25W反激电源的设计

合集下载

反激式开关电源的设计—毕业设计说明

反激式开关电源的设计—毕业设计说明

毕业设计说明书反激式开关电源的设计专业 电气工程及其自动化学生姓名 伊利优酸乳班级 XXXXXX学号 XXXXXX 指导教师 XXXXXX完成日期 2XXXXXXXXX反激式开关电源的设计摘要:各种电子设备中,有一个不可或缺的组成部分,那就是电源。

反激式开关电源的设计阐述了反激式开关电源的工作原理;通过方案的对比,选择出了用电流控制型PWM技术;最后详细介绍了利用TOPSwitch 器件设计开关电源的设计过程。

TOPSwitch器件是近代出现的芯片,它有很多功能,如对过流,过热进行保护,能自动重启等。

对TOPSwitch-GX 的工作原理进行了理解,对内部结构进行了分析,对以TOP244Y为控制核心的反激式开关电源进行了设计。

设计出的采用此芯片的反激式开关电源的外围电路很简单,所用元器件少,性能指标高,价格低,有较高的集成度,很有实用价值。

该芯片的开关频率为132kHZ。

设计电路的开关电源输出功率为25W时,可以实现12V/1.2A,5V/2A和30V/20mA三路直流电压输出。

另外,还设计了外围电路,并对此进行了分析。

高频变压器的设计是重点,对磁心,线圈匝数进行了选择。

用此开关电源不但可以使外围电路器件大大减少,成本降低,还能使可靠性大大提高,正常工作时,可以提供多路输出,能在家电、IT等领域被广泛应用。

关键词:开关电源;反激式变换器;TOPSwitch-GX;高频变压器The Design of Single-end Flyback Switching Power SupplyAbstract: There is an integral part of a variety of electronic devices, and that is power. Flyback switching power supply design elaborated flyback switching power supply works; contrast through the program, select a current-controlled PWM technology used; finally describes the use of TOPSwitch device design of switching power supply design process. TOPSwitch device is the modern appearance of the chip, it has many features, such as over current, over temperature protection, can automatically restart and so on. The working principle of TOPSwitch-GX are understood, the internal structure is analyzed, based on TOP244Y has been designed for the flyback switching power supply control center. The use of this chip design flyback switching power supply external circuit is very simple, the use of fewer components, high performance, low price, have a higher degree of integration, very practical value. Theswitching frequency of the chip 132kHZ. Design of circuit switching power supply output power of 25W, you can achieve 12V/1.2A, 5V/2A and 30V/20mA three-way DC voltage output. In addition, the design of the peripheral circuits, and this analyzed. High-frequency transformer design is the key, right core, coil turns is a selection. With this switching power supply can not only greatly reduce the peripheral circuit components, cost reduction, but also to greatly improve the reliability, normal working hours, you can provide multiple outputs in home appliances, IT and other fields are widely used.Key words: Switching power supply;Fly-back converter;TOPSwitch-GX;High frequency transformer目录1 概述 (1)1.1 课题来源及基本技术要求 (1)1.2 设计内容及设计思路 (1)1.3 预期成果及其意义 (2)2 反激式开关电源方案比较与选择 (2)2.1反激式开关电源介绍 (3)2.2 反激式开关电源的方案比较与选择 (3)3 基于TOP244Y芯片的单端反激式开关电源的设计 (7)3.1 TOPSwitch-GX芯片简介 (7)3.2 基本参数确定 (8)3.3 高频变压器设计 (9)3.4 输入整流滤波电路的设计 (13)3.5 钳位保护电路的设计 (14)3.6 输出整流滤波电路的设计 (15)3.7 反馈整流滤波电路设计 (17)3.8 反馈电路设计 (17)3.9 TOPSwitch-GX芯片的外围设计 (21)4 结束语 (20)参考文献 (21)致谢 (24)附录 (23)附录1 反激式开关电源原理图 (26)附录2反激式开关电源PCB图 (28)附录3 反激式开关电源主要元件清单 (29)反激式开关电源的设计1 概述1.1 课题来源及基本技术要求1.1.1课题来源如今,开关电源在生活中的应用极其广泛。

25W反激电源的设计资料

25W反激电源的设计资料

25W反激电源的设计资料第一篇:25W反激电源的设计资料《电力电子技术》课程设计报告课题:25W反激电源的设计班级学号姓名专业学院指导教师淮阴工学院电子与电气工程学院2015年6月一、设计目的和要求1.1.1设计目的和任务:1、分析反激变换器工作原理,深入分析功率电路中各点的电压波形和各支路的电流波形;2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级,并给出所选器件的型号,设计变换器的脉冲变压器及滤波电容。

3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。

4、应用protel软件作出线路图,建立硬件电路并调试。

1.1.2设计要求:图1示出了反激变换器主电路和电路中关键波形,同正激电路不同,反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感。

通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。

要求学生掌握反激变换器耦合电感的设计并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,建立硬件电路并进行开关调试。

学生需要熟悉基于集成PWM芯片的DC/DC变换器的控制方法,并学会计算PWM控制电路的关键参数。

输入:36~75Vdc,输出:5Vdc/5AugOiD+DtontT+CuQui-QiQR-uoOiQOiDOiQmaxtt图1 反激变换器主电路及关键波形 1.2应用背景和研究意义随着电力电子技术的发展,开关电源的应用越来越广泛。

反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。

开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。

开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。

25W反激电源的设计

25W反激电源的设计

25W反激电源的设计在电子产品的设计中,电源是至关重要的部分之一。

而反激电源是一种常见的电源设计方案。

本文将介绍25W反激电源的设计原理和步骤。

反激电源是一种使用开关管的高效率电源,它以变压器为核心,通过开关管的开关操作,将输入电压转换为所需输出电压。

反激电源的设计非常重要,因为一个合理设计的电源可以提供稳定的电压和电流输出,保证电子设备的正常运行。

首先,设计25W反激电源需要明确输出电压和输出电流的需求。

这将直接影响到输入电压和变压器的选择。

假设我们需要输出电压为12V,输出电流为2A。

根据功率计算公式P=V*I,可以得到输出功率为24W。

考虑到电源的效率损失,我们选择25W的功率作为设计目标。

接下来,我们需要选择合适的变压器。

变压器是反激电源的核心部件,起到电压变换和隔离的作用。

在选用变压器时,需要考虑输入电压范围、输出电压和电流要求,以及变压器的效率和尺寸等因素。

通常,可以选择购买标准规格的变压器,也可以根据具体需求定制变压器。

在确定变压器后,我们需要设计开关电源的控制电路。

反激电源的可靠性和稳定性高度依赖于开关电源的控制电路。

控制电路通常由PWM控制芯片、反馈电路和驱动电路组成。

PWM控制芯片负责产生稳定的开关信号,反馈电路用于监测输出电压,驱动电路则将控制信号传递给开关管。

在设计控制电路时,需要注意反馈电路的设计。

反馈电路可以监测输出电压,并通过调整开关信号控制开关电源的输出。

常见的反馈电路包括基准电压源、比较器和误差放大电路。

通过合理调整反馈电路的设计参数,可以实现输出电压的稳定性和精度。

此外,还需要考虑保护电路的设计。

保护电路可以在输入电压异常或输出电流超过额定值时,及时切断开关电源,并对电子设备进行保护。

常见的保护电路包括过压保护、过流保护和短路保护等。

最后,进行电路板布局和元件选型。

布局时需要考虑信号传输、热量分布、元件之间的干扰等因素。

合理选型可以提高电源的工作效率和稳定性。

az25kW逆变焊接电源主电路设计

az25kW逆变焊接电源主电路设计
(2)滤波电容Cd的计算
如果把6次谐波脉动电压Ud(6)限制在 的范围内则:
(式中 Id(6) ────6次脉动电流有效值, ───市电网频率,当f =50Hz时, =314rad/s)
确定电解电容时,应首先考虑电网波动±10%,当输出整流输出电压为最低值为
90%U0= ;
且要保证输出功率则 Id(6) ;
(2.1)
整流滤波后电压为:
(2.2)
考虑电网电压波动(±10%波动)则整流滤波最高电压为:
(2.3)
整流滤波最低电压为:
(2.4)
电源输出功率为Pd=2kW,考虑设整流器、斩波器、逆变器的效率的都为%98,以及高频变压器的效率都为90﹪,并假设电源的功率因数为0.95,设计最大整流输出功率为:
(2.5)
②二极管的过电压保护:
整流二极管的过电压保护,通常是在二极管元件两端并联RC电路,如图所示。整流二极管过电压保护电路RC的选择:
电容
电容耐压 ,电阻R一般取R=10~30 ,对于整流管取下限值。其功率满足:
——二极管额定电流(A)
——整流输出额定电压(V)
——二极管两端电压峰值。
10
20
50
100
200
综合比较串联谐振逆变器和并联谐振逆变器的优缺点,从适合高频小功率应用的角度,本设计选用串联谐振逆变器电路拓扑。
2.2串联谐振式逆变电源稳压调节方式
因为电网电压波动10%,所以要通过稳压调节稳定高频变压器原流I10,从而稳定高频变压器输出电压使负载正常工作。串联谐振式逆变电源的调压主要方法是直流侧调压。直流调压通常采用相控整流或直流斩波来改变逆变器的输入直流电压的大小。
500
1000
0.1

反激式电源设计

反激式电源设计

如何设计返驰式隔离电源导言本文以FPS为例来介绍如何设计返驰式隔离电源。

设计电源供应器基本上是很花功夫的工作,需要对许多变量反复作演算与取舍。

我们列出并说明一步一步的设计程序期望使设计电源供应器能容易一些。

文章最后之辅助设计软件FPS Design Assistant包含本文介绍之相关计算式,可让设计过程更有效率。

如何设计FLYBACK隔离电源供应器图1是使用FPS(Fairchild Power Switcher)返驰式隔离电源转换器的基本线路图,本文并会以此为参考线路来说明如何设计FLYBACK隔离电源供应器。

因为运用整合MOSFET、PWM及其它周边线路于单一封装的FPS,比利用独立之MOSFET及PWM控制器来设计电源供应器要简单许多。

在设计电源供应器会考虑变压器之设计、输出滤波电感、输出与输入电容的选择及封闭回路补偿的计算。

因此我们按照图1之参考线路,依特定的步骤来设计我们所需之线路。

最后附录范例,则是利用此步骤而设计的辅助软件来帮助我们完成整个线路计算。

图1:基本的flyback隔离电源转换器设计步骤本文将以目前的参考线路来说明设计的步骤。

而几乎所有FPS其第一脚至第四脚的功能定义是不变的。

因此此参考线路适合大部份的FPS。

步骤1 决定系统规格:●输入电压范围(V line min及V line max)●输入交流电频率●最大输出功率(P out)预估的效率(ηeff):首先我们需要预估系统效率以计算最大输入功率。

当没有资料供参考时,一般我们会在低电压输出应用时,效率设在ηeff = 0.7~0.75。

在高电压输出应用时则设ηeff = 0.8~0.85。

●以预设的效率可算出输入功率为:若在多组输出的状况下,每组输出所占之比例系数为:其中P o(n)为第N组之最大输出,若电源供应器只有单组输出则K L(n) =1,考虑最大输入功率以选用适当的组件(如最适当的FPS)。

步骤2决定输入滤波电容容值(C DC)及其电压V DC之范围:最大V DC之涟波电压如下式:其中D ch是C DC电容充电工作周期如图2所示。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

(完整版)反激式开关电源的设计方法

(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。

做为设计开发、品质检验、生产测试等的依据。

2.2 设计线路图、零件选用。

2.3 PCB Layout.外形尺寸、接口定义,散热方式等。

2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。

2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

反激开关电源设计解析上

反激开关电源设计解析上
单击此处添加小标题
04
Y电容是指跨与L-G/N-G之间的电容器.
单击此处添加小标题
X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。 X电容容值选取是uF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。 安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。 作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。
反激开关电源特点
在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
共模磁芯的选择
从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。 因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。共模电感常用磁芯的μi约在2000~10000之间。

反激开关电源设计步骤

反激开关电源设计步骤

反激开关电源设计步骤一、初步规划1. 首先呢,你得确定这个反激开关电源的功率要求呀。

这就像是盖房子,你得先知道要盖多大的,对吧?功率确定了,才能进行后面的工作呢。

这一步看似简单,但可别小瞧它,要是功率定错了,后面可就麻烦大了!我每次做的时候都会多考虑一下,确保这个功率是符合实际需求的。

2. 接着呢,考虑输入电压范围。

是宽电压输入还是固定电压输入呢?这会影响到后面很多元件的选择哦。

一般来说,我会参考实际的使用环境来确定这个输入电压范围。

你是不是也觉得这一步很关键呀?二、元件选择1. 然后就是变压器啦。

变压器在反激开关电源里那可是相当重要的角色呢!选择的时候,要注意它的匝数比、电感量这些参数。

不过呢,这些参数不用特别精确地计算,大概差不多就行,当然也不能差太多哈。

我在选变压器的时候,会多找几个不同规格的对比一下,选一个最合适的。

2. 再就是开关管的选择啦。

这个开关管要能承受住电路中的电压和电流哦。

这一步我通常会花点时间去查看各种开关管的参数手册,找到最适合的那个。

你可千万别随便选一个就用,不然很可能会出问题的!三、电路设计1. 开始设计电路布局的时候,要把输入部分、输出部分还有控制部分合理地安排好。

这就像安排家里的家具一样,要让它们都呆在合适的地方。

这一步呢,每个人可能有不同的习惯,你可以根据自己的想法来安排,但是基本的原则还是要遵循的呀。

我有时候也会在这一步纠结一下,到底怎么布局才最好呢,哈哈。

2. 然后要设计反馈回路。

这个反馈回路可是保证电源稳定输出的关键呢!这一步要特别小心哦!我通常会再检查一次,真的,确认无误是关键。

如果反馈回路设计不好,电源的输出就会不稳定,那这个电源可就没法正常工作啦。

四、调试阶段1. 电路搭建好之后,就可以开始调试啦。

先给电路加上一个小的输入电压,看看有没有异常情况。

这时候你要特别留意有没有冒烟或者发出奇怪的声音之类的。

要是有,那肯定是哪里出问题了。

这一步其实还蛮简单的,但有时候我也会不小心漏掉哈所以大家一定要细心哦。

反激式开关电源的设计思路(附带设计图)

反激式开关电源的设计思路(附带设计图)

反激式开关电源的设计思路开关电源的思路:要实现输出的稳定的电压,先获取输出端的电压,然后反馈给输出端调控输出功率(电压低则增大输出功率,反之则减小),终达到一个动态平衡,稳定电压是一个不断反馈的结果。

一、整体概括
下图是一个反激式开关电源的原理图。

输入电压范围在AC100V~144V,输出DC12V的电压。

二、瞬变滤波电路解析
市电接入开关电源之后,首先进入瞬变滤波电路(Transient Filtering),也就是我们常说的EMI电路。

下图描述的是本次举例说明的瞬变滤波电路的电路图。

各个器件说明:
F1-->保险管:当电流过大时,断开保险管,保护电路。

CNR1-->压敏电阻:抑制市电瞬变中的尖峰。

R31、R32-->普通贴片电阻:给这部分滤波放电,使用多个电阻的原因是分散各个电阻承受的功率。

C1-->X电容:对差模干扰起滤波作用。

T2-->共模电感:衰减共模电流。

R2-->热敏电阻:在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的
浪涌电流。

当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。

三、整流部分
各个器件说明:
BD1->整流桥
L1、EC1、EC2->π型LC滤波电路,主要起的就是滤波,使输出的电流更平滑。

四、开关电源主体部分
开关电源的主题部分如下图:五、输出端滤波电路
下图是输出端滤波电路:。

25W反激电源的设计资料

25W反激电源的设计资料

25W反激电源的设计资料
一、输入参数和设计原理
本次反激电源的应用电压为220VAC,额定功率为25W,设计原理采用了半桥反激结构。

它包含了一个200V/50mA反激管,用来把输入的交流电压调整为5V;一个输出沟道MOSFET在调整电压中取代普通的功率可变电阻,并用以限制电流;一个压控管带有一个正交反激金属氧化物半导体(MOS)FET,以及一个内置的风扇,用以降低散热量;一个电压比较器用来比较拖桥反激输出电压与期望电压,如果不一致,就能调整电流以恒定输出电压,电压比较器输出电压随着反馈电阻、稳压范围和负载电流的变化而变化。

二、器件选择
(1)输入电源:220VAC
(2)反激管:20V/50mA。

(3)输出沟道MOSFET:IRF540N。

(4)压控管:TL431
(5)拖动电阻:R1=1KΩ,R2=2KΩ。

(6)风扇:12V/2.4W。

(7)电容:C1=1000μF/35V,C2=470μF/35V,C3=100μF/35V。

三、PCB设计
本次反激电源设计的PCB主要有电路板、电源模块和控制模块三部分组成。

(1)电路板:电路板上设置有220VAC的输入端口、压控管TL431、反激管、输出沟道MOSFET和相应的接线端口,以及电容C1、C2、C3和拖动电阻R1、R2,全部按照原理图设计。

反激式开关电源设计

反激式开关电源设计

反激式开关电源设计反激式开关电源(Flyback Switching Power Supply)是一种常见的开关电源拓扑结构,广泛应用于各种电子设备中。

它具有体积小、效率高、成本低以及输出功率可调等优点,是现代电子产品中常见的电源设计方案之一反激式开关电源的基本工作原理如下:输入电压通过输入滤波电容进行滤波处理后,经过输入电阻和整流二极管进入变压器的一侧,经过一定的变换比转化为高压脉冲,在一段时间内使得磁场存储能量。

然后,纳秒级的开关管被打开,导通磁漏感能量在负载中释放,给负载提供电能。

在变压器中,输出输出电压通过输出二极管、滤波电容等元件经过滤波处理后,提供给负载。

同时,负载电流的反馈信息通过反馈电路控制控制器,实现对输出电压的稳定调节。

1.输入电压范围:反激式开关电源应能适应不同输入电压,以保证电源的稳定输出。

2.输出电压范围:根据具体应用需求确定输出电压范围,可通过反馈电路和调节元件进行调节。

3.输出功率:根据负载的需求确定输出功率大小,确保负载能够正常工作。

4.效率:反激式开关电源的效率较高,设计时应尽量选择低损耗的元件和合适的电路结构,以提高整个系统的效率。

5.稳定性:设计时需要考虑输出电压的稳定性,可通过反馈控制和滤波电路等手段实现。

6.保护功能:考虑到电源在使用过程中可能遇到的过载、过压过流等问题,设计中应加入相应的保护电路,以保护电源和负载安全。

在具体的反激式开关电源设计过程中,需要按照以下步骤进行:1.根据负载的需求确定输入和输出电压,并计算所需的输出功率。

2.选取适合的开关管和变压器,根据输入和输出电压比计算变压器的变换比。

3.根据变换比确定合适的工作频率和占空比。

该步骤可通过电路仿真软件进行验证。

4.设计反馈控制回路,以控制输出电压的稳定性。

可选择基于电压模式或者电流模式进行控制。

5.根据设计参数选择合适的滤波电容和输出二极管等元件,以保证输出电压质量。

6.添加必要的保护电路,如过载保护、过压保护等,以保护电源和负载安全。

多路输出反激式开关电源电路图概述

多路输出反激式开关电源电路图概述

摘要电子设备对电源的要求日益增高,促进了开关电源技术的不断发展。

本文介绍了基于美国PI公司生产的单片开关电源芯片TOPSwitch系列设计的多输出的AC/DC开关电源。

该电源性能优良,具有稳压效果好,纹波小,负载调整率高等优点.可作为电机控制的电源模块,具有很高的应用价值。

设计电路选用TOPSwitch系列芯片的TOP244Y,该芯集成了PWM控制器、MOSFET功率开关管和欠电压、过电压等保护电路,芯片的开关频率为132kHZ,最大占空比为78%。

设计电路的开关电源输出功率为25W时,实现了12V/1.2A,5V/2A和30V/20mA三路直流电压输出。

论文介绍了开关电源相关内容,反激式开关电源的原理和应用技术,为电路设计提供了理论指导,并且提出了反激式开关电源的设计规划。

仔细分析反激式开关电源之后,选择了电路所需的元器件的型号和参数,最终完成电路图的设计。

关键词:开关电源;反激式;多路输出;TOPSwitch-GXAbstractElectronic devices demanded on power increasingly higher to promote the continuous development of converter technology. This paper introduced the small power multi output AC/DC converter design based on the chip of TOP-Switch produced by American company Power Integrations.This power supply has good performance such as high voltage stability,low output voltage ripple,good load adjustmentrate and so on . It can be used for motor control as a power module and has better application value.The converter design used TOP244Y as switching chip, which had PWM control circuit and power MOSFET, the chip’s switching frequency was 132 kHz, the maximum duty cycle was 78%. When the output power was 25W, switching power served three DC outputs 12V/1.2A, 5V/2A and 30V/20Ma.The paper introduced some related content about the converter and the theory and technology of fly-back converter, to provide a theoretical guidance for circuit design. And then the paper proposed a fly-back converter supply design plan. And next, I designed a fly-back switching power circuit, and selected circuit’s components and parameters.Keywords: Switching power supply;Fly-back;Multiple output;TOPSwitch-GX目次1 绪论能源在社会现代化方面起着关键作用。

基于UC3842的反激式开关电源设计

基于UC3842的反激式开关电源设计

第30卷第4期2011年8月Vol.30No.4Au g.201199 Journal of Sh andon g Un iversity of Scien ce and Tech nology N a t u r a l S c ie n c e基于UC3842的反激式开关电源设计房绪鹏,郭良兵,李春杰,孙小景(山东科技大学信息与电气工程学院,山东青岛266510)摘 要:采用安森美公司的电流控制型脉宽调制芯片U C3842为一款1kW 铅酸蓄电池充电器控制电路设计了输出功率为25W 的辅助电源。

根据文献[5]设计了U C3842的外围电路,分析了输出反馈控制回路用元器件参数的计算方法,并结合给定功率场效应管最大耐压值设计了反激式高频变压器,最后将按照设计参数制作的样机安装到充电器控制板上,充电器在满载状态下工作稳定。

实验结果表明:样机工作稳定可靠,具有良好的静态特性和动态特性。

关键词:反激;开关电源;高频变压器中图分类号:T M 433 文献标志码:A 文章编号:1672 3767(2011)04 0099 06Design of Flyback Switch Power Supply Based on UC3842FANG Xupeng,GU O Liangbing ,LI Chunjie,SU N Xiao jing(Colleg e of Infor mat ion &Elect rical Eng ineering,Shandong U niv ersity of Science andT echnolog y,Qing dao ,Shandong 266510,China)Abstract:In this paper ,a 25W auxiliar y po wer supply was desig ned w ith cur rent contr ol ty pe chip P WM IC U C3842made by A nsenmei Co.for the contr ol circuit of 1kW lead acid battery char ger.T he ex ternal cir cuit o f U C3842w asdesig ned accor ding to [5].T he calculating method o f com ponent parameter s used in output feedback contro l lo op w asanalyzed and a flyback high frequency tr ansfo rmer in accor dance with t he max imum V ds of M OSFET w as designed.Finally,the test data v erified that this prot oty pe 1kW char ger co uld wo rk stably under full load.Key words:f lyback;sw itch pow er supply;high fr equency tr ansfo rmer收稿日期:2011 03 11基金项目:山东省自然科学基金项目(ZR2009FM 017);中国博士后科学基金项目(20090461254);山东省博士后创新专项资金项目(200903034).作者简介:房绪鹏(1971 ),男,山东汶上人,副教授,博士后,主要从事电力电子与电力传动方面的研究.E mail:x pfang 69@.高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。

25W反激电源的设计

25W反激电源的设计

25W反激电源的设计在设计电源的过程中,25W反激电源是一种常见的选择。

它具有简单、高效、可靠的特点,适用于各种低功率设备的供电需求。

本文将介绍25W反激电源的设计原理、关键参数的选取以及常见问题的解决方法。

设计原理:25W反激电源是一种开关电源,采用反激变压器作为能量传递的介质。

其主要由输入滤波电路、整流电路、功率因数校正电路、开关电路和输出滤波电路等组成。

输入滤波电路主要用于滤除输入电源中的高频噪声和谐波,确保电源工作的稳定性和可靠性。

常见的输入滤波电路包括LC滤波电路和Pi 滤波电路。

整流电路采用二极管或整流桥等器件实现将交流输入转换为直流输出。

为了提高效率和减小体积,常采用高频整流,通常选择二极管整流。

功率因数校正电路用于提高电源的功率因数,减小对电网的污染。

常见的功率因数校正电路有直流电压反馈技术和谐振技术等。

开关电路是25W反激电源的核心部分,通过开关管和控制电路实现能量的开关和传递。

为了提高效率、减小体积和电磁干扰,常采用高频开关和PWM调制技术。

输出滤波电路主要用于滤除开关电路产生的高频噪声和谐波,确保输出电压的稳定性和纹波度。

常见的输出滤波电路包括LC滤波电路和Pi滤波电路。

关键参数的选取:在设计25W反激电源时,需要合理选择关键参数,以保证电源的性能和可靠性。

输入电压范围:根据实际应用需求和电网标准,选择适合的输入电压范围。

同时,需要考虑到电源的转换效率和功率因数,避免在输入电压过高或过低时产生不稳定的工作情况。

输出电压和电流:根据设备的功率需求和工作电压,选择合适的输出电压和电流。

在选择输出电压时,需要考虑设备的稳定工作范围和效率。

转换效率:转换效率是衡量电源性能的重要指标,它影响着电源的能耗和散热情况。

通过优化控制电路、选择高效率的开关管和变压器等方法,可以提高转换效率。

纹波和噪声:纹波和噪声是衡量电源稳定性的重要指标,对于一些对电源质量要求较高的设备,需要控制输出纹波和噪声的幅值和频率。

反激式开关电源的设计

反激式开关电源的设计

反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。

应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。

(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。

变压器的设计应根据输入电压、输出电压及负载电流等确定变比。

(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。

应根据设计要求选择合适的滤波器元件。

(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。

应选择满足设计要求的输出滤波器元件。

(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。

应根据具体设计需求选择合适的控制器和反馈电路。

(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。

(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。

3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。

(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。

(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。

(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。

(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。

总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。

合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。

其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。

变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。

绕线参数的计算要根据输入电压、输出功率和开关频率来确定。

磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。

2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。

其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。

选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。

设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。

设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。

3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。

其设计方法一般采用LC滤波器或电容滤波器。

LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。

电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。

4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。

其设计方法一般包括选择合适的保护元件和设计合理的保护电路。

选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。

设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。

以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。

同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。

多路输出反激式开关电源电路图

多路输出反激式开关电源电路图

摘要电子设备对电源的要求日益增高,促进了开关电源技术的不断发展。

本文介绍了基于美国PI公司生产的单片开关电源芯片TOPSwitch系列设计的多输出的AC/DC开关电源。

该电源性能优良,具有稳压效果好,纹波小,负载调整率高等优点.可作为电机控制的电源模块,具有很高的应用价值。

设计电路选用TOPSwitch系列芯片的TOP244Y,该芯集成了PWM控制器、MOSFET功率开关管和欠电压、过电压等保护电路,芯片的开关频率为132kHZ,最大占空比为78%。

设计电路的开关电源输出功率为25W时,实现了12V/1.2A,5V/2A和30V/20mA三路直流电压输出。

论文介绍了开关电源相关内容,反激式开关电源的原理和应用技术,为电路设计提供了理论指导,并且提出了反激式开关电源的设计规划。

仔细分析反激式开关电源之后,选择了电路所需的元器件的型号和参数,最终完成电路图的设计。

关键词:开关电源;反激式;多路输出;TOPSwitch-GXAbstractElectronic devices demanded on power increasingly higher to promote the continuous development of converter technology. This paper introduced the small power multi output AC/DC converter design based on the chip of TOP-Switch produced by American company Power Integrations.This power supply has good performance such as high voltage stability,low output voltage ripple,good load adjustmentrate and so on . It can be used for motor control as a power module and has better application value.The converter design used TOP244Y as switching chip, which had PWM control circuit and power MOSFET, the chip’s switching frequency was 132 kHz, the maximum duty cycle was 78%. When the output power was 25W, switching power served three DC outputs 12V/1.2A, 5V/2A and 30V/20Ma.The paper introduced some related content about the converter and the theory and technology of fly-back converter, to provide a theoretical guidance for circuit design. And then the paper proposed a fly-back converter supply design plan. And next, I designed a fly-back switching power circuit, and selected circuit’s components and parameters.Keywords: Switching power supply;Fly-back;Multiple output;TOPSwitch-GX目次1 绪论能源在社会现代化方面起着关键作用。

反激式开关电源设计详细流程

反激式开关电源设计详细流程

反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。

2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。

3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。

根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。

4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。

根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。

5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。

6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。

控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。

7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。

根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。

8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。

同时要考虑电磁兼容性(EMC)和热管理的问题。

9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。

10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。

11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。

12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设整流二极管口管压降0.7V,绕组压降为0.6V,则副边绕组
电 压值为(5+0.7+0.6)=6.3V.
原边绕组每匝伏数=(Vin-min)/Np=36/9=4V/匝
副边绕组匝数Ns=6.3/4=1.575匝≈2匝
(5) 计算选定匝数下的占空比辅助输出绕组匝数:
新的每匝反激电压是6.3/2=3.15V/匝
传统的反激式开关电源一般由PWM控制芯片(如UC3842)和功率开关管(频率较高时一般使用MOSFET)组成,PWM芯片控制环路设计复杂,容易造成系统工作不稳定,功率开关管有时需要外加驱动电路。高效率与小型化在一定程度上是互相限制的,因为实现高效率会要求电路有相当的复杂度,大量的器件对小型化十分不利。在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PCB版上实现,极大的限制了小型化实现的可能。而且大量器件暴露在外,也影响了系统的稳定性。
Ton=3.15Ts/(3.15+4)=8.8 s D=ton/Ts=0.44
(6) 磁芯气隙的大小:
原边 △I=3.57×2/9=0.79A
副边 △i=3.57A
Lp=Vs×△t/△I=0.4mH
Lg=0.05㎜
(7) 整流二极管的设计:
为了降低功耗,提高电源效率,选用肖特基整流二极管
id=3I0=3×5=15A
图 2 本质安全型单端反激变换器结构框图
单端反激变换器的主电路结构如图 3 所示。在图 3中,Vi为输入电压、Vo为输出电压、Io为输出电流、S 为开关管、L1、L2为储能电感、1Li 为流过电感 L1的电流、2Li为流过电感 L2的电流,D 为续流二极管、C 为输出滤波电容、RL为负载电阻。设开关周期为 TS,导通时间为 TON,则开关频率 f=1/TS,开关导通比 d=TON /TS。
另外,反激变压器的设计也是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表Байду номын сангаас新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwitch-HX设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,采用该系列芯片已成为一种高效的反激式开关电源设计方案。
3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。
4、应用protel软件作出线路图,建立硬件电路并调试。
1.1.2设计要求:
图1示出了反激变换器主电路和电路中关键波形,同正激电路不同,反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感。通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握反激变换器耦合电感的设计并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,建立硬件电路并进行开关调试。
二、单端反激变换器组成原理及其静态特性分析
2.1变换器组成框图和工作原理
隔离型单端反激变换器的本安结构框图如图 2 所示,其中依次由输入滤波电路、整流滤波电路、基于开关变换器的电压调节电路、多重限流限压电路等组成。
整流滤波:整流部分采用一般的全波整流电路;输入滤波一般采用单一电容滤波或采用 RC 滤波电路较好。滤波电容值不宜过大,因其大小也影响电源输出电路的本安性能,在满足滤波效果的情况下,越小越好;应尽量避免采用电感滤波或 LC 滤波电路,因该种滤波电路对输出本安的影响更为明显,因此本设计中采用单一电容滤波。
图5 初级反峰吸收电路
三、多路输出反激式开关电源系统级分析
3.1电源系统整体构架
本设计多路输出反激式开关电源系统级设计总体框架如图6所示,主要包括输入滤波电路、上电切换电路、反激变换电路、整流电路、输出滤波电路、控制电路、反馈回路等。
期间向负载传输能量。由于反激变换器的高频变压器除了起变压作用外,还相当于一个储能电感,因此,反激变换器也称之为“电感储能式变换器”或“电感变换器”。
2.3采用能量回馈技术的单端反激电路结构
采用能量回馈技术的单端反激电路结构如图3所示,其主要波形如图5所示。在本电路中,用电容C 2、电感L 1、二极管VD1和VD2组成变压器初级反峰吸收电路,可使大部分反峰能量回馈到输入电容C 1上,减少了能量损耗,提高了电路效率。
《电力电子技术》课程设计报告
课题:25W反激电源的设计
班级
学号
姓名
专业
学院
指导教师
淮阴工学院
电子与电气工程学院
2015年6月
一、 设计目的和要求
1.1.1设计目的和任务:
1、分析反激变换器工作原理,深入分析功率电路中各点的电压波形和各支路的电流波形;
2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级,并给出所选器件的型号,设计变换器的脉冲变压器及滤波电容。
2.3.1不同工作模式下的峰值电感电流
由于单端反激变换器的峰值电感电流与其工作模式密切相关,下面将对不同模式下的峰值电感电流进行深入的讨论和分析。
(1) CCM 下的峰值电感电流
当变换器工作在 CCM 时,电感的电流波形如图 4所示。
图 4 CCM 单端反激变换器的电感电流波形
反激变换器电路简单,无需磁场复位电路,在小功率场合应用广泛。缺点是磁芯磁场直流成分大,为防止磁芯饱和,磁芯磁路气隙较大,磁芯体积较大。反激变换器实际上就是带隔离的Buck-Boost变换器。反激变换器能量传输的时机与正激变换器正好相反,它是在开关关断
整流二极管的反向耐压:Vrm=2(V0+Vimax×Ns/Np)=43.3V
所以选用Fairchild公司的Vrm为45V,id为15A的肖特基二极管
2.3单端反激开关变换器的电感电流分析
电感电流是开关稳压电源的重要指标之一,电感电流的分析对电感的设计具有重要的指导意义,因此,下面对单端反激变换器的电感电流进行深入研究。
2.2相关参数计算
(1)选择磁芯的大小:ETD49
△B=0.2T f=50KHz Ae=211m㎡
(2)计算ton:
假设D=ton/Ts=0.5 fs=50KHz
Ts=1/fs=20 ton=DTs=10 (3)计算原边匝数:
Np=(Vin-min ton)/△Bac×Ae=8.5匝≈9匝
(4)计算副边匝数:
在开关管 S 断开期间,流过电感 L2的电流2Li 线性减小到零时下一个开通周期还没有到来,则会出现副边电感电流断续的状态。根据副边电感电流是否出现断续将电路的工作方式分为连续导电模式(CCM)和不连续导电模式(DCM)。
当变换器工作在 CCM 模式时,变换器输出、输入电压增益为
其中 d 为开关周期导通占空比,γ 为变压器的匝比 γ=N2/N1。根据文献[62],当变换器工作在 DCM 模式时,变换器的电压增益为
图 3 单端反激变换器的主电路图
当开关管 S 导通时,续流二极管 D 承受反向偏置电压而截止,流过电感 L1的电流1Li线性增加,储能电感 L1将电能转换成磁能储存在电感 L1中,此时,负载由输出滤波电容 C 供电;当开关管S 断开时,电流1Li 降为零,续流二极管 D 导通,储能电感 L1将能量通过互感传递给 L2,通过 L2释放能量,流过电感 L2的电流2Li 线性减小,在减小到 Io之前,电感电流一部分给负载供电,一部分给电容充电;减小到小于Io后,电容进入放电状态,负载由电感和电容共同供电,以维持输出电压和输出电流不变。
学生需要熟悉基于集成PWM芯片的DC/DC变换器的控制方法,并学会计算PWM控制电路的关键参数。
输入:36~75Vdc,输出:5Vdc/5A
图1 反激变换器主电路及关键波形
1.2应用背景和研究意义
随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。
相关文档
最新文档