】根据折叠的性质易知矩形ABCD 的周长等于△AFD 和△CFE 的周长的和.【题目详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm .故矩形ABCD 的周长为24cm .故答案为:B .【题目点拨】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.9、A【解题分析】根据无理数的概念进行判断即可得解.【题目详解】根据无理数的概念可知,1π 故选:A.【题目点拨】本题主要考查了无理数的区分,熟练掌握无理数的概念是解决本题的关键.10、B【分析】根据三角形的三边关系:三角形的任意两边之和大于第三边解答即可.【题目详解】解:∵三角形的任意两边之和大于第三边,∴两根长度分别为11cm 和12cm 的细木条做一个三角形的框架,可以把12cm 的木条分为两截.故选:B .【题目点拨】本题考查了三角形的三边关系在实际中的应用,属于基本题型,熟练掌握三角形的三边关系是关键.二、填空题(每小题3分,共24分)11、±1. 【解题分析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1. 考点:平方根.12、20.【分析】根据旋转的性质可得'AB AB =,'40BAB ∠=︒,然后根据等腰三角形两底角相等求出'ABB ∠,再利用直角三角形两锐角互余列式计算即可得解. 【题目详解】Rt ABC 绕点A 逆时针旋转40︒得到''AB C ,'AB AB ∴=,'40BAB ∠=︒, 在'ABB 中,()()11'180'180407022ABB BAB ∠=︒-∠=︒-︒=︒, ''90AC B C ∠=∠=︒,''B C AB ∴⊥,''90'907020BB C ABB ∴∠=︒-∠=︒-︒=︒.故答案为:20.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.13、1【分析】根据线段垂直平分线的性质求出AD=BD ,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD 即可.【题目详解】∵DE 是线段AB 的垂直平分线,∴AD=BD ,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°∴∠CAB=90°-∠B=90°-30°=10°,∴∠DAC=∠CAB-∠BAD=10°-30°=30°,∴在Rt △ACD 中,AD=2CD=1,∴BD=AD=1.故答案为:1.【题目点拨】本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.14、m <1【解题分析】解:∵y 随x 增大而减小,∴k <0,∴2m-6<0,∴m <1.15、1【解题分析】根据线段垂直平分线性质得出BD=DC ,求出AB+AC=14cm ,求出AB ,代入12×AB×AC 求出即可. 【题目详解】解:∵DE 是BC 边上的垂直平分线,∴BD=DC ,∵△ABD 的周长为14cm ,∴BD+AD+AB=14cm ,∴AB+AD+CD=14cm ,∴AB+AC=14cm ,∵AC=8cm ,∴AB=6cm ,∴△ABC 的面积是12AB×AC=12×6×8=1(cm 2), 故答案为:1.【题目点拨】本题考查了三角形的面积和线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等. 16、()23x y -【分析】用完全平方公式2222()a ab b a b -+=-进行因式分解即可.【题目详解】解:22226923(3)x xy y x x y y -+=-+=()23x y - 故答案为:()23x y -【题目点拨】本题考查完全平方公式进行因式分解,掌握公式结构2222()a ab b a b -+=-是解题关键.17【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.b a=+=(a b ab+, ∵3a b +=,2ab =,∴原式=3=22;. 【题目点拨】本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.18、<【题目详解】解:∵∴.故答案为<.三、解答题(共66分)19、筷子长 13cm .【题目详解】详解:设杯子的高度是 xcm ,那么筷子的高度是(x+1)cm ,∵杯子的直径为 10cm ,∴杯子半径为 5cm ,∴x 2+52=(x+1)2, x 2+25=x 2+2x+1, x=12,12+1=13cm .答:筷子长 13cm .【定睛】本题考查了勾股定理的运用,解题的关键是看到构成的直角三角形,以及各边的长.20、21(1)x --,12- 【分析】原式括号中的两项分母分解因式后利用异分母分式加减法法则,先通分再运算,然后利用分式除法运算法则运算,约分化简,最后把1x =的值代入求值即可. 【题目详解】原式=211(1)(1)x x x x x x⎛⎫+-÷ ⎪--⎝⎭ =222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭ =22211(1)x x x x x--÷- =21(1)x x x -- =21(1)x --,当1x =时, 原式==()21- =12- 【题目点拨】本题考查了分式的混合运算,重点是通分和约分的应用,掌握因式分解的方法,分式加减和乘除法法则为解题关键.21、(1)(5,0);(2)1522y x =-+;(3)(2,4). 【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)利用待定系数法将点A 、C 的坐标代入一次函数表达式,求出k 、b 的值,再代回一次函数表达式中即可解决问题;(3)只要证明AB=AC=5,AB //x 轴,即可解决问题.【题目详解】解:(1)点A (﹣3,4),∴OA =5,又OA=OC,即OC=5,点C在x轴的正半轴上,∴点C(5,0),故答案为:(5,0);(2)设直线AC的表达式为y=kx+b,将点A、C的坐标代入一次函数表达式:y=kx+b,得:4=-3+0=5+k bk b ⎧⎨⎩,解得:1 =-25=2kb⎧⎪⎪⎨⎪⎪⎩,即直线AC的函数关系式为:1522y x=-+;(3)△ABC是△AOC沿AC折叠得到,∴AB=OA,BC=OC,又OA=OC,∴OA=AB=BC=OC,∴四边形ABCO为菱形,由(1)知,点C(5,0),∴OC=5,AB=OC=5,又四边形ABCO为菱形,点C在x轴上,∴AB//OC//x轴,点A坐标为(﹣3,4),AB//x轴,AB=5,∴点B的坐标为:(2,4).【题目点拨】本题属于三角形综合题,考查了三角形折叠,菱形的性质以及待定系数法求一次函数解析式等知识,熟练掌握并应用这些知识是解题的关键.22、(1)18;(2)630【分析】(1)由题意设11月份这种保温杯的售价是x元,依题意列出方程并解出方程即可;(2)根据题意设这种保温杯的售价为y 元,并列方程求解进而求出鼎丰超市12月份销售这种保温杯的利润.【题目详解】解:(1)设11月份这种保温杯的售价是x 元,依题意可列方程18001800630500.9x x+=- 解得:x=18经检验,x=18是原方程的解,且符合题意答:一鼎丰超市11月份这种保温杯的售价是18元.(2)设这种保温杯的售价为y 元,依题意可列方程()180********y -⨯= 解得:y=12(18×0.9﹣12)×(100+50)=630(元)答:12月份销售这种保温杯的利润是630元.【题目点拨】本题考查分式方程的应用以及一元一次方程的应用,解题的关键是找准等量关系,正确列出分式方程和正确列出一元一次方程求解.23、见解析【分析】先利用ASA 证明△ABC ≌△ADE ,再根据全等三角形的性质即得结论.【题目详解】证明:∵∠1=∠2,∴∠DAC +∠1=∠2+∠DAC∴∠BAC =∠DAE ,在△ABC 和△ADE 中,B D AB ADBAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ADE (ASA ),∴BC =DE .【题目点拨】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.24、 (1) b=180.c=181;(2) b=2n 2+2n ,c=2n 2+2n+1;(3) 不是,理由见解析【解题分析】试题分析:(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b ,c 的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b 、c 的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是.试题解析:解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c ﹣b =1.∵a =19,a 2+b 2=c 2,∴192+b 2=(b +1)2,∴b =180,∴c =181;(2)通过观察知c ﹣b =1,∵(2n +1)2+b 2=c 2,∴c 2﹣b 2=(2n +1)2,(b +c )(c ﹣b )=(2n +1)2,∴b +c =(2n +1)2,又c =b +1,∴2b +1=(2n +1)2,∴b =2n 2+2n ,c =2n 2+2n +1;(3)由(2)知,2n +1,2n 2+2n ,2n 2+2n +1为一组勾股数,当n =7时,2n +1=15,112﹣111=1,但2n 2+2n =112≠111,∴15,111,112不是一组勾股数.点睛:此题主要考查学生对勾股数及规律题的综合运用能力.25、(1)图见解析;(2)图见解析;(3)222(3,2),(4,3),(1,1)A B C ----.【分析】(1)先根据轴对称的性质描出点,,A B C 分别关于y 轴的对称点111,,A B C ,然后顺次连接111,,A B C 即可得; (2)根据轴对称的性质、两点之间线段最短可得,连接1A B ,交y 轴于点P ,即为所求;(3)先根据网格特点写成点,,A B C ,再根据点关于x 轴对称规律:横坐标不变,纵坐标变为相反数即可得.【题目详解】(1)先根据轴对称的性质描出点,,A B C 分别关于y 轴的对称点111,,A B C ,然后顺次连接111,,A B C 即可得111A B C ∆,如图所示:(2)连接1,PA PA由轴对称性质得:y 轴为1AA 的垂直平分线则1PA PA =要使PAB ∆周长最短,只需使PA PB +最小,即1PA PB +最小由两点之间线段最短公理得:连接1A B ,交y 轴于点P ,即为所求,如图所示:(3)由网格特点可知:点,,A B C 坐标分别为(3,2),(4,3),(1,1)A B C -----平面直角坐标系中,点关于x 轴对称规律:横坐标不变,纵坐标变为相反数则点222,,A B C 坐标分别为222(3,2),(4,3),(1,1)A B C ----.【题目点拨】本题考查了轴对称的性质与画图、平面直角坐标系中,点关于坐标轴对称的规律,熟记轴对称性质与点关于坐标轴对称的规律是解题关键.26、(1)2;(2)1;(3)-9-6.【解题分析】根据二次根式的运算规律及平方差公式或完全平方公式进行运算.【题目详解】(1)原式=(1−3)×(1−2)=2;(2)原式(3)原式【题目点拨】考查二次根式的混合运算,熟练掌握完全平方公式以及平方差公式是解题的关键.。
上海风华初级中学八年级数学上册第二单元《全等三角形》检测卷(有答案解析)
一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 3.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等4.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组5.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等6.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .97.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 8.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:49.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1210.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52°11.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________14.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.17.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________ 18.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .19.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.20.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.22.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 23.已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠,AOP α∠=(1)如图1,补全图形,直接写出MON ∠=____________︒(2)如图2,若4BOM BON ∠=∠,求α的值.24.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.25.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.26.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.D解析:D【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.3.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.4.C解析:C【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【详解】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.【详解】解:A,三边分别相等的两个三角形全等,故本选项正确;B,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C,两个角和一个边对应相等的两个三角形,可利用ASA或AAS判定全等,故本选项正确;D,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.6.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 8.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=,∴ABD 115S AB DF 5RR 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.9.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.10.C解析:C【分析】根据题意可证明BDE CFD ≌,以及求解∠B 的度数,再由三角形的外角性质和全等三角形的性质推出∠EDF=∠B ,从而得出结果.【详解】在BDE 与CFD 中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩∴()BDE CFD SAS ≌∴∠BED=∠CDF ,又∵∠B+∠BED=∠EDC=∠EDF+∠CDF ,∴∠B=∠EDF ,∵在BAC 中,∠A=104°,∠B=∠C ,∴∠B=(180°-104°)÷2=38°,∴∠EDF=38°,故选:C .【点睛】本题考查全等三角形的判定与性质,三角形的内角和定理与外角性质,熟练证明全等并利用其性质进行推理演算是解题关键.11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.14.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE平分CBA∠,ABE MBE∴∠=∠,BAE CME ABE MBE∠=∠∠=∠,,BE=BE,()ABE MBE AAS∴≅,90BEA BEM AE ME∴∠=∠=︒=,,DAE CME AE ME∠=∠=,,AED MEC∠=∠,()ADE MCE ASA∴≅,ADE MCES S∴=,3cmAE=,4cmBE=,21==2234122ABM ABEABCDS S S cm∴=⨯⨯⨯=四边形,故答案为:212cm.【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.15.OA=OB(答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS只要添加一个符合的条件即可【详解】解:OA=OB理由是:在△AOC和△BOD中∴△AOC≌△BOD(SAS)故答案为:O解析:OA=OB.(答案不唯一)【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,只要添加一个符合的条件即可.【详解】解:OA=OB,理由是:在△AOC和△BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD(SAS).故答案为:OA=OB.(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.【分析】根据三角形角平分线的交点到边的距离相等再利用三角形面积公式解答即可【详解】解:过作于于∵的平分线交于于∴∵∴四边形是正方形∴∵的面积即解得:∴∴在与中∴∴故答案为:【点睛】本题考查了角平分线 解析:2【分析】根据三角形角平分线的交点到边的距离相等,再利用三角形面积公式解答即可.【详解】解:过O 作OE AC ⊥于E ,OF BC ⊥于F ,∵A ∠、B ∠的平分线交于O ,OD AB ⊥于D ,∴OD OE OF ==.∵C 90∠=,∴四边形ECFO 是正方形,∴OE OF CE CF ===.∵ABC 的面积1111AC BC AB OD AC OE BC OF 2222=⋅=⋅+⋅+⋅, 即()1134OE 34522⨯⨯=⨯++, 解得:1OE =, ∴CE OE 1==,∴AE AC CE 2=-=.在Rt AEO 与Rt ADO 中,AO AO OE OD =⎧⎨=⎩, ∴Rt AEO Rt ADO ≅,∴AD AE 2==.故答案为:2.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,正确作出辅助线是解题的关键. 17.20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD平分∠AOC∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30∠=︒,AOB∠BOC=70°,∴∠AOC=100°,∵OD平分∠AOC∴∠AOD=1∠AOC=50°,2∠=20°;BOD∠=∠AOD-AOB②如图,∵30∠=︒,AOB∠BOC=70°,∴∠AOC=40°,∵OD平分∠AOC∴∠AOD=12∠AOC=20°, BOD ∠=∠AOD+AOB ∠=50°;故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.18.【分析】如图延长CD 交AB 于E 由题意得AP 平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴CD=DE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.19.【分析】根据图形得出当有1点D 时有1对全等三角形;当有2点DE 时有3对全等三角形;当有3点DEF 时有6对全等三角形;根据以上结果得出当有n 个点时图中有个全等三角形即可【详解】解:当有1点D 时有1对全 解析:)(12n n +【分析】根据图形得出当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;根据以上结果得出当有n 个点时,图中有)(12n n +个全等三角形即可.【详解】解:当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n 个点时,图中有)(12n n +个全等三角形.故答案为:)(12n n +.【点睛】 本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.20.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB 进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.三、解答题21.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌, ∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.23.(1)图形见解析,60;(2)144︒【分析】(1)根据尺规作图,以点O 为圆心,任意长度为半径画弧,交角的两边于C 、D ,然后再分别以C 、D 为圆心,大于CD/2长度为半径用圆规画圆弧;即可得到点M ,连接OM ,BOP ∠的角平分线同理可得,由已知条件120AOB ∠=︒,然后根据角平分线的性质即可求得MON ∠的度数;(2)根据题目已知条件可知120POB α∠=-︒,根据角平分线的性质可知2AOM POM α∠=∠=,112022PON BON POB α-∠=∠=∠=,再根据 4BOM BON ∠=∠,120AOB ∠=︒即可求得α的值.【详解】 (1)根据尺规作图,首先以O 为圆心,任意长度为半径画弧,交AOP ∠两边于C 、D ,然后以C 为圆心,大于CD/2长度为半径用圆规画圆弧,接着以D 为圆心,同以上步骤一样的长度为半径用圆规画圆弧,最后两圆弧交于M 点,连接顶点O 和M ,OM 即为角平分线.BOP ∠的角平分线同理可得;∵OM 平分AOP ∠,ON 平分BOP ∠, ∴12POM AOM AOP ∠=∠=∠, 12BON PON BOP ∠=∠=∠, ∵AOB AOP BOP ∠=∠+∠,∵MON POM PON ∠=∠+∠, ∴11()6022MON AOP BOP AOB ∠=∠+∠=∠=︒;(2)∵AOP α∠=,120AOB ∠=︒,OM 平分AOP ∠,ON 平分BOP ∠, ∴120POB α∠=-︒,2AOM POM α∠=∠=,112022PON BON POB α-∠=∠=∠=, ∵4BOM BON ∠=∠, ∴)12021204(2αα+=-︒,解得:144.【点睛】 本题考查了尺规作图、角平分线的性质,解题的关键是找准等量关系列出方程. 24.(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB . ∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒, ∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关,∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】 本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.25.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.26.(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;=,(2)由(1)已证:AD CEAD cm=,6∴=,CE cm6DE cm=,4∴=-=,2CD CE DE cm≅,又由(1)已证:ACD CBEBE CD cm∴==.2【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。
【精选试卷】上海风华初级中学中考数学填空题专项练习经典练习卷(培优专题)
一、填空题1.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)2.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.3.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 4.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.5.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.6.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
7.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.8.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)9.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.10.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.11.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.12.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.13.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.分解因式:2x 2﹣18=_____.17.已知62x =+,那么222x x -的值是_____.18.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.20.若a b =2,则222a b a ab--的值为________. 21.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.22.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.23.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.24.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.25.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.26.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.27.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.28.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.29.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是30.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n各图形中有多少三角形【详解】分2.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC3.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:4.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到5.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-16.【解析】【分析】过点E作交AG的延长线于H根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E作交AG的延长线于H厘米`根据折叠的性质可知:根据折叠的性质可知:(7.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴8.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合9.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA10.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=211.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间12.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【13.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键15.【解析】根据弧长公式可得:=故答案为16.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合17.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确18.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(05119.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=20.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE 为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:22.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM23.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=24.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式25.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正26.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可27.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式28.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=29.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式30.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、填空题1.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.2.6【解析】试题解析:∵DE 是BC 边上的垂直平分线∴BE=CE∵△EDC 的周长为24∴ED+DC+EC=24①∵△ABC 与四边形AEDC 的周长之差为12∴(AB+AC+BC )-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE 是BC 边上的垂直平分线,∴BE=CE .∵△EDC 的周长为24,∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12,∴BE+BD-DE=12,②∵BE=CE ,BD=DC ,∴①-②得,DE=6.考点:线段垂直平分线的性质.3.【解析】【分析】根据关于x 的一元二次方程ax2+2x+2﹣c =0有两个相等的实数根结合根的判别式公式得到关于a 和c 的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a (2﹣c )=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.4.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.5.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=k x ,可得k =-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1. 6.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:( 解析:423+【解析】【分析】过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠= 根据三角形外角的性质可得30,EAG EGA ∠=∠=根据锐角三角函数求出GC ,即可求解.【详解】如图,过点E 作EH AG ⊥交AG 的延长线于H ,15,2C AE EG ︒∠===厘米,`根据折叠的性质可知:15,C CAG ∠=∠=30,EAG EGA ∴∠=∠=322cos302223,AG HG EG ==⋅=⨯= 根据折叠的性质可知:23,GC AG ==2,BE AE ==222342 3.BC BE EG GC ∴=++=++=+(厘米)故答案为:4 3.+【点睛】考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.7.-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积在得到矩形PDOE 面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABC D为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.8.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.9.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.10.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.11.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.12.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, ∵解不等式①得:x≤﹣4,解不等式②得:x >﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.13.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲=9030=3m/s ,V 追=90120−30=1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:12004=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V 甲=9030=3m/s ,V 追=90120−30=1m/s , ∴V 乙=1+3=4m/s ,∴乙走完全程所用的时间为:12004=300s ,此时甲所走的路程为:(300+30)×3=990m . 此时甲乙相距:1200﹣990=210m则最后相遇的时间为:2103+4=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.15.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π. 16.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 17.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】 将所给等式变形为26x -=,然后两边分别平方,利用完全平方公式即可求出答案. 【详解】 ∵62x =+,∴26x -=,∴()()2226x -=, ∴22226x x -+=,∴2224x x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.18.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.22.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.23.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.24.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.25.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.26.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.27.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:。
上海风华初级中学九年级数学下册第三单元《锐角三角函数》检测卷(有答案解析)
一、选择题1.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .()5352m -D .()535m - 2.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A .52B .55C .33D .13.如图,以O 为圆心,任意长为半径画弧,与射线OA 交于点B ,再以B 为圆心,BO 长为半径画弧,两弧交于点,C 画射线OC ,则tan AOC ∠的值为( )A .12B .33C .32D .34.如图,河坝横断面迎水坡AB 的坡比为1:3,坝高BC =3m ,则AB 的长度为( )A .6mB .3C .9mD .3 5.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sinB 的值等于( )A .43B .34C .45D .356.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .457.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度1:3i = .在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.78.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23-B .23+C .36D .3 9.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A .12B .55C .2D .25510.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .131311.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为10m ,DE 的长为5m ,则树AB 的高度是( )m .A .10B .15C .153D .153﹣5 12.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米二、填空题13.点A 、B 、C 都在半径为6的O 上,且120AOC ∠=︒,点M 是弦AB 的中点,则CM 的长度的最大值为______.14.已知菱形ABCD 的边长为6,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为点E ,AC =4,那么sin ∠AOE =_____.15.已知在Rt △ABC 中,∠C =90°,∠A =α,AB =m ,那么边AB 上的高为___. 16.如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1.点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0).设点M 转过的路程为m (01m <<),,随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为___.17.如图,ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .18.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.19.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.20.如图,O 的直径2AB =,弦1AC =,点D 在O 上,则D ∠的度数是______.三、解答题21.如图,以ABC ∆的一边BC 为直径的O ,交AB 于点D ,连结CD ,OD ,已知 1902A DOC ∠+∠=︒.(1)判断AC 是否为O 的切线?请说明理由.(2)①若60A ∠=︒,1AD =,求O 的半径.②若DOC α∠=︒,AC m =,OB r =,请用含r 、α的代数式表示m . 22.(1)计算:|﹣1|﹣(3﹣π)0+16+(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.23.如图,矩形ABCD 中,33,sin ,5AB ACB =∠=E 为边BC 上一点,将ABE △沿AE 翻折,使点B 恰好落在对角线AC 上,记作B ',(1)求BE 的长;(2)联结DB ',求cot B DC '∠的值.24.图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.25.已知:直线3y kx k =+,交x 轴于B ,交y 轴于A ,且3OA OB =.(1)如图1,求直线AB 的解析式;(2)如图2,点D 在AO 上且AD t =连接BD ,过BD 作DE BD ⊥于D ,过A 作AE y ⊥轴于A ,E 点的横坐标为m ,求m 与t 的函数关系式;(3)如图3,在(2)的条件下,点P 在BD 的延长线上,P 的横坐标为t ,点F 在EA 的延长线上,点N 在AD 上,连接FN ,连接PF 并延长交直线AB 于点M ,若E BPM ∠=,2ANF ADE ∠=∠,2AN DN =,求点M 的坐标.26.计算(1)计算:()1013.1484sin 453π-⎛⎫-+ ⎪⎝⎭(2)已知tan (α+15°3α的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD , 则535x +=, 解得:535x =-,即AC 的长度是()535m -;故选:D .【点睛】 此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 2.B 解析:B【分析】作AD ⊥BC 于D ,由勾股定理得出BC =2231+=10,AB =2211+=2,由△ABC 的面积求出AD =105,由三角函数定义即可得出答案. 【详解】解:作AD ⊥BC 于D ,如图所示:由勾股定理得:BC 2231+10,AB 2211+2,∵△ABC 的面积=12BC×AD =12×3×1−12×1×1, ∴1210×AD =12×3×1−12×1×1,解得:AD =105, ∴sin ∠ABC =AD AB =1052=5; 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.3.D解析:D【分析】由题意可以得到∠AOC 的度数,再根据特殊角的锐角三角函数值可以得解.【详解】解:如图,连结BC ,则由题意可得OC=OB ,CB=OB ,∴OC=OB=BC , ∴△BOC 是等边三角形,∴∠AOC=60°,∴tan ∠AOC=tan60°3故选D .【点睛】本题考查尺规作图与三角形的综合应用,由尺规作图的作法得到所作三角形是等边三角形是解题关键.4.A解析:A【分析】根据坡比的概念求出AC ,根据勾股定理求出AB .【详解】解:∵迎水坡AB 的坡比为13∴3BC AC =33AC = 解得,AC =3由勾股定理得,AB 22BC AC =+=6(m ),故选:A .【点睛】 本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 5.C解析:C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C. 6.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可. 【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴co sα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 7.C解析:C【分析】延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H ,在Rt △BCF 中利用坡度的定义求得CF 的长,则DF 即可求得,然后在直角△AEH 中利用三角函数求得AF 的长,进而求得AB 的长.【详解】解:延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H .∵在Rt △BCF 中,BF CF =1:3i =, ∴设BF=k ,则CF=3k ,BC=2k .又∵BC=12,∴k=6,∴BF=6,CF=63,∵DF=DC+CF ,∴DF=40+63,∵在Rt △AEH 中,tan ∠AEH=AH EH, ∴AH=tan37°×(40+63)≈37.785(米),∵BH=BF-FH ,∴BH=6-1.5=4.5.∵AB=AH-HB ,∴AB=37.785-4.5≈33.3.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.8.A解析:A【分析】设BC=x ,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,可得,AB=2x ,3x ,由AD AB ==2x ,可得3x ,由AD AB =,可知,∠D=∠ABD=12∠BAC=15°,在Rt BDC ∆ 中,根据锐角正切三角函数的定义,即可求解.【详解】∵AD AB =,∴∠D=∠ABD ,∵∠BAC=∠D+∠ABD ,∴∠D=12∠BAC=15°, 设BC=x , ∵在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,∴AB=2x ,AC=22(2)3x x x -=,∴CD=2x+3x =(23)x +,在Rt BDC ∆中,tan 23(23)BC D DC x∠===-+ , ∴°tan15=23-,故选A.【点睛】本题主要考查锐角正切三角函数的定义,根据图形,设BC=x ,用含x 的代数式表示相关线段的长,是解题的关键.9.A解析:A【分析】连接格点BD,根据格点的长度求出BD 、CD 边的长度,根据勾股定理证明∠BDC=90°,再计算BD tan A=AD计算即可. 【详解】解:如图所示,连接格点BD ,根据格点的性质,可得BD=CD=2,BC=2,∴∠BDC=90°,故ABD 为在直角三角形,且AD=22,∴BD 21tan A=AD 222, 故选:A .【点睛】本题考查了勾股定理及锐角三角函数的定义,属于基础题,解答本题的关键是掌握格点三角形边长的求解办法.10.B解析:B【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴22BD =, ∴2262sin 13BD BAC AB ∠=== 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.11.B解析:B【分析】先根据CD =10m ,DE =5m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBE =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.【详解】解:在Rt △CDE 中,∵CD =10m ,DE =5m ,∴sin ∠DCE =51102DE CD ==, ∴∠DCE =30°.∵∠ACB =60°,DF ∥AE ,∴∠BGF =60°∴∠ABC =30°,∠DCB =90°.∵∠BDF =30°,∴∠DBF =60°,∴∠DBC =30°,∴BC =103tan303CD ==︒(m ), ∴AB =BC •sin60°=10332⨯=15(m ). 故选:B .【点睛】 本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.C解析:C【分析】如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF 为xm ,则BF 为0.75xm∵BC=140m∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112 ∴CF=112m ,BF=84m∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形∵DE=55m ,CE=FG=36m∴DG=167m ,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DG AG y ==+ 解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.二、填空题13.【分析】如图取AO 的中点J 连接JMJC 过点J 作JH ⊥OC 交CO 的延长线于H 求出MJCJ 根据CM≤MJ+CJ 即可解决问题【详解】解:如图取的中点连接过点作交的延长线于的最大值为故答案为:【点睛】本题考 解析:337+【分析】如图,取AO 的中点J ,连接JM ,JC ,过点J 作JH ⊥OC ,交CO 的延长线于H .求出MJ ,CJ ,根据CM≤MJ+CJ 即可解决问题.【详解】解:如图,取AO 的中点J ,连接JM ,JC ,过点J 作JH OC ⊥,交CO 的延长线于H .120AOC ∠=︒,60JOH ∴∠=︒, JH OH ⊥,90JHO ∴∠=︒,132AJ JO OA ===, 3cos602OH OJ ∴=︒=,33sin 60JH OJ =︒=, 315622CH OH OC ∴=+=+=, 22223315()()3722CJ JH CH ∴=+=+=, AM MB =,AJ JO =,132MJ OB ∴==, CM MJ JC +,337CM ∴+,CM∴的最大值为3+故答案为:3+【点睛】本题考查轨迹,三角形中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.14.【分析】由菱形对角线互相垂直得到AC⊥BD根据∠OAE=∠BAO∠OEA=∠AOB可以判定△OAE∽△ABO进而得到∠AOE=∠BAO再由AO和AB的值即可求得sin∠AOE的值【详解】∵菱形对角线解析:1 3【分析】由菱形对角线互相垂直得到AC⊥BD,根据∠OAE=∠BAO,∠OEA=∠AOB可以判定△OAE∽△ABO,进而得到∠AOE=∠BAO,再由AO和AB的值即可求得sin∠AOE的值.【详解】∵菱形对角线互相垂直,∴∠OEA=∠AOB,∵∠OAE=∠BAO,∴△OAE∽△ABO,∴∠AOE=∠ABO,∵AO=12AC=2,AB=6,∴sin∠AOE=sin∠ABO=AOAB=13.故答案为:13.【点睛】考查了相似三角形判定和性质、三角形中正弦函数的计算,解题关键是证明三角形相似再利用其性质得到∠AOE=∠ABO.15.msinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC的长度然后利用三角形的面积公式求得AB边上的高的长度【详解】如图所示:根据题意可得:AC=mcosαBC=msinα∴AC•BC解析:m sinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC的长度,然后利用三角形的面积公式求得AB边上的高的长度.【详解】如图所示:根据题意可得:AC=m cosα,BC=m sinα,∴12AC•BC=12mh,即h=m sinαcosα,故答案是:m sinαcosα.【点睛】考查了解直角三角形.解题关键利用了三角函数的定义求得直角三角形两条直角边的长.16.【分析】当m从变化到时点N相应移动的路经是一条线段只需考虑始点和终点位置即可解决问题当m=时连接PM如图1点M从点A绕着点P逆时针旋转了一周的从而可得到旋转角为120°则∠APM=120°根据PA=解析:23【分析】当m从13变化到23时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=13时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的13,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON中运用三角函数可求出ON的长;当m=23时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的23,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.【详解】解:①当m=13时,连接PM,如图1,∠APM=13×360°=120°.∵PA=PM ,∴∠PAM=∠PMA=30°.在Rt △AON 中,NO=AO•tan ∠OAN=1×3=3. ②当m=23时,连接PM ,如图2,∠APM=360°-23×360°=120°, 同理可得:3 综合①、②可得:点N 3323 23 【点睛】 本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.17.15【分析】由ABCD 是一张边长为4cm 的正方形纸片EF 分别为ABCD 的中点可得AE=DF=2cmEF=AD=4cm 由翻折可得AG=A′GAD=A′D 在Rt △DF 中利用勾股定理可求得答案求得在Rt △解析:15︒ 436【分析】由ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,可得AE=DF=2cm ,EF=AD=4cm ,由翻折可得AG=A′G ,AD=A′D ,在Rt △DF 'A 中,利用勾股定理可求得答案.求得'A F ,在Rt △DF 'A 中利用正切值即可求得'FDA ∠度数,进而求得∠ADG 度数;在Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,利用勾股定理即可求得x 值.【详解】∵ABCD 是一张边长为4cm 的正方形纸片,E 、F 分别为AB ,CD 的中点,∴AE=DF=2cm ,EF=AD=4cm ,DG 为折痕,∴AG='A G ,AD='A D ,Rt △DF 'A 中,2222''4223AF A D DF =-=-='23tan '32A F FDA DF ∠=== ∴'60FDA ∠=︒∴∠ADG =∠'A DG =11(90')301522FDA ⨯︒-∠=⨯︒=︒ ∴'423A E =- Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,∴x=2222'(2)(423)AG A E x -=---解得x=436-故答案为:15°,436-【点睛】本题考查了图形的翻折问题,翻折后找到相等的边和相等的角,作为解题依据,考查了正方形的性质,在直角三角形中可利用锐角三角函数值求得角度和边长,勾股定理也是解直角三角形常用方法.18.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2 由勾股定理知:2222=422 3.-=-=AB BC AC在Rt △ABH 中,AH=123.故答案为:3.【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.19.【分析】过点F作FI⊥BC于点I延长线IF交AD于J根据含30°直角三角形的性质可求出FIFJ和JH的长度从而求出HD的长度【详解】解:过点F作FI⊥BC于点BC延长线AD交AD于J由题意可知:CF解析:23【分析】过点F作FI⊥BC于点I,延长线IF交AD于J,根据含30°直角三角形的性质可求出FI、FJ 和JH的长度,从而求出HD的长度.【详解】解:过点F作FI⊥BC于点BC,延长线AD交AD于J,由题意可知:CF=BC=6,∠FCB=30°,∴FI=3,CI=33∵JI=CD=6,∴JF=JI-FI=6-3=3,∵∠HFC=90°,∴∠JFH+∠IFC=∠IFC+∠FCB=90°,∴∠JFH=∠FCB=30°,设JH=x,则HF=2x,∴由勾股定理可知:(2x)2=x2+32,∴3=∴DH=DJ-JH=33323故答案为:3【点睛】本题考查正方形的性质,涉及正方形的性质,勾股定理,旋转的性质,含30°的直角三角形的性质,本题属于中等题型.20.【分析】根据直径所对的圆周角是直角得出∠BCA=90°再根据特殊三角函数值可以求得∠CBA的值进而求得∠A的值然后由圆周角的定理得出答案∠D的值【详解】解:∵的直径是AB ∴∠ACB=90°又∵AB=解析:60︒【分析】根据直径所对的圆周角是直角,得出∠BCA=90°,再根据特殊三角函数值可以求得∠CBA 的值,进而求得∠A 的值,然后由圆周角的定理得出答案∠D 的值.【详解】解:∵O 的直径是AB ,∴∠ACB=90°,又∵AB=2,AC=1,∴sin ∠CBA=12AC AB = ∴∠CBA=30°∴∠A=60°∴∠D=∠A=60°【点睛】本题考查的是圆周角定理及直角三角形的性质,在解答时要注意特殊三角函数的取值. 三、解答题21.(1)是,见解析;(2)①r =;②2tan 2m r α︒=. 【分析】(1)∠ABC=12∠DOC ,而∠A+12∠DOC=90°,即可求解;(2)在Rt △ACD 中,CD=AD÷tan ∠ACD=1÷3 (3)在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==,即可求解. 【详解】解:(1)是,理由:∵∠ABC=12∠DOC , 而∠A+12∠DOC=90°, ∴∠A+∠ABC=90°,∴AC 是⊙O 的切线;(2)∵AC 是圆的切线,∴∠ACD+∠DCB=90°,∵BC 是圆的直径,∴∠DCB+∠ABC=90°,∴∠ACD=∠ABC=90°-∠A=30°,在Rt △ACD 中,CD=AD÷tan ∠; 而∠DOC=2∠ABC=60°,∴△COD 为等边三角形,∴圆的半径为(3)∠ABC=12∠DOC=12α°, 在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==, 即m=2r 2tanα︒.【点睛】 本题考查了切线的判定与性质,涉及到解直角三角形、等边三角形的性质等,解题的关键是灵活运用判定与性质.22.(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)32;(2)98. 【分析】(1)先根据矩形的性质、正弦三角函数、勾股定理可求出5,4AC BC ==,再根据翻折的性质可得3,,90AB AB B E BE AB E B '''===∠=∠=︒,设B E BE x '==,然后在Rt CB E '中,利用勾股定理即可得;(2)如图(见解析),先根据平行线的判定与性质可得CB F ACB '∠=∠,从而可得3sin sin 5CB F ACB '∠=∠=,再利用正弦三角函数、勾股定理、线段的和差可得,,CF B F DF '的值,然后在Rt DB F '中,利用余切三角函数的定义即可得.【详解】(1)四边形ABCD 是矩形,3AB =,3,90CD AB B BCD ∴==∠=∠=︒,在Rt ABC 中,3sin 5AB ACB AC ∠==,即335AC =, 解得5AC =,4BC ∴==,由翻折的性质得:3,,90AB AB B E BE AB E B '''===∠=∠=︒,2,90CB AC AB CB E '''∴=-=∠=︒,设B E BE x '==,则4CE BC BE x =-=-,在Rt CB E '中,222B E B C CE ''+=,即()222x 24x +=-, 解得32x =, 即BE 的长为32; (2)如图,过点B '作B F CD '⊥于点F ,90B FD BCD '∴∠=∠=︒,//B F BC '∴,CB F ACB '∴∠=∠,3sin sin 5CB F ACB '∴∠=∠=, 在Rt CB F '△中,sin CF CB F CB '∠=',即325CF =, 解得65CF =,89,55B F DF CD CF '∴===-=, 则在Rt DB F '中,995cot 885DF B DC B F '∠==='.【点睛】本题考查了矩形与折叠问题、平行线的判定与性质、正弦与余切三角函数、勾股定理等知识点,熟练掌握并灵活运用三角函数的定义是解题关键.24.(1)点D′到BC的距离为(453+70)厘米;(2)E、E′两点的距离是3010厘米.【分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【详解】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠3厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(3)厘米.答:点D′到BC的距离为(3+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=∴10厘米.答:E 、E′两点的距离是10厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.25.(1)y=3x+9;(2)m=2133t t -;(3)M(1,10).【分析】(1)先设OB b =,表示出A 、B 的坐标,代入求解即可;(2)根据lBD lDE k k ⋅= -1,得出93t -·t m=-1,变形求解即可; (3)首先得出直线BD 的解析式,再得出直线NF 为:y=222mt m t -,设F(n ,9),得出直线FD ,再根据直线AB 求解即可.【详解】解:(1)设OB b =,∴B(-b,0),∵OA=3OB ,∴A(0,3b),∵A 、B 在直线y=kx+k 上,代入得3033bk k k b -+=⎧⎨=-⎩,解得:33k b =⎧⎨=⎩,∴y=3x+9; (2)由(1)知A(0,9),B(-3,0),∵AE ⊥y 轴,∴E(m ,9),∵AD=t ,∴D(0,9-t),∵BD ⊥DE ,∴lBD lDE k k ⋅= -1,而lBD k =93t -,lDE k =t m, ∴93t -·t m=-1, ∴-t²+9t+3m=0, ∴m=2133t t -;(3)由(2)和(1)知:直线BD 为:y=993t x t -+- , ∵P 在直线BD 上且横坐标为t , ∴P(t ,26273t t -++), ∵AN=2DN ,∴N(0,9-t),∵∠ANF=2∠ADE 且lDE k =t m,则直线NF 为:y=222mt m t - , 设F(n ,9),则22223t mt n m t =-,解得n=223m t m-, ∴F(223m t m-,9), 由F 、P 得FP l :y=222222()933m t m t x m t mt m---+--①, 由(1)得:AB l :y=3x+9②,∵∠E=∠BPM ,∴tan ∠E=tan ∠BPM③,由M 为AB 和PF 的交点,联立①②③得:M(1,10).【点睛】本题考查了一次函数的性质、待定系数法等知识,解题的关键是学会利用参数、构建方程解决问题.26.(1)4;(2)15°【分析】(1)直接根据零指数幂、二次根式化简、特殊角的三角函数值、负整指数幂即可求解; (2)直接根据特殊角的三角函数值即可求解.【详解】解:(1)()1013.144sin 453π-⎛⎫-+ ⎪⎝⎭13=+ 4=(2)∵tan (α+15°)=3∴α+15°=30° α=15°【点睛】此题主要考查实数的运算和特殊角的三角函数值,熟练掌握各概念是解题关键.。
上海风华初级中学初中数学九年级下期中经典练习卷(培优专题)
一、选择题1.(0分)[ID :11128]下列说法正确的是( )A .小红小学毕业时的照片和初中毕业时的照片相似B .商店新买来的一副三角板是相似的C .所有的课本都是相似的D .国旗的五角星都是相似的2.(0分)[ID :11125]如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6) 3.(0分)[ID :11123]如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( )A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 4.(0分)[ID :11119]如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对5.(0分)[ID :11099]已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC6.(0分)[ID:11095]在函数y=21ax+(a为常数)的图象上有三个点(﹣1,y1),(﹣1 4,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y27.(0分)[ID:11089]如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6D.48.(0分)[ID:11085]如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.59.(0分)[ID:11066]《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺10.(0分)[ID:11053]若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80311.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2512.(0分)[ID:11046]在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°13.(0分)[ID:11043]如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m14.(0分)[ID:11042]如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4315.(0分)[ID:11079]如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶1二、填空题16.(0分)[ID:11168]若△ABC∽△A’B’C’,且△ABC与△A’B’C’的面积之比为1:4,则相似比为____.17.(0分)[ID:11142]一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.18.(0分)[ID:11141]如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.19.(0分)[ID:11227]如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=_____.20.(0分)[ID:11212]如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A 移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.21.(0分)[ID:11211]《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.22.(0分)[ID :11210]如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .23.(0分)[ID :11195]如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)24.(0分)[ID :11179]小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .25.(0分)[ID :11222]如果a c eb d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 三、解答题26.(0分)[ID :11325]如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°,在点A 处有一栋居民楼,AO =320m ,如果火车行驶时,周围200m 以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向行驶时.(1)居民楼是否会受到噪音的影响?请说明理由;(2)如果行驶的速度为72km /h ,居民楼受噪音影响的时间为多少秒?27.(0分)[ID :11311]如图,△ABC 中,CD 是边AB 上的高,且AD CD CD BD =.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.28.(0分)[ID :11309]如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:2 1.41≈,3 1.73≈)29.(0分)[ID :11291]如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C .(1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.30.(0分)[ID :11273]在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.D4.D5.D6.A7.B8.C9.B10.B11.A12.C13.A14.B15.C二、填空题16.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比17.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告18.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似19.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB=3CO∴OA:OD=BO:CO=3:1∠AOB=∠DO20.8或【解析】【分析】根据题意可分两种情况①当CP和CB是对应边时△CPQ∽△CBA与②CP和CA是对应边时△CPQ∽△CAB根据相似三角形的性质分别求出时间t即可【详解】①CP和CB是对应边时△CP21.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD22.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A(﹣32)∵点A在反比例函数的图象上∴解得k=-6【详解】请在此输入详解!23.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本24.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.4.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C =∠C ,∴△ACE ∽△ECD ,∵∠2=∠3,∴DE ∥AB ,∴△BCA ∽△ECD ,∵△ACE ∽△ECD ,△BCA ∽△ECD ,∴△ACE ∽△BCA ,∵DE ∥AB ,∴∠AED =∠BAE ,∵∠1=∠2,∴△AED ∽△BAE ,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.5.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;BC=12AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2,y 3的大小关系即可.【详解】∵反比例函数的比例系数为a 2+1>0,∴图象的两个分支在一、三象限,且在每个象限y 随x 的增大而减小.∵﹣114-<<0,∴点(﹣1,y 1),(14-,y 2)在第三象限,∴y 2<y 1<0. ∵12>0,∴点(12,y 3)在第一象限,∴y 3>0,∴y 2<y 1<y 3. 故选A .【点睛】 本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 8.C解析:C【解析】试题分析:观察图象可得,k >0,已知S △AOB =2,根据反比例函数k 的几何意义可得k=4,故答案选C.考点:反比例函数k 的几何意义.9.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.10.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.11.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.12.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B)2=0,∴tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.13.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 14.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:15.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ ,∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.二、填空题16.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.17.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.18.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似解析:4或9.【解析】当△ADP∽△ACB时,需有AP ADAB AC=,∴6128AP=,解得AP=9.当△ADP∽△ABC时,需有AP ADAC AB=,∴6812AP=,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.19.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB=3CO∴OA:OD=BO:CO=3:1∠AOB=∠DO解析:6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴△AOB∽△DOC,∴31 AO ABOD CD==,∴AB=3CD,∵CD=2,∴AB=6,故答案为:6.【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.20.8或【解析】【分析】根据题意可分两种情况①当CP和CB是对应边时△CPQ∽△CBA与②CP和CA是对应边时△CPQ∽△CAB根据相似三角形的性质分别求出时间t即可【详解】①CP和CB是对应边时△CP解析:8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.21.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD =xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=12-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 5=12-x 12, ∴x=6017, 故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.22.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A (﹣32)∵点A 在反比例函数的图象上∴解得k=-6【详解】请在此输入详解!解析:-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0xk =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解! 23.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.24.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O 连接OBOC 交AB 于D ∴OC ⊥ABBD =AB 由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题26.(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.【解析】【分析】(1)作AC⊥ON于C,利用含30度的直角三角形三边的关系得到AC=12AO=160,则点A到MN的距离小200,从而可判断学校会受到影响;(2)以A为圆心,100为半径画弧交MN于B、D,如图,则AB=AD=200,利用等腰三角形的性质得BC=CD,接下来利用勾股定理计算出BC=120,所以BD=2BC=240,然后利用速度公式计算出学校受到的影响的时间.【详解】(1)如图:过点A作AC⊥ON,∵∠QON=30°,OA=320米,∴AC=160米,∵AC<200,∴居民楼会受到噪音的影响;(2)以A为圆心,200m为半径作⊙A,交MN于B、D两点,即当火车到B点时直到驶离D点,对居民楼产生噪音影响,∵AB=200米,AC=160米,∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,∵72千米/小时=20米/秒,∴影响时间应是:240÷20=12秒.【点睛】此题是解直角三角形的应用,主要考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27.(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.28.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=∠, ∴sin 6040sin 60203DO BO =⋅=⨯=,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-=3.2cm≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.29.(1)6yx=(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.30.(1)证明见解析(2(3【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3),理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴2222BE BP a aCE CD a--===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.。
上海风华初级中学必修第一册第五单元《三角函数》检测卷(有答案解析)
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =- D .()cos f x x =2.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭3.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =4.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( ) A .sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭5.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3-B .12-C .32 D .127.cos45sin15sin 45cos15︒︒-︒︒=( ). A .1 B .12-C .32D .128.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .10.已知1cos 2α=,322παπ<<,则sin(2)πα-=( ) A .3 B .12C .12-D .3211.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110012.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A.4π B .6π C .2π D .94π 二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.化简cos()sin()2sin()cos()πααπααπ+-=--___________.15.角θ的终边经过点(1,3)P -,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.17.已知锐角α满足1cos()35πα+=,则sin α=______. 18.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .19.已知50sin 245ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,,则tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________.三、解答题21.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 22.(1)在面积为16的扇形中,半径多少时扇形的周长最小; (2(10)x x -. 23.已知22sin 2sin12αα=-.(1)求sin cos cos2ααα+的值; (2)已知()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,且2tan 6tan 1ββ-=,求2αβ+的值. 24.已知函数2()2sin 23sin()sin ()2f x x x x x ππ⎛⎫=+-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围.25.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.C解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C3.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C4.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象;将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .5.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【详解】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭. 故选:C.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .9.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解.【详解】 解:因为1cos 2α=,322παπ<<,所以sin α==,所以sin(2)sin 2παα-=-=. 故选:D .11.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.12.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】利用诱导公式直接化简即可【详解】故答案为: 解析:tan α-【分析】利用诱导公式直接化简即可. 【详解】cos()sin()(sin )(sin )2tan sin()cos()sin (cos )παααααπααπαα+--⋅-==----,故答案为:tan α-.15.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12- 【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin 2θ=,1cos 2θ=,所以,1sin cos 622πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.17.【分析】利用余弦的两角和公式展开结合代入计算即可【详解】解得根据代入计算解得故答案为:【分析】利用余弦的两角和公式展开,结合22sin cos 1αα+=,代入计算即可. 【详解】1cos cos 2513πααα⎛⎫+=⋅= ⎪⎝⎭,解得2cos 5αα=+,根据22sin cos 1αα+=,代入计算,解得sin α=. 18.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫- ⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos222x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x取得最小值为. 22.(1)4,16;(2)5. 【分析】(1)设扇形的半径为r ,弧长为l ,根据面积为16,可得32l r=,列出周长表达式,利用基本不等式即可求得答案;(2)利用基本不等式,即可求得所求乘积的最大值. 【详解】(1)设扇形的半径为r ,弧长为l , 所以面积1162S l r =⋅=,即32l r=,且08r <<,则周长322216c l r r r =+=+≥=,当且仅当322r r =即4r =时等号成立,所以当半径4r =时,周长有最小值16. (2)由题意得(10)0x x -≥,解得010x ≤≤,1052x x+-≤=,当且仅当(10)x x =-,即5x =时等号成立,5. 23.(1)15;(2)74π. 【分析】(1)先求出1tan 2α=-,再化简22tan 1tan sin cos cos 2tan 1αααααα+-+=+即得解;(2)先求出1tan 23β=-,再求出tan(2)1αβ+=-,求出52,23παβπ⎛⎫+∈⎪⎝⎭,即得解. 【详解】(1)由已知得2sin cos αα=-,所以1tan 2α=-222222sin cos cos sin tan 1tan 1sin cos cos 2sin cos tan 15αααααααααααα+-+-+===++ (2)由2tan 6tan 1ββ-=,可得22tan 1tan 21tan 3βββ==--,则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯.因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以()20,βπ∈,又1tan 23β=->52,6πβπ⎛⎫∈ ⎪⎝⎭,因为()0,απ∈,1tan 23α=->-, 则5,6παπ⎛⎫∈⎪⎝⎭,则52,23παβπ⎛⎫+∈ ⎪⎝⎭, 所以724παβ+=. 【点睛】易错点睛:本题容易得出两个答案,724παβ+=或34π.之所以得出两个答案,是没有分析缩小,αβ的范围,从而得到52,23παβπ⎛⎫+∈⎪⎝⎭.对于求角的大小的问题,一般先求出角的某三角函数值,再求出角的范围,再得到角的大小. 24.(1)最小正周期为π;(2)单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(3)[0,3].【分析】(1)逆用二倍角公式化简整理可得()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用2T ωπ=即可求得()f x 的最小正周期;(2)令26z x π=-,利用函数2sin 1y z =+的图像与性质,列出不等式,即可求得()f x 的单调递减区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦,可得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数的图像与性质,即可求得()f x 的取值范围.【详解】 (1)由已知可得()1cos 2cos f x x x x =-+2cos 21x x =-+2sin 216x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期为22T ππ==. (2)令26z x π=-,函数2sin 1y z =+的单调递减区间是32,222k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .所以3222262k x k πππππ+≤-≤+,k ∈Z 得536k x k ππππ+≤≤+,k ∈Z . 所以()f x 的单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(3)因为20,3x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[0,3]f x ∈, 即()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围是[0,3]. 【点睛】本题考查二倍角公式的逆用,辅助角公式的应用,正弦型函数的单调区间、周期和值域问题,综合性较强,考查计算化简,数形结合的能力,考查整体性的思想,属基础题. 25.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-, 又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。
上海风华初级中学八年级数学上册第十二章《全等三角形》经典练习卷(培优专题)
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .5 4.下列命题的逆命题是真命题的是( ). A 3 3B 5C .1的立方根是1D .全等三角形的周长相等5.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 6.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 9.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°10.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等11.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA12.下列各命题中,假命题是()A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等13.下列命题中,假命题是()A.在同一平面内,垂直于同一条直线的两直线平行B.到线段两端点距离相等的点在这条线段的垂直平分线上C.一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D.一边长相等的两个等腰直角三角形全等∠=∠,E、D、F分别是AB、BC、AC上的点,且14.如图,在ABC中,B C=,BD CFBE CD=,若104∠=︒,则EDFA∠的度数为()A.24°B.32°C.38°D.52°15.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A .50°B .65°C .70°D .80°二、填空题16.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.17.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________18.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).19.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.20.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.△的面积是21.如图,ABC中,∠C=90°,AD平分∠BAC, AB=5,CD=2,则ABD______22.如图,△ABC≌△A'B'C',其中∠A=35°,∠C=25°,则∠B'=_____.23.如图,AD为∠CAF的角平分线,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE ≌△BDF;②CE=AB+AE;③∠DAF=∠CBD.其中正确的结论有_____.(填序号)24.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.25.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.26.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.三、解答题27.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.28.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.29.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.30.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当 AB >AC 时,∠C >∠B .该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°-∠B,∠CAD=90°-∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:。
2022-2023学年上海市风华初级中学八年级上学期期末考试数学试卷含详解
风华初级中学2022学年第一学期八年级数学学科期末考试试卷一、选择题(本大题共6小题,每题3分,共18分)1.)A.B.C.D.2.下列关于x 的方程中,一定有实数根的方程是()A.2240x x -+=B.210x x -+=C.220x x m +-= D.210x mx m -+-=3.已知正比例函数5y x =-的图像上有两点()11,A x y 、()22,B x y ,如果12x x <,那么1y 与2y 的大小关系是()A.12y y > B.12y y < C.12y y = D.不能确定4.下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补5.已知长方形的两条边长为x 、y ,面积是4,那么y 关于x 的函数的图像是()A. B.C. D.6.如图,四边形ABCD 中,AD BC ∥,E 是边CD 的中点,如果AE 平分BAD ∠,那么下列结论中不一定成立的是()A.BE 平分ABC ∠B.90AEB ∠=︒C.12AE AB =D.AB AD BC=+二、填空题:(本大题共有12题,每题2分,满分24分)7.=______.8.函数y =________.9.在实数范围内分解因式:222x x --=________.10.36x -<的解集是________.11.已知反比例函数21k y x+=的图像在第二、四象限,那么k 的取值范围是________.12.某工厂10月份的产值是100万元,计划12月份的产值要达到144万元,并每月以相同的增长率增长.如果设这个增长率为x ,由题意可列出关于x 的方程是________.13.已知三角形的三边长分别为8、15、17,那么这个三角形形状是________.14.平面上经过A 、B 两点的圆的圆心的轨迹是_____.15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.16.已知平面直角坐标内的两点()2,3A -、()1,1B -,那么A ,B 两点的距离等于________.17.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10 cm CD =,则AD =______cm .18.如图,在Rt ABC △中,90ACB ∠=︒,4AB =,D 为边AB 上一点,将BCD △沿着直线CD 翻折,点B 恰好落在边AC 上的点E 处,连接DE .如果AE DE =,那么AE 的长为________.三、简答题:(本大题共有5题,每小题6分,满分30分)19.20.解方程:()4112x x x -+=.21.某建筑工程队在靠墙处(可用墙长11米),用20米长的建筑材料围成一个面积为60平方米的长方形仓库,在与墙平行的边BC 上预留出长度为2米的门,求这仓库的长和宽.22.小明爸妈上山游玩,爸爸步行,妈妈乘坐缆车,相约在山顶缆车的终点会合.步行的路程是缆车所经线路长的2.5倍,妈妈在爸爸出发后50分钟才坐上缆车,缆车的平均速度为每分钟180米.图中反映了爸爸整个过程中步行的路程y (米)与时间x (分钟)之间的函数关系.(1)爸爸行走的总路程是________米,他途中休息了________分钟;(2)当030x ≤≤时,y 与x 之间的函数关系式是________;(3)爸爸休息之后,行走的速度是每分钟________米;当妈妈到达缆车终点时,爸爸离缆车终点的路程是________米.23.如图,在ABC 中,BD AC ⊥,垂足为点D ,DE AB ⊥,垂足为点E ,DF BC ⊥,垂足为点F ,且点F 是BC 中点,若6BD =,3DE =,32DF =.(1)求CD 的长;(2)求ABC ∠的度数.四、解答题(本大题共3小题,第24题8分,第25、26题每小题10分,满分28分)24.如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,DB =DC .(1)求证:BE =CF ;(2)如果BD //AC ,∠DAF =15°,求证:AB =2DF .25.已知反比例函数()110k y k x=≠的图像与正比例函数()220y k x k =≠的图像都经过点(),2A m ,点()3,4P --在反比例函数()110k y k x=≠的图像上,点()3,B n -在正比例函数()220y k x k =≠的图像上.(1)求此正比例函数的解析式;(2)求线段AB 的长;(3)求△PAB 的面积.26.如图所示,已知:在ABC 中,AC BC =,90ACB ∠=︒,CD 是边AB 上的中线,点E 是直线AC 上任意一点,DF DE ⊥,交直线BC 于点F .点G 是EF 中点,延长CG 交直线AB 于点H .(1)若点E 在边ABC 上,①证明:DE DF =;②证明:CG GH =;(2)若3AE =,5CH =,直接写出边AC 的长.风华初级中学2022学年第一学期八年级数学学科期末考试试卷一、选择题(本大题共6小题,每题3分,共18分)1.)A.B.C.D.【答案】A【分析】把四个选项中的二次根式化简,再根据同类二次根式的定义进行选择即可.【详解】A =B 3010=是同类二次根式,故错误;C3=D =故选:A .【点睛】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.2.下列关于x 的方程中,一定有实数根的方程是()A.2240x x -+=B.210x x -+=C.220x x m +-=D.210x mx m -+-=【答案】D【分析】根据一元二次方程根的判别式进行计算即可求解.【详解】解:A.2240x x -+=,24416120b ac ∆=-=-=-<∴原方程没有实数根,故该选项不符合题意;B.210x x -+=,241430b ac ∆=-=-=-<∴原方程没有实数根,故该选项不符合题意;C.220x x m +-=,244b ac m ∆=-=+,当4m <-时,Δ0<,∴原方程没有实数根,故该选项不符合题意;D.210x mx m -+-=,()()2222Δ4414420b ac m m m m m =-=--=-+=-≥,∴原方程有实数根,故该选项符合题意.故选:D .【点睛】本题考查了一元二次方程20ax bx c ++=(0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.3.已知正比例函数5y x =-的图像上有两点()11,A x y 、()22,B x y ,如果12x x <,那么1y 与2y 的大小关系是()A.12y y >B.12y y < C.12y y = D.不能确定【答案】A【分析】先根据一次函数的解析式判断出函数的增减性,再根据12x x <即可得出结论.【详解】:解:∵正比例函数5y x =-中,50k =-<,∴y 随x 的增大而减小,∵12x x <,∴12y y >.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.4.下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补【答案】B【分析】根据题意,分别写出逆命题,再逐项判断即可求解.【详解】解:A.对顶角相等,逆命题为:相等的角是对顶角,原命题的逆命题是假命题,故该选项不正确,不符合题意;B.直角三角形的两个锐角互余,逆命题为:两个锐角互余的三角形是直角三角形,原命题的逆命题是真命题,故该选项正确,符合题意;C.全等三角形的对应角相等,逆命题为:对应角相等的两个三角形全等,原命题的逆命题是假命题,故该选项不正确,不符合题意;D.邻补角互补,逆命题为:互补的两个角是邻补角,原命题的逆命题是假命题,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了真假命题的判断,写出原命题的逆命题,掌握相关性质定理是解题的关键.5.已知长方形的两条边长为x 、y ,面积是4,那么y 关于x 的函数的图像是()A. B.C. D.【答案】D【分析】根据长方形的面积公式得出4xy =,即4y x=,且0x >,据此即可求解.【详解】解:依题意4xy =,即4y x=,且0x >,∴y 关于x 的函数的图像是反比例函数图像,且图像在第一象限,故选:D .【点睛】本题考查了反比例函数的应用,掌握反比例函数的性质和图像是解题的关键.6.如图,四边形ABCD 中,AD BC ∥,E 是边CD 的中点,如果AE 平分BAD ∠,那么下列结论中不一定成立的是()A.BE 平分ABC ∠B.90AEB ∠=︒C.12AE AB =D.AB AD BC=+【答案】C【分析】延长AE 交BC 延长线于M ,求出EAB M ∠∠=,推出AB BM =,AD CM =,AE EM =,即可推出A ,B 正确,根据梯形中位线与三角形的面积公式即可判断D ;根据含30度角的直角三角形的性质判断C 选项.【详解】解:延长AE 交BC 延长线于M ,∵AD BC ∥,DAE M ∠∠∴=,EAD EAB ∠∠= ,EAB M ∠∠∴=,AB BM ∴=,E 为CD 中点,DE EC ∴=,DEA CEM ∠∠= ,DAE CME ∴ ≌,AD CM ∴=,AE EM =,AD BC CM BC BM AB ∴+=+==,AB BM = ,AE EM =,BE AE ∴⊥;BE 平分ABC ∠;∴90AEB ∠=︒,故A ,B 选项正确,取AB 中点F ,连接EF ,E ,F 分别是AB ,DC 的中点,EF ∴是梯形ABCD 是中位线∴()12EF AD BC =+, 90AEB ∠=︒,∴12EF AB =,∴AB AD BC =+,故D 选项正确,当30ABE ∠=︒时,12AE AB =,故C 选项不一定成立故选:C .【点睛】本题考查了全等三角形的性质和判断,平行线的性质,等腰三角形的性质和判定的应用,梯形的性质,关键是推出ABM 是等腰三角形.二、填空题:(本大题共有12题,每题2分,满分24分)7.=______.【答案】3【分析】根据二次根式的性质化简即可.【详解】∵9a 3≥0,∴a ≥0==3.故答案为3.=|a |是解题的关键.8.函数y =________.【答案】2x >【分析】根据二次根式有意义的条件以及分式有意义的条件列出不等式即可求解.【详解】解:依题意得20x ->,解得:2x >,故答案为:2x >.【点睛】本题考查了求函数自变量的取值范围,掌握二次根式有意义的条件以及分式有意义的条件是解题的关键.9.在实数范围内分解因式:222x x --=________.【答案】117117244x x ⎛⎫⎛⎫+--- ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先解方程2220x x --=,再写成因式分解的形式即可.【详解】解:令2220x x --=,∴2,1,2a b c ==-=-,2411617b ac ∆=-=+=,∴114427b b ac x a -±±==,解得:12117117x ,x 44+==,∴21122244x x x x ⎛⎫⎛⎫---=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭,故答案为:117117244x x ⎛⎫⎛⎫--- ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,解一元二次方程,正确的解一元二次方程是解题的关键.10.36x -<的解集是________.【答案】3x >-##3x >--【分析】根据一元一次不等式的解法进行计算即可求解.【详解】解:36x -<,即)36x <30<,∴x >∴3x >-;故答案为:3x >-.【点睛】本题考查了解一元一次不等式,分母有理化,正确的计算是解题的关键.11.已知反比例函数21k y x+=的图像在第二、四象限,那么k 的取值范围是________.【答案】12k <-##0.5k <-【分析】根据反比例函数图象的性质得出210k +<,解不等式即可求解.【详解】解:∵反比例函数21k y x+=的图像在第二、四象限,∴210k +<,解得:12k <-,故答案为:12k <-.【点睛】本题考查了反比例函数图象的性质,在()0ky k x=≠中,当0k >时,函数的图象在一、三象限,当0k <时,反比例函数的图象在二、四象限,掌握反比例函数图象的性质是解题的关键.12.某工厂10月份的产值是100万元,计划12月份的产值要达到144万元,并每月以相同的增长率增长.如果设这个增长率为x ,由题意可列出关于x 的方程是________.【答案】()21001144x +=【分析】设这个增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设这个增长率为x ,由题意可列出关于x 的方程是:()21001144x +=,故答案为:()21001144x +=.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.13.已知三角形的三边长分别为8、15、17,那么这个三角形形状是________.【答案】直角三角形【分析】根据勾股定理的逆定理进行判断即可求解.【详解】解:∵2228156422528917+=+==∴22281517+=,∴这个三角形形状是直角三角形,故答案为:直角三角形.【点睛】本题考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.14.平面上经过A 、B 两点的圆的圆心的轨迹是_____.【答案】线段AB 的垂直平分线【分析】要求作经过已知点A 和点B 的圆的圆心,则圆心应满足到点A 和点B 的距离相等,从而根据线段的垂直平分线性质即可求解.【详解】解:根据同圆的半径相等,则圆心应满足到点A 和点B 的距离相等,即经过已知点A 和点B 的圆的圆心的轨迹是线段AB 的垂直平分线.故答案为:线段AB 的垂直平分线.【点睛】本题考查线段垂直平分线的性质.掌握线段垂直平分线上的点到该线段两端点的距离相等是解题关键.15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.【答案】5【分析】先根据勾股定理求出斜边的长,再根据斜边上的中线等于斜边的一半求解即可.【详解】解:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.故答案为:5.【点睛】本题主要考查了勾股定理的应用和直角三角形斜边上的中线等于斜边的一半,关键是能正确求出斜边的长度.16.已知平面直角坐标内的两点()2,3A -、()1,1B -,那么A ,B 两点的距离等于________.【答案】5【分析】根据勾股定理进行计算即可求解.【详解】解:∵()2,3A -、()1,1B -,∴5AB ==,故答案为:5.【点睛】本题考查了勾股定理求两点距离,掌握勾股定理是解题的关键.17.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10 cm CD =,则AD =______cm .【答案】20【分析】根据三角形的内角和定理可求出∠ABC=60°,再根据线段垂直平分线的性质,可得AD=BD ,再根据等腰三角形的性质可得∠ABD=30°,从而得到∠CBD=30°,再根据30°角所对的直角边等于斜边的一半,得到BD=2DC,从而求出AD 的长度.【详解】解:∵在ABC ∆中,90C ∠=︒,30A ∠=︒,∴∠ABC=60°,∵边AB 的垂直平分线DE 交AC 于D ,∴AD=BD,∴30ABD ∠=︒,∴∠CBD=30°.∴BD=2CD=20cm.∴AD=BD=20cm.故答案为20cm.【点睛】本题考查了线段平分线的性质和含0°角的直角三角形的性质,掌握相关知识是解题的关键.18.如图,在Rt ABC △中,90ACB ∠=︒,4AB =,D 为边AB 上一点,将BCD △沿着直线CD 翻折,点B 恰好落在边AC 上的点E 处,连接DE .如果AE DE =,那么AE 的长为________.【答案】32-##23-+【分析】根据题意,作出图形,进而根据折叠的性质以及已知条件得出30A ∠=︒,进而根据含30度角的直角三角形的性质,勾股定理求得AC ,进而得出AE .【详解】解:如图,∵AE ED =,∴A EDA =∠∠,∴2DEC A ∠=∠,∵折叠,∴DEC B ∠=∠,∴2B A ∠=∠,∵Rt ABC △中,90ACB ∠=︒,∴90B A ∠+∠=︒,∴30,60A B ∠=︒∠=︒,∵4AB =,∴122CE BC AB ===,2223AC AB BC =-=∴32AE AC CE =-=,故答案为:32-.【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,折叠的性质,得出30A ∠=︒是解题的关键.三、简答题:(本大题共有5题,每小题6分,满分30分)19.【答案】2-【分析】根据二次根式的混合运算进行计算即可求解.(2=++2=-2=.【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.20.解方程:()4112x x x -+=.【答案】1354x -=,2354x =【分析】先化为一般式,然后根据公式法解一元二次方程即可求解.【详解】解:()4112x x x -+=,244120x x x -+-=,即24610x x -+=,∵4,6,1a b c ==-=,24361620b ac ∆=-=-=,∴462528b x a -±±==解得:1354x -=,2354x +=【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.21.某建筑工程队在靠墙处(可用墙长11米),用20米长的建筑材料围成一个面积为60平方米的长方形仓库,在与墙平行的边BC 上预留出长度为2米的门,求这仓库的长和宽.【答案】这仓库的长为10米,宽为6米【分析】设仓库的宽AB x =米,则仓库的长为()2022x +-米,根据题意建立一元二次方程,根据可用墙长11米,得出22211x -<,继而即可求解.【详解】解:设仓库的宽AB x =米,则仓库的长为()2022x +-米,根据题意得,()202260x x +-=,解得:125,6x x ==∵可用墙长11米,∴22211x -<,解得:112x >,∴6x =,∴222610-⨯=米,∴这仓库的长为10米,宽为6米.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.22.小明爸妈上山游玩,爸爸步行,妈妈乘坐缆车,相约在山顶缆车的终点会合.步行的路程是缆车所经线路长的2.5倍,妈妈在爸爸出发后50分钟才坐上缆车,缆车的平均速度为每分钟180米.图中反映了爸爸整个过程中步行的路程y (米)与时间x (分钟)之间的函数关系.(1)爸爸行走的总路程是________米,他途中休息了________分钟;(2)当030x ≤≤时,y 与x 之间的函数关系式是________;(3)爸爸休息之后,行走的速度是每分钟________米;当妈妈到达缆车终点时,爸爸离缆车终点的路程是________米.【答案】(1)3600;20(2)70y x=(3)50;1100【分析】(1)根据图象获取信息:爸爸到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)利用待定系数法解答正比例函数解析式即可;(3)休息前30分钟行走2100米,休息后30分钟行走()36002100-米,利用路程、时间得出速度即可,先求妈妈到达缆车终点的时间,再计算爸爸行走路程,从而求出爸爸离缆车终点的路程.【小问1详解】根据图象知:爸爸行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;【小问2详解】设函数关系式为y kx =,图像过()30,2100可得:210030k =,解得:70k =,所以解析式为:70y x =,故答案为70y x =;【小问3详解】爸爸休息之后行走的速度是()()36002100805050-÷-=米/分钟,妈妈到达缆车终点的时间:3600 2.5÷÷1808(=分),此时爸爸比妈妈迟到8050822(--=分),∴妈妈到达终点时,爸爸离缆车终点的路程为:50221100(⨯=米),故答案为50;1100.【点睛】此题考查一次函数及其图象的应用,从图象中获取相关信息是关键.23.如图,在ABC 中,BD AC ⊥,垂足为点D ,DE AB ⊥,垂足为点E ,DF BC ⊥,垂足为点F ,且点F是BC 中点,若6BD =,3DE =,DF =.(1)求CD 的长;(2)求ABC ∠的度数.【答案】(1)6CD =(2)75ABC ∠=︒【分析】(1)在在Rt BDF △中,勾股定理得出BF =,继而得出BC =Rt BDC 中,勾股定理求得DC 的长;(2)取BD 的中点,连接EG ,根据直角三角形斜边上的中线等于斜边的一半,得出132EG BD GD ===,进而得出EGD 是等边三角形,根据直角三角形的两个锐角互余得出30ABD ∠=︒,根据(1)的结论得出BDC 是等腰直角三角形,根据ABC ABD DBC ∠=∠+∠即可求解.【小问1详解】解:∵DF BC ⊥,∴90BFD ∠=︒,在Rt BDF △中,6BD =,DF =,∴BF ==又∵点F 是BC 中点,∴BC =∵BD AC⊥∴=90BDC ∠︒,在Rt BDC 中,6DC =,【小问2详解】解:如图,取BD 的中点,连接EG ,∵DE AB ⊥,∴90DEB ∠=︒,在Rt BED △中,6BD =,3DE =,∴132EG BD GD ===∴ED EG GD==∴EGD 是等边三角形,∴60BDE ∠=︒∴30ABD ∠=︒,∵6BD DC ==,=90BDC ∠︒,∴BDC 是等腰直角三角形,∴45DBC ∠=︒,∴304575ABC ABD DBC ∠=∠+∠=︒+︒=︒【点睛】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,综合运用以上知识是解题的关键.四、解答题(本大题共3小题,第24题8分,第25、26题每小题10分,满分28分)24.如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,DB =DC .(1)求证:BE =CF ;(2)如果BD //AC ,∠DAF =15°,求证:AB =2DF .【答案】(1)见解析;(2)见解析.【分析】(1)证明DE DF =,90E DFC ∠=∠=︒;进而证明Rt BDE Rt CDF ≌,即可解决问题;(2)根据平行线的性质和含30︒的直角三角形的性质解答即可.【详解】证明:(1)AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90BED DFC ∠=∠=︒;在Rt BDE 和Rt DFC 中,BD CD DE DF =⎧⎨=⎩,Rt BDE Rt CDF ∴ ≌,BE CF ∴=;(2)AD 平分BAC ∠,15DAF ∠=︒,30BAC ∴∠=︒,BAD DAF ∠=∠,//BD AC ,30DBE BAC ∴∠=∠=︒,DAF BDA ∠=∠,BAD BDA ∴∠=∠,AB BD ∴=,在Rt BDE 中,30DBE ∠=︒,2BD DE ∴=,2AB DE ∴=,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,2AB DF ∴=.【点睛】本题主要考查了全等三角形的判定、角平分线的性质及其应用等几何知识点,熟悉相关性质是解题的关键.25.已知反比例函数()110k y k x =≠的图像与正比例函数()220y k x k =≠的图像都经过点(),2A m ,点()3,4P --在反比例函数()110k y k x=≠的图像上,点()3,B n -在正比例函数()220y k x k =≠的图像上.(1)求此正比例函数的解析式;(2)求线段AB 的长;(3)求△PAB 的面积.【答案】(1)13y x =;(2);(3)272【分析】(1)把点(3,4)的坐标代入反比例函数的解析式可得k 1,然后把点A 的坐标代入反比例函数的解析式,就可得到点A 的坐标,再把点A 的坐标代入正比例函数的解析式即可;(2)把点A 的坐标代入正比例函数的解析式可得k 2,然后把点B 的坐标代入正比例函数的解析式,就可得到点B 的坐标,然后运用两点间距离公式就可求出线段AB 的长.(3)根据()()3,1,3,4B P ----的坐标得出BP 的长,再根据点A 的坐标求出高即可.【详解】(1)解:∵点(3,4)在反比例函数y=1 k y x =的图象上,∴k 1=3×4=12.∴12y x=∵点A (m ,2)在反比例函数y=12 y x=图象上,∴2m=12,∴m=6,∴点A 的坐标为(6,2);∵A 的坐标为(6,2)在正比例函数()220y k x k =≠的图像∴213k =∴此正比例函数的解析式为:13y x =(2)∵点B (-3,n )在正比例函数y=13x 的图象上,∴n=-3×13=-1,()3,1B ∴--∵(6,2);AB ∴==(3)()()3,1,3,4B P ---- 3BP ∴=∵A (6,2),∴点A 到BP 的距离为9;112739222ABP S BP h ∆∴=⨯=⨯⨯=【点睛】本题主要考查了反比例函数与一次函数的交点问题、直线上点的坐标特征、反比例函数图象上点的坐标特征、两点间距离公式等知识,熟练掌握相关知识是解题的关键.26.如图所示,已知:在ABC 中,AC BC =,90ACB ∠=︒,CD 是边AB 上的中线,点E 是直线AC 上任意一点,DF DE ⊥,交直线BC 于点F .点G 是EF 中点,延长CG 交直线AB 于点H .(1)若点E 在边ABC 上,①证明:DE DF =;②证明:CG GH =;(2)若3AE =,5CH =,直接写出边AC 的长.【答案】(1)①见解析;②见解析(2)7AC =或1【分析】(1)①连接CD ,推出CD AD =,CDF ADE ∠∠=,A DCB ∠∠=,证ADE CDF ≌即可;②连接DG ,根据直角三角形斜边上中线求出CG EG GF DG ===,推出GCD GDC ∠∠=,推出GDH GHD ∠∠=,推出DG GH =即可;(2)求出5EF =,根据勾股定理求出EC ,即可得出答案.【小问1详解】①证明:连接CD ,90ACB ∠=︒ ,CD 是边AB 上的中线,,AC BC =,CD AD BD ∴==,又AC BC =,CD AB ∴⊥,90EDA EDC ∠∠∴+=︒,45DCF DAE ∠∠==︒,DF DE ⊥ ,90EDF EDC CDF ∠∠∠∴=+=︒,ADE CDF ∠∠∴=,在ADE 和CDF 中,A DCF ∠∠= ,AD CD =,ADE CDF ∠∠=,()ASA ADE CDF ∴ ≌,DE DF ∴=;②证明:连接DG ,90ACB ∠=︒ ,G 为EF 的中点,CG EG FG ∴==,90EDF ∠=︒ ,G 为EF 的中点,DG EG FG ∴==,CG DG ∴=,GCD CDG ∠∠∴=.又CD AB ⊥ ,90CDH ∠∴=︒,90GHD GCD ∠∠∴+=︒,90HDG GDC ∠∠+=︒,GHD HDG ∠∠∴=,GH GD ∴=,CG GH ∴=;【小问2详解】如图,当E在线段AC上时,,CG GH EG GF===CH EF∴==,5≌,ADE CDF∴==,AE CF3∴在Rt ECF中,由勾股定理得:CE=22EF CF-4=,∴=+=+=;AC AE EC347如图,当E在线段CA延长线时,=-=-=,431AC EC AEAC=或1.综合上述:7【点睛】本题考查了全等三角形的判定与性质,直角三角形斜边上的中线,勾股定理,综合运用以上知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海风华初级中学数学三角形填空选择单元测试卷(解析版)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【解析】【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BACBAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP 的面积来表示△BEA 的面积3.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.4.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】 【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A ,∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……,∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.5.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数.【详解】解;∵∠A =50°,∴∠ABC +∠ACB =180°﹣50°=130°,∵∠B 和∠C 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.【点睛】 本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.6.等腰三角形的三边长分别为:x +1,2x +3,9,则x =________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。
所以x 的值是3.故填3.7.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.8.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.9.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A =50°,∠ABO =28°,∠ACO =32°,根据三角形外角的性质可得∠BDC =∠A +∠ABO =78°,∠BOC =∠BDC +∠ACO =110°.10.如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E =____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°.在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.二、八年级数学三角形选择题(难)11.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A.14B.14.4C.13.6D.13.2【答案】B【解析】【分析】连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,由BE=2CE可以得到S△CEF=12S△BEF,S△ABE=23S△ABC,进而可用两种方法表示△ABC的面积,由此可得方程,进而得解.【详解】解:如图,连接BF,设S△BDF=x,则S△BEF=6-x,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S△ABE=23S△ABC,∴S△ABC=32S△ABE=32[2x+ (6-x)]=1.5x+9,∴18-x =1.5x+9,解得:x=3.6,∴S△ABC=18-x,=18-3.6=14.4,故选:B.【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.12.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
由此可以得到a>3,a<7,因此可以判断a-3和a-7的正负情况。
此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零。
由此可化简|a-3|+|a-7|13.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A.5B.10C.15D.20【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×40=20cm2,∴S△BCE=12S△ABC=12×40=20cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×20=10cm2.故选B.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.15.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【答案】D【解析】【分析】根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n 个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.【点睛】本题考查图形规律题,解此题的关键在于根据题中图形找到规律.16.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A .270B .210C .180D .150【答案】B【解析】【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB 与DE 交于点G ,AB 与EF 交于点H ,∵∠1=∠A+∠DGA ,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH 中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2= ∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.17.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【答案】B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.18.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.19.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10【答案】A【解析】设这个多边形的边数为x,根据题意可得:x-=⨯+,180(2)2360180x=.解得:7故选A.20.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.。