Q420高强度钢板焊接工艺性能研究
Q420高强钢焊接工艺的研究
Q420高强钢焊接工艺的研究高强钢是一种具有优良力学性能的金属材料,在航空、航天、汽车、船舶等工业领域有着广泛的应用。
其焊接工艺研究对于提高焊接接头的性能和可靠性具有重要意义。
本文将探讨Q420高强钢焊接工艺的研究,主要包括焊接方法、焊接技术和焊接参数的优化等方面。
首先,焊接方法是研究焊接工艺的基础。
常用的高强钢焊接方法包括手工电弧焊、氩弧焊、埋弧焊、激光焊等。
不同的焊接方法适用于不同的焊接条件和需求。
例如,手工电弧焊适用于返修等小面积焊接,氩弧焊适用于焊接薄板等狭缝焊接,埋弧焊适用于焊接大型结构件等。
通过选择适合的焊接方法,可以提高焊接接头的质量和生产效率。
其次,焊接技术是研究焊接工艺的核心。
高强钢焊接技术包括预热、焊接顺序、焊接速度、焊接温度控制等。
预热是为了减少焊接应力和提高焊接接头的冷裂纹抗性。
焊接顺序是为了避免过高的焊接温度和应力集中。
焊接速度是为了控制热输入和焊接金属的冷却速度,以避免产生过多的残余应力。
焊接温度控制是为了保障焊接接头的性能。
通过采用合理的焊接技术,可以获得高强钢焊接接头的良好性能。
最后,焊接参数的优化也是研究焊接工艺的重要内容。
焊接参数包括焊接电流、焊接电压、焊接速度等。
这些参数的选择直接影响到焊接接头的质量和性能。
例如,过高的焊接电流和电压会导致焊接接头产生太大的焊接温度和残余应力,从而降低焊接接头的强度和韧性。
通过优化焊接参数,可以提高焊接接头的质量和可靠性。
综上所述,Q420高强钢焊接工艺的研究需要关注焊接方法、焊接技术和焊接参数的优化。
只有通过合理选择焊接方法、精确控制焊接技术和优化调整焊接参数,才能够获得高强钢焊接接头的良好性能,满足工程需求。
同时,还需要加强对焊接过程中的激光辐射、焊接残余应力等问题的研究,以进一步提高高强钢焊接接头的质量和性能。
建筑钢结构Q420_N高强度钢的焊接性能分析_黄镇
级
S
Nb
V
Ti
Ni
N
Mo
不大于
A
0.035 0.035
B
0.035 0.035
GB/T1591
C
0.20
0.50
1.70
0.030 0.030
0.07
0.20
0.20
0.80
0.015
0.20
-2008
D
0.025 0.025
E
0.020 0.020
C
0.20
0.025
GB/T19879 D
0.55
⑤严格执行定位焊工艺要求。由于点焊热输入量很小,造 成在点焊处一次结晶尚未完成,温度已降到 500℃以下,因此 极易形成裂纹。定位焊焊缝厚度应不小于 3mm,长度应不小于 40mm,间距宜为 300mm ̄600mm,需预热的材质,定位焊的预热 温度宜高于正式施焊预热温度 20℃ ̄50℃。
⑥高强度钢厚板的焊接需准确控制预热温度,层间温度和 后热温度,以控制扩散氢含量,淬硬倾向和拘束应力。最好采用 远红外电加热的方式,有利于温度准确和受热均匀。
1.60
0.015 0.015 0.020 0.010
0.7
-
-
-2005
0.18
0.020
E
C
0.030 0.025
GB714
D
0.18
0.55 1.0 ̄-1.70 0.025 0.020 0.060
0.08
0.030
0.70
0.012
0.35
-2008
E
0.020 0.010
S420N EN10027-2
安徽建筑
2013 年第 6 期(总 194 期)
Q420输电铁塔用Q420 高强钢及焊接材料的性能评价
1 试验材料
试验用角钢(Q 420B )是由 T 钢铁公司生产的, 其板厚为 14 m m ,供货状态为热轧;试验用钢板 (Q 420C )是由 W 钢铁公司生产的,其板厚为 19 m m ,供货状态为热轧。其化学成分、各项力学性能 的复验结果均符合 G B /T 1591-94 标准的要求。
2 焊接性试验
收稿日期:2006-11-10 作者简介:韩钰(1978-):女,工程师,工学硕士,主要从事焊接技术
及焊接材料的研究;电话:010-58386182 ; E -m ail:hanhanyuyu@ tom .com
以往我国铁塔用钢的强度等级主要是 Q 235 (!s=235 M Pa)和 Q 345(!s=345M Pa),也曾极少量 的使用过 Q 390。随着铁塔向大荷载和大型化的发 展,采用 Q 420 等更高级别的高强钢具有明显的
269
预热 150℃
245,264,271,262,251,267,252,251, 2 57,235,238,245,255,256,254
254
表 2 Q420C 钢板热影响区最高硬度测试结果
试件
测定值 (H V 0.2)
平均值 (H V 0.2)
不预热
227,221,225,220,233,216,239,232, 240,212,236,235,226,235,227
国产低合金高强度钢与普通低合金钢的主要不 同,就是加入 N b、V 、T i等强烈碳化物形成元素,可 对焊缝性能造成不良影响;另外,国产高强度钢的冶 炼普遍采用热轧,没有加入精炼工序,这就使其性能 不够稳定,也对其焊接提出了更高的要求。因此高强 钢的焊接性能也是杆塔设计和制造部门比较关心的 一个问题,这主要包括两个方面,一是裂纹敏感性, 二是焊接热影响区的力学性能。为了保证特高压输 电线路铁塔结构的焊接施工质量,有必要开展 Q 420 高强钢及其焊材的性能研究,为铁塔制造焊接工艺 的制定提供科学依据和具体的指导。
电力铁塔用Q420高强钢焊接性试验探讨
电力铁塔用Q420高强钢焊接性试验探讨裘名早;朱建春【摘要】由于Q420钢冶炼时加入V、Ti、Nb等强烈碳化物形成元素,对焊缝性能造成不良影响,使其焊接性能不够稳定.与Q345普通低合金钢相比,Q420低合金高强度钢焊接难度大,焊接技术要求高,应制定严格的焊接工艺施焊.通过采用焊接热影响区最高硬度试验及斜Y型坡口焊接裂纹试验,结果表明:Q420B钢焊前可不预热,焊后也不需采用任何热处理工艺.但结合Q420B钢材的韧脆转变温度,当环境温度低于0℃时,应进行焊前预热150℃,以避免产生冷裂纹.【期刊名称】《江西电力》【年(卷),期】2012(036)003【总页数】3页(P24-26)【关键词】电力铁塔;Q420高强钢;焊接性试验;分析探讨【作者】裘名早;朱建春【作者单位】江西省送变电建设公司,江西南昌 330200;江西省送变电建设公司,江西南昌 330200【正文语种】中文【中图分类】TM7530 引言长期以来,我国输电线路铁塔所用钢材局限于Q235和Q345这2种强度等级,与发达国家相比,品种少,强度值偏低。
当设计荷载增大时,一般采用加大材料规格或组合断面的方法来提高铁塔的承载能力,这必然导致铁塔耗钢量的增加,从而造成投资和资源消耗的增加[1]。
Q420高强钢具有强度高和承载能力大的特点,如采用Q42O高强钢(材料等级一般为B级)作铁塔的主材,从理论上讲,由于减小了塔身挡风面积因而减小了塔身风压,可降低塔重7%~9%;从经济角度上讲,使用Q42O高强钢可节省整体造价3%~7%[2]。
因此,Q42O高强钢在国家电网公司“两型三新”输电线路建设中得到大力的推广应用。
1 Q420钢的焊接性1.1 焊接性的概念金属焊接性是指材料在一定的焊接工艺条件下焊接成按规定设计要求的构件,并满足预定服役要求的能力。
焊接性受材料、工艺、结构及使用条件4个因素的影响。
其内容包括2个方面:一是金属在经受焊接加工时获得优质焊接接头的能力,即工艺焊接性;二是焊成的接头在使用条件下可靠运行的能力,即使用焊接性。
Q420GJC钢板420GJC钢板焊接要点
Q420GJC钢板420GJC钢板焊接要点420GJC钢板是一种高强度钢板,具有优良的焊接性能,在船舶、桥梁、建筑等领域被广泛应用。
焊接是将多个工件通过熔化和固化材料的方式连接起来,因此钢板的焊接质量直接影响到整体结构的强度和稳定性。
下面将介绍420GJC钢板焊接的要点。
1.材料准备:首先需要选购合格的420GJC钢板,并确保其表面没有明显的油污、腐蚀和杂质等。
焊接部位的附近应清理干净,确保焊接过程中没有杂物。
2.焊接工艺选择:420GJC钢板的焊接可采用手工弧焊、埋弧焊或气体保护焊等工艺。
选择合适的焊接工艺应根据具体的焊接需要进行评估,确保焊接质量。
3.焊接设备选择:选择适合420GJC钢板焊接的焊接设备和附件,如焊接电源、焊接电极、焊料和焊接辅助器具等。
确保焊接设备的质量和性能符合要求。
4.焊接焊缝准备:在进行420GJC钢板焊接前,应对焊缝进行准备。
首先进行坡口加工,常见的坡口形式包括直角坡口、V型坡口和U型坡口等。
然后对焊缝进行清洁处理,除去焊缝附近的氧化物、油污和杂质等。
5.焊接热输入控制:焊接时,需要控制热输入,避免过热和过度冷却。
过热可能导致钢板的烧损和变形,而过度冷却可能引起焊接接头的脆性。
因此,应合理控制焊接电流和焊接速度,避免温度超过420GJC钢板的热影响区。
6.焊接电流和焊接电压的选择:选择适当的焊接电流和焊接电压是确保良好焊缝形成的关键。
一般来说,焊接电流较大能够提供足够的热量,确保焊缝完全熔化;而焊接电压较低有利于焊接过程的稳定性。
在实际操作中,应根据材料的厚度、环境温度和焊接位置等因素进行调整。
7.焊接顺序:对于大面积的420GJC钢板焊接,焊接顺序的选择对于减小焊接应力和控制变形至关重要。
一般来说,从下至上进行焊接,从远离边缘的地方开始焊接,有助于减小热影响区域,降低应力和变形。
8.质量控制:焊接完毕后,应及时进行外观检查,检查焊缝是否饱满、无孔隙和裂纹等缺陷。
同时还需进行力学性能测试和非破坏性检测,以保证焊接质量符合要求。
电力铁塔用Q420高强钢加工工艺探讨
电力铁塔用Q420高强钢加工工艺探讨【摘要】Q420钢具有承载能力强、强度高的特点,已经广泛应用于输电线路铁塔设计中。
针对Q420钢加了如V、Nb、Ti等强烈碳化物形成元素,会对加工工艺造成影响。
本文从钢材的机械加工、焊接工艺、弯曲变形等方面,分析探讨Q420高强钢在电力铁塔中的加工工艺。
【关键词】电力铁塔;Q420高强钢;加工工艺;分析探讨随着电网建设的不断加强,塔重从单基重量1吨~2吨,发展到现在最大单基塔重约5999吨;塔高从几米发展到浙江舟山与内陆联网跨海工程跨越塔塔高约370米[1]。
高强钢具有强度高、承载能力强的特点。
采用Q420作铁塔的主材,不仅可以降低塔重,从经济上讲,使用Q420高强钢可以降低整体造价的7%~10%[2]。
因此,高强钢在超高压或特高压的电网建设中具有广阔的应用前景。
但由于Q420钢冶炼加了如V、Nb、Ti等强烈碳化物形成元素[3],会对机械加工、焊缝性能、弯曲变形造成影响。
为了保证的Q420高强钢的加工质量,作为铁塔制造企业必须对Q420高强钢的加工工艺进行探讨。
1.Q420高强钢机械加工工艺1.1 Q420高强钢的理化性能表1 低合金高强度结构钢Q420的化学性能表2 低合金高强度结构钢Q420的力学性能1.2 Q420高强钢机械加工要求从Q420高强钢的理化性能表可知,Q420钢综合力学性能不佳,强度虽高,但韧性、塑性较低。
焊接时,脆化倾向大。
冷热加工性尚好,但缺口敏感性较大。
因此业主对Q420钢的机械加工提出了要求,构件几何尺寸、外观及允许偏差除满足《输电线路铁塔制造技术条件》(GB/T2694-2010)外,Q420钢的加工必须采用钻孔工艺,角钢的下料通过带锯床来完成,目的是要通过钻孔来减弱缺口敏感性,来提高材料的使用机械性能。
1.3 Q420高强钢机械加工工艺试验通过Q420高强钢在角钢数控钻孔生产线加工、角钢数控生产线加工、剪板机剪切等加工工艺试验,得出了下表。
关于高强度钢Q420GJC焊接工艺及节点优化的研究 李军
关于高强度钢Q420GJC焊接工艺及节点优化的研究李军摘要:高强钢目前在建筑钢结构中使用的逐渐增多,“奥运鸟巢”、“世博”是高强钢建筑成功的案例,越来越多的高层建筑也使用高强钢进行制作。
在制作过程中,高强钢的焊接一直是一个制作难题,本文将对高强钢Q420GJC材料的焊接性进行分析,进而确定正确的焊接工艺措施作出研究。
关键词:高强钢、Q420GJC、焊接工艺、层状撕裂[Abstract] High-strength steel is used more and more in building steel structure nowadays. The "Olympic Main Venue" and "World Expo" are successful cases of high-strength steel building. Meanwhile, more and more high-rise buildings are made ofhigh-strength steel. Welding of high strength steel has always been a difficult problemin the manufacturing process. This paper will analyze the weldability of high strength steel Q420GJC, and then determine the correct welding process measures.[Key words] High-Strength Steel, Q420GJC, Welding Process, Lamellar Tear0 引言对于高强度钢的焊接工艺中,如何防止焊接冷裂纹的产生,焊接出合格的焊缝,一直是工厂生产制作中一个难题。
q420材料标准
q420材料标准Q420是一种低合金高强度结构钢,具有较高的强度和良好的焊接性能,广泛应用于建筑、机械、船舶等领域。
以下是对Q420材料标准的详细介绍:一、化学成分1.碳(C):≤0.20%2.硅(Si):≤0.55%3.锰(Mn):1.10~1.70%4.磷(P):≤0.030%5.硫(S):≤0.025%6.铝(Al):≥0.015%7.钛(Ti):≥0.020%8.铌(Nb):≥0.015%9.钒(V):≥0.015%10.氮(N):≤0.012%11.铜(Cu):≤0.30%12.其它元素:根据需要添加,但需符合相关规定。
二、力学性能1.屈服强度(σs):≥420MPa2.抗拉强度(σb):≥570MPa3.伸长率(δ5):≥18%4.冲击功(Akv):≥34J5.弯曲试验:180°无裂纹6.冷弯试验:180°无裂纹三、工艺性能1.焊接性能:Q420的碳当量较低,具有较好的焊接性能。
采用常规的焊接方法可获得良好的焊接接头,焊缝金属具有较好的塑性和韧性。
焊接前应进行预热,并控制层间温度不低于预热温度。
焊后应进行热处理以消除焊接应力。
2.热处理:Q420可采用正火、退火、回火等热处理方法,以改善组织结构和力学性能。
正火温度一般为930~950℃,空冷;退火温度一般为730~750℃,空冷或炉冷;回火温度一般为680~700℃,空冷。
3.切削加工性能:Q420的切削加工性能较好,可以采用常规的切削加工方法进行加工。
在切削过程中应注意控制切削速度和进给量,以避免产生加工硬化和降低刀具寿命。
四、应用范围Q420广泛应用于建筑、机械、船舶等领域,如高层建筑、桥梁、车辆、船舶、压力容器等。
它是一种低合金高强度结构钢,具有较高的强度和良好的焊接性能,能够满足各种复杂结构的设计要求。
在建筑领域中,Q420可以用于制造大跨度桥梁、高层建筑的结构梁和支撑杆等;在机械领域中,Q420可以用于制造重型机械和压力容器等;在船舶领域中,Q420可以用于制造船体结构和甲板等。
Q420高强钢焊接工艺的研究
Q420高强钢性能分析和焊接工艺研究张宇南通新华钢结构工程有限公司摘要:通过对低合金高强度结构钢的焊接影响因素的分析, 为制定合理的焊接工艺提供了依据, 应用该工艺保证了低合金高强度钢的焊接效果。
关键词:焊接性;影响因素;工艺引言自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb 、V 、Ti 等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢;(2)低合金高强度钢不再是“简易"生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。
高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能.如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。
1、焊接性试验的相关内容1.1 试验目的评价母材焊接性能的好坏,确定合理的焊接工艺参数。
1。
2 试验方法最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。
计算法(间接法):碳当量法、焊接裂纹敏感指数法。
B V Mo Ni Cu Cr Mn SiC Pcm H T Pcm Pc 510/15/60/20)/(30/60/600/++++++++=++=裂纹敏感指数 式中:g ml H mmT Pcm 100/%扩散氢含量,刚才厚度,开裂碳当量,---39214403.0-=︒>Pc C To Pc )(预热温度)有冷裂倾向(根部裂纹1。
3 焊接冷裂纹敏感性分析钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。
半自动CO_2气体保护焊焊接Q420钢工艺研究
12 . 12 .
CO2 CO2
1 8~2 O 1 8—2 0
1 0 ~l 0 5 7 l 0 —2 0 7 0
21~2 2 21~2 3
1 0~2 0 7 0 1 O~l O 3 6
1 ~2 9 2 1 ~2 9 2
3 .焊 接 工 艺 试 件 的 焊 接 焊接 工艺试 验用试 件有 1r 2 m、1m 两种 厚 度 。 a 6m 不 同厚度 的试 件按 照接 头 形 式 分 成对 接 接 头 和 T形 接 头两类 ,每 类 试 件 又按 照不 同焊 接 空 间位 置 分成 平 焊 、横 焊 、立 焊 。
2 4
宏观金相
报告编号
Q2 4 o—J x—O 2
冲击 吸 收 能 量 I . 4 1 / 18 2
10 2
评 定 结 果 :合 格
5
2
焊 缝
热 影 响 区
2 4
2 4
8 5
7 . 85
硬 度 试 验
报 告 编 号
Q2 4 o—YD— 2 O
4 6
3 4
荔
参 跏 工
R
5 焊 接 工 艺 试 验 试 样 的 制 备 .
不 同焊 接 接 头 形 式 和 板 厚 检 验 试 样 的 取 样 种
类 和 数 量 应 符 合 J J1中表 5 4 2 ( 表 5 的 规 G8 .. 见 )
定。
表 5 检 验类 别 和 试 样 数 量
有 弯 曲试 样 全 部符 合 标 准 要 求 , 图 4是 部分 T形 接
头 弯 曲试 验试 样 。
国家标 准 《 接 接 头 拉 伸 试 验 方 法 》 ( B一 6 1 焊 G 25 ) 的规定 。进 行 拉 伸 试 验 的 试 样 数 据 全 部 合 格 ,图 2
浅述输电线路Q420高强钢铁塔焊接工艺
浅述输电线路Q420高强钢铁塔焊接工艺摘要:Q420高强度钢含有一定的合金元素及微合金化元素,其焊接性能与碳钢有差别,主要是焊接热影响区组织与性能的变化对焊接热输入较敏感,热影响区淬硬倾向增大,对低合金钢高强度钢还存在再热裂纹的危险,本文通过对低合金钢高强度钢焊接工艺进行规范,以保证低合金钢高强度钢的焊接质量。
关键词:焊接准备;焊接方式;预热处理;焊接工艺;质量检验一、概述本文简述了输电线路高强钢铁塔制造中基本的焊接程序和技术要求,适用于输电线路高强钢铁塔制造中高强钢部件的焊接工艺。
适用于Q420高强钢及Q420高强钢与其他低级别钢材的焊接。
适用于焊条电弧焊、熔化极气体保护焊和埋弧自动焊等焊接方法。
二、焊接准备1焊接人员焊接Q420高强钢的焊工,应经过Q420高强钢焊接专项技术考核,取得相应的资格证书后。
2焊接设备焊接设备及辅助设备的容量应满足焊接规范参数的要求,并处于正常工作状态,用于参数记录的仪表、气体流量计等应校准。
3材料(1)钢材。
对Q420钢材应进行复验,钢材的外观质量应符合有关标准及设计要求。
(2)焊接材料。
焊接材料的化学成分和力学性能应与Q420钢相当,焊接工艺性能良好;Q420与其他低级别钢材焊接时,焊接材料宜选用成分与钢材级别低的一侧相配的或成分介于两者之间的焊丝或焊条。
4施焊环境(1)Q420高强钢以及Q420高强钢与其他低级别钢材焊接时,作业区的环境温度不得低于5℃,相对湿度不得大于90%,否则应采取预热措施。
(2)施焊前必须将焊接处两侧20-30mm范围内的铁锈、油污、水等清除干净,直至露出金属表面为止。
三、焊接方式1焊接方式可采用手工电弧焊、熔化极气体保护焊、埋弧自动焊等。
四、低合金高强度钢焊接前预热处理对需焊接的Q420低合金高强度钢原材料,在焊接前应进行焊前预热处理,预热可采用火焰加热局部预热的方式,预热温度宜控制在50℃~80℃,在焊接过程中均应处于这一温度范围,预热宽度从对口中心开始,每侧不少于焊件厚度的3倍,且不少于100mm。
Q420高强钢焊接实用工艺地研究
Q420高强钢焊接实用工艺地研究钢焊接是工程结构中常用的连接方式之一,钢材的焊接质量直接影响到结构的强度、刚度和耐久性。
而高强钢焊接则是指抗拉强度大于420MPa的钢材的焊接。
为了确保高强钢焊接工艺的可行性和有效性,需要进行实用性研究。
首先,高强钢焊接工艺地研究需要对材料性能进行了解。
钢材的成分、含碳量、硬度等会直接影响焊接性能。
因此,在研究过程中需要分析材料的总体性能和化学成分,选择合适的焊接材料和焊接工艺以实现高强钢焊接。
其次,高强钢焊接工艺地研究需要对焊接方法和设备进行优化。
传统的焊接方法如手工电弧焊、埋弧焊等在高强度钢焊接中会出现焊缝裂纹、氢致冷脆等问题。
因此,需要考虑采用先进的焊接方法如熔化极气体保护焊(GMAW)、数控焊接等来提高焊接质量和效率。
同时,对焊接设备进行优化,选择合适的焊接电流和电压,以实现高强钢焊接的要求。
此外,高强钢焊接工艺地研究还需要关注热处理和焊后处理。
高强度钢焊接后容易产生焊接变形和残余应力,这对结构的稳定性和持久性产生不良影响。
因此,需要在焊接完成后进行热处理和焊后处理,以消除焊接应力,提高结构的强度和耐久性。
最后,高强钢焊接工艺地研究还需要进行焊接质量和性能的检测。
采用金相显微镜、扫描电子显微镜等对焊接接头进行组织和微观缺陷的观察,通过拉伸试验、冲击试验、硬度测试等对焊接接头的力学性能进行评估。
通过检测结果评估焊接质量,优化焊接工艺。
综上所述,高强钢焊接实用工艺地研究需要对材料性能进行了解,优化焊接方法和设备,关注热处理和焊后处理,并进行焊接质量和性能的检测。
这些工作可以为高强钢焊接提供可行和有效的工艺。
国产高强度钢Q420C焊接工法
国产高强度钢Q420C焊接工法国产高强度钢Q420C焊接工法一、前言随着国家经济的逐步发展,建筑、船舶、机械等领域对于高强度钢材的需求越来越大。
高强度钢材具有优异的机械性能、重量轻、耐腐蚀等特点,可以提高产品的质量、效率和可靠性。
国产高强度钢Q420C是一种优质的高强度结构钢,广泛应用于工程机械、汽车、船舶、桥梁等领域。
为了更好地应用该钢材,本文着重介绍Q420C的焊接工法。
二、Q420C钢的特点Q420C钢的化学成分和力学性能如表1所示。
表1 Q420C钢材的化学成分和力学性能|成分/性能|值||:-:|:-:||化学成分(%)|C≤0.20、Si≤0.60、Mn≤1.70、P≤0.030、S≤0.025、Nb≤0.07、V≤0.20||力学性能|屈服强度≥420MPa、抗拉强度≥520MPa、伸长率≥20%、收缩率≥20%、冲击值≥34J|Q420C钢材的高强度、高韧性、高塑性、高耐久性等特点,使其成为一种独特的结构钢。
与传统的Q345C钢材相比,Q420C钢材具有更高的强度和更好的塑性。
但是,Q420C钢材的焊接性能较差,需要注意焊接工艺。
下面将介绍Q420C钢材的焊接工法。
三、Q420C焊接工法Q420C钢材的高强度和低含碳量使它的热影响区(HAZ)易于产生硬化,容易导致焊缝开裂。
因此,必须选择正确的焊接电极、焊接工艺,以保证焊缝的质量。
1. 选择适合的焊接电极目前,在焊接Q420C钢材时,可选择如下的焊接电极:(1) 碳钢焊条:通常用于一般钢结构的焊接。
但由于Q420C钢材的高强度和高含碳量,碳钢焊条容易产生焊缝开裂的现象。
(2) 高强度低合金钢焊条:通常用于高强度钢材的焊接。
铬、钼、钛等元素的加入可以提高焊接电极的强度和韧性,解决焊缝开裂的问题。
但由于Q420C钢材中含有铌和钒等元素,建议不选用此类焊接电极。
(3) 低合金钢焊条:通常用于焊接船舶、桥梁和工程机械等高强度结构的钢材。
低合金钢焊条中含有铬、钼等元素,可以提高焊缝的强度和韧性。
Q420高强度钢板焊接工艺性能研究
裴广 州 ( 晋煤 金鼎 金沁 公司)
摘要 : 在对凤凰山矿井下所使用的电机护罩用高强度钢板 Q 4 2 0的 热 量通 过 拉伸 试 验进 行确 定 , 在 焊 接 过程 中以 5 % 数量 级
电 阻点 焊 工 艺 性 能进 行深 入 研 究 中 ,对 不 同 工 艺 条件 下 点 焊 接 头 宏 进行 取样 焊 接 , 发生 飞溅 时停 止对 Q4 2 0焊 接 。 同 一焊 接 观金相 焊接接头力学性能进行 了分析 , 研 究结果表明 : 该实验条件
本 文 通 过 采 用 单 脉 冲 规 范 对 焊接 时间 为 7 c y c 、 1 0 c y c 、 1 5 c y c 、 2 0 c y c 、 2 4 c y c 。 通过 点焊 工 艺和 接头 拉剪 试 验 对 不 同焊 接 电流 下 的点 焊 接 头 的拉 Q4 2 0进 行 点 焊 工 艺试 验 。 电极 压 力 为 3 5 0 k g f 、 4 0 0 k g f 、 4 5 0 k g f , 焊接 时 间为 7 c y c 、 1 0 c y c 、 1 5 c y c 、 2 0 c y c和 2 4 c y c 。 剪 断裂载 荷 进行 测试 。通 过 对 实验结 果 进行 分析 可知 : 接 在进 行 每组 试验 的过 程 中 ,固定 电极 压力 和 焊接 时 间 , 通 头 的拉 剪 断 裂强 度 随着 焊接 电流 的增 加 呈 上 升 趋 势 。但 断裂 强度 随着 电流 的 不断增 大而 达 到最 大值 , 此 时 随 过 改 变 型控 DI N 1 0 0制器 的焊接 热 量 ( 功率 输 m 百 分 比) 是 , 进 而 改变 焊接 电流 的 大小 , 对Q 4 2 0进行 焊 接 。最 小 焊接 着 电流 的增 加 , 断 裂强 度 出现 下 降 , 而 这 时 的拉 剪 断 裂 强
Q420CO2焊接工艺评定报告
φ1.2
DC-
200~250
20~30
250~330
施焊技术
无摆动焊或摆动焊
有摆动
连弧或断弧焊
连弧焊
运条方式
等速送丝
根层或层间清理方法
砂轮机打磨
清根方法或单面焊双面成型
单面焊双面成型
焊嘴尺寸mm
……
导电嘴与工件距离mm
……
其他
……
预热
预热温度
……
宽度mm
……
层间温度℃
……
预热保持方式
……
接头种类
对接接头
对口简图:焊道简图
坡口型式
V型坡口
衬垫及其材料
……
焊道设计
V形坡口单面MAG焊,多层多道焊
焊缝金属厚度
16mm
填充材料和保护气体
焊接材料
焊丝型号
ER55-G
规格
φ1.2
保护气体
气体种类
Ar80%+ CO220%
流量
18L/min
焊条(剂)型号
……
规格
……
背面保护
……
流量
……
钨极型号
……
钢材焊接性
良好(Ceq=0.393%)
验证资料编号
07810
接头型式及焊道设计
接头种类
对接接头
对口简图:焊道简图:
坡口形式
V形坡口
衬垫及其材料
……
焊道设计
V形坡口单面MAG焊,多层多道焊
焊缝金属厚度
16 mm
焊接方法
种类
MAG(Ar80%+ CO220%)焊
自动化程度
手工
国产高强度钢Q420C焊接施工工法
国产高强度钢Q420C焊接施工工法一、前言国产高强度钢Q420C是一种新型的结构钢材料,在现代化建筑和工程中得到了广泛的应用,作为一种高性能钢材,其性能表现非常出色。
然而,在使用过程中,对其焊接施工工艺有着非常严格的要求。
本文将着重介绍国产高强度钢Q420C的焊接施工工法,对其特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例等方面进行详细的介绍,以便于读者了解该工法的理论依据和实际应用。
二、工法特点国产高强度钢Q420C焊接施工工法有以下几个特点:1. 技术难度高:由于Q420C钢材具有较高的强度和韧性,焊接过程需要特别注意施工原理,避免出现裂纹或变形等问题。
2. 施工工艺复杂:由于国产高强度钢Q420C的高强度特性,施工工艺需要特殊设定。
焊接时需要控制温度和速度,避免出现焊缝质量不达标的问题。
3. 要求严格:对于焊缝材料的选用、焊接参数、工艺流程等要求非常严格,否则将会对焊接品质产生极大的影响。
三、适应范围Q420C焊接施工工法适用于以下领域:1. 大型建筑结构的焊接。
2. 能源和交通领域中的钢结构焊接,如桥梁、石油化工厂等。
3. 其他高强材料的焊接加工等。
四、工艺原理Q420C焊接施工工法的技术难度十分高,需要经过认真分析和技术措施设计,才能够保证施工品质的稳定和成功。
根据Q420C钢材的特点,采取以下技术措施:1. 材料选择。
首先需要选用合适的焊接材料和设备,用于对焊接实验进行控制和实践。
2. 设计工艺。
焊接工艺需要根据项目实际情况进行设计,包括焊接参数和流程,以确保施工品质的质量。
3. 过程控制。
焊接过程中应该严格控制温度和速度,以避免出现焊缝质量不达标的问题。
5. 施工工艺Q420C焊接施工工艺需要注意以下几个方面:1. 焊缝准备。
首先需要对焊缝进行准备,确保其表面平整、均匀,并且未被严重损坏。
2. 焊接流程。
采用TIG焊接技术,控制好焊条的焊接参数,并严格按照施工工艺流程进行焊接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q420高强度钢板焊接工艺性能研究
摘要:在对凤凰山矿井下所使用的电机护罩用高强度钢板q420
的电阻点焊工艺性能进行深入研究中,对不同工艺条件下点焊接头宏观金相、焊接接头力学性能进行了分析,研究结果表明:该实验条件下,最佳点焊工艺参数为:焊接电流7.5~8.0ka,焊接时间20cyc,电极压力450kgf。
为了防止发生焊接缺陷,避免焊接电流过小或者焊接时间过长,导致锻压力不足等现象,在焊接过程中需要保持电极和工件表面的清洁。
关键词:q420钢电阻点焊焊接工艺缺陷防止
0 引言
q420钢具有较高的碳当量,焊后硬化可能性更高。
因此,许多先进煤机制造企业密切关注着其焊接性能。
鉴于此,为了探讨不同点焊工艺参数下q420的焊接性能,本文通过点焊工艺和力学性能试验等对凤凰山矿井下电机护罩所用的q420钢进行研究分析,进而对q420钢合理的点焊规范参数范围进行确定。
1 实验方法
1.1 设定焊接参数本文通过采用单脉冲规范对q420进行点焊工艺试验。
电极压力为350kgf、400kgf、450kgf,焊接时间为7cyc、10cyc、15cyc、20cyc和24cyc。
在进行每组试验的过程中,固定电极压力和焊接时间,通过改变型控din100制器的焊接热量(功率输m百分比)进而改变焊接电流的大小,对q420进行焊接。
最小焊接热量通过拉伸试验进行确定,在焊接过程中以5%数量级进行
取样焊接,发生飞溅时停止对q420焊接。
同一焊接热量,通常情况下要进行2-3次的取样。
由于焊件和电极表面状态存在差异,在一定程度上造成电流值大小的不同,由于这些微小的变化对试验不构成影响,所以在较小范围内可以忽略不计。
1.2 力学性能实验通常情况下,借助接头强度来反映点焊接头质量的好坏,然而一般采用拉伸剪切强度对接头强度进行评定。
因此,本文通过利用拉剪试验对点焊工艺试验后的试样进行试验。
在试验过程中,根据gb2651-81《焊接接头拉伸试验法》中的相关规定,确定拉剪试样的形状与尺寸。
2 试验结果与分析
2.1 工艺参数对焊点性能的影响
2.1.1 焊接电流。
按照焊接规范,电极压力选450kgf,焊接时间为7cyc、10cyc、15cyc、20cyc、24cyc。
通过点焊工艺和接头拉剪试验对不同焊接电流下的点焊接头的拉剪断裂载荷进行测试。
通过对实验结果进行分析可知:接头的拉剪断裂强度随着焊接电流的增加呈上升趋势。
但是,断裂强度随着电流的不断增大而达到最大值,此时随着电流的增加,断裂强度出现下降,而这时的拉剪断裂强度基本保持不变。
其原因是:受焊接电流较小的影响,导致热量不足,造成焊点金属没有完全熔融,那么形成的熔核尺寸也就相对较小。
此时,熔核断裂成为主要的接头断裂形式,那么拉剪载荷强度也就较小。
在断裂强度达到最大值后,熔核区因电流的增加进而导致金属过热,熔核的质量受到影响,接头强度从而降低。
2.1.2 焊接时间。
为了明确焊接时间对q420点焊接头性能的影响程度,调整电极电压为400kgf,同时焊接电流分别设为6.5ka、7.0ka、7.5ka、8.0ka和8.5ka,对焊接时间进行调整,同时进行点焊试验。
通过分析实验结果可知:接头性能受焊接时间的影响总体趋势方面与焊接电流相类似。
2.1.3 电极压力。
当焊接时间为20cyc时,设置焊接电流为7.0ka、7.5 ka、8.0ka,如图1 所示,点焊接头的拉剪强度与电极压力的关系。
从图中可以看出,拉剪强度相对较高时对应的电流为7.5ka 和8.0ka,剪断裂载荷在电极压力为450kgf时要偏大些。
另外,曲线的变化在焊接电流为7 .5 k a时较为明显,在450~500 kgf时拉剪断裂强度明显下降,其原因是:电极压力过大导致电阻值减小,进而产生析热量减少,熔核尺寸缩小,熔核率下降等一系列反应,点焊接头的力学性能在一定程度上明显降低。
在增加电极压力的前提下,通过调整焊接电流的强度或者延长焊接时间,进而确保焊接区的加热程度。
2.2 q420点焊参数规范对q420钢板进行点焊的过程中,通过分析上述试验结果可知,焊接电流和焊接时间是影响点焊接头力学性能的主要因素,而电极压力的影响并不显著。
在加工电机护罩的过程中,考虑到产品的表面质量,需要对焊点压痕的深度进行控制。
所以,在电极压力为450kgf时进行q420点焊效果最佳。
2.3 q420点焊缺陷及防止
2.3.1 未熔合。
如图2(a)所示。
所谓未熔合是指金属母材出现
局部未熔化的现象。
其原因是:焊接电流过小或者焊接时间较短,焊接热量严重不足。
一般情况下,通过增加焊接电流的强度或者延长焊接时间等进行改善。
2.3.2 缩孔。
如图2(b)所示。
焊接过程出现缩孔的主要原因是:大电流条件下冷速过快,锻压力不足。
处理措施为:在进行焊接操作前,增加电极的强度,清理工件表面的杂物,保持表面的整洁,防止发生飞溅。
在焊接过程中,通过增加电极的压力,在一定程度上能够避免出现缩孔。
2.3.3 流浆现象。
如图2(c)所示。
在对q420钢板进行焊接的过程中,电极接头与钢板之间随着焊接电流的增大而出现沾粘。
主要原因是,在q420钢板内,合金度比较高、晶粒比较细、铁原子活动比较频繁。
进而出现随着电流的不断增大,焊接时间的延长,输入热量的增多,导致电极接头与钢板表面出现沾粘。
3 结论
3.1 q420高强钢板的接头性能受焊接电流和焊接时间的影响程度比较明显。
所以,通过调整焊接电流的强度,或者对焊接时间进行延长,焊点的强度在一定程度上都能够增加;电极压力对焊点性能的直接影响较小,通常情况下焊接电流区间随电极压力的增大而增大,同时电流值明显增加。
3.2 通过对试验结果进行分析,对q420钢板进行焊接的电流在5.5~8.5ka,其中电流在7.5~8.0ka焊接效果最好,另外,在电极压力为450kgf左右,以及焊接时间在20cyc的情况下进行焊接,
效果也较为理想。
3.3 对q420钢板进行焊接时,如果焊接电流过小,焊接时间过短,未熔合现象容易在接头处出现;如果焊接电流过大或者锻压力不够,容易发生缩孔。
因此,对q420钢板进行点焊时,需要确保电极和工件的清洁度,避免出现焊接电流和焊接时间过小或过长以及锻压力不足等。
参考文献:
[1]marya m,gayden x q.development of requirements for resistance spot welding dual-phase ( dp600)steels:part 1.the causes of interfacial f racture[j].welding journal,2005,84(11):172-182.
[2]shi g,westgate s a.resistance spot welding of high strength steels[j].international journal for the joining of materials,2004,16(1):9-14.
[3]agashe s,zhang h.selection of schedules based on heat balance in resistance spot welding[j].welding journal,2003(7):179-183.
[4]张梅,李麟,符仁钰.相变诱发塑性钢可焊性初探[a].第八次全国热处理大会论文集e京:机械工业出版社,2003:613-616.
[5]赵熹华.压力焊[m].北京:机械工业出版社,1983:38-39.
[6]王亚荣,张忠典.镁合金电阻点焊接头中的缺陷[j].焊接学报,2006,27(7).。