高二下学期文科数学期末复习试题含答案
高二下学期期末考试数学(文)Word版含答案
θ-高二第二学期期末考试文科数学试卷命题人:高三文科数学备课组—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =( )A .{}1- B .{}1,0-C .{}1,3- D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =( )A .52B .32C 10D .63.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭( )A .13B .3C .13-D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012x x >( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是( )A .232- B .32C .D .127.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( ) A .6 B .10 C .91 D .928. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( )A. 4B. 6C. 8D. -99. 设曲线2()1cos ()f x m x m R =+∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为( )10.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对 应的函数恰为奇函数,则ϕ的为最小值为( )A .12πB .6πC .4πD .3π11.已知正三棱锥P-ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4π B.12πC.316πD.364π12. 已知函数2(1)(0)()2x f f f x e x x e '=⋅+⋅-,若存在实数m 使得不等式 2()2f m n n ≤-成立,则实数n 的取值范围为( )A. [)1-,1,2⎛⎤∞-⋃+∞ ⎥⎝⎦ B. (]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭C. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. [)1-,0,2⎛⎤∞-⋃+∞ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分aEDCAP13.已知向量(1,2),(,1)a b x ==,2,2u a b v a b =+=-,且u ∥v ,则实数x 的值是___.15. 已知点P (x ,y )在直线x+2y=3上移动,当2x+4y取得最小值时,过点P 引圆16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =⋅,则该椭圆的离心率为.三、解答题:本大题共6小 题 ,共70分.解答应写出文字说明,证明过程或演算步骤 17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足(1)求角C 的大小;(2)若bsin (π﹣A )=acosB ,且,求△ABC 的面积.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2) 若 o 60=∠ABC ,求三棱锥P ACE -的体积19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20. (本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的离心率为2,且过点⎛ ⎝⎭.(1)求E 的方程; (2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由. 21(本小题满分12分)已知函数f (x )=x 2+1,g (x )=2alnx+1(a ∈R ) (1)求函数h (x )=f (x )-g (x )的极值;(2)当a=e 时,是否存在实数k ,m ,使得不等式g (x )≤kx+m ≤f (x )恒成立?若存 在,请求实数k ,m 的值;若不存在,请说明理由.请考生在22〜23三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=. (1)求曲线C 的普通方程和参数方程;(2)设l 与曲线C 交于A ,B 两点,求线段||AB 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (1)当a=1时,解不等式f(x)>3;(2)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围.2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA 二、填空题13. 14.15. 16 .22三、 解答题17.解:(1)在△ABC 中,由,由余弦定理:a 2+b 2﹣c 2=2abcosC , 可得:2acsinB=2abcosC .由正弦定理:2sinCsinB=sinBcosC∵0<B <π,sinB ≠0, ∴2sinC=cosC ,即tanC=,∵0<C <π, ∴C=. (2)由bsin (π﹣A )=acosB , ∴sinBsinA=sinAcosB , ∵0<A <π,sinA ≠0, ∴sinB=cosB ,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分1233=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.……………9分 因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分1233=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分20. 解:(1)由已知得221314c a a b=+=, 解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k ---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=,所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t , 所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA二、填空题13. 14.15. 16 .2 2三、解答题17.解:(1)在△ABC中,由,由余弦定理:a2+b2﹣c2=2abcosC,可得:2acsinB=2abcosC.由正弦定理:2sinCsinB=sinBcosC∵0<B<π,sinB≠0,∴2sinC=cosC,即tanC=,∵0<C<π,∴C=.(2)由bsin(π﹣A)=acosB,∴sinBsinA=sinAcosB,∵0<A<π,sinA≠0,∴sinB=cosB,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分123=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA平面ABCD,所以CMPA⊥,又AADPA=,所以CM⊥平面PADE,所以CM是三棱锥C PAE-的高.……………9分因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分123=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分 20. 解:(1)由已知得221314c a a b=+=,解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=, 所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t ,所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分。
人教版高二数学下学期文科数学期末考试题及答案
人教版高二数学下学期文科数学期末考试题及答案------------------------------------------作者------------------------------------------日期符合题目要求.命题❽ , ❾的否定是✌. , . ,. , . ,.下列有关命题的说法正确的是✌.命题❽若 ,则 ❾的否命题为❽若 ,则 ❾.命题❽若 ,则 ❾的逆否命题是假命题.命题❽若 ,则 全不为 ❾为真命题.命题❽若 ❾,则 ❾的逆命题为真命题.抛物线 的焦点坐标为✌. . . ..已知正方体 中,点 为上底面 的中心,若 ,则 的值是✌. . . ..如图,在正方体✌✷✌中,☜是 的中点,则异面直线 ☜与✌夹角的余弦值为✌. . .过点 ,且与 有相同渐近线的双曲线方程是✌. . . ..❽方程 表示焦点在⍓轴上的椭圆❾的充分不必要条件是✌. . . ..已知 的顶点 、 分别为双曲线 的左右焦点,顶点 在双曲线 上,则 的值等于✌. . . . .已知抛物线 上的焦点 ,点 在抛物线上,点 ,则要使 的值最小的点 的坐标为✌. . . ..如图,已知正方形 的边长为 , 分别是 的中点, 平面 ,且 ,则点 到平面 的距离为✌. . . ..如图,椭圆 的四个顶点 构成的四边形为菱形,若菱形 的内切圆恰好过焦点,则椭圆✌. . . ..双曲线 的实轴长和焦距分别为✌. . . .第♋卷 共 分二、填空题:本大题有 小题,每小题 分,共 分,把答案填在答卷的相应位置.已知向量 , ,且 与 垂直,则 等于 ✉✉✉✉✉ .设 , 是椭圆 的两个焦点,点 在椭圆上,且 ,则 的面积为✉✉✉✉✉ .已知抛物线 , 为其焦点, 为抛物线上的任意点,则线段 中点的轨迹方程是✉✉✉✉✉ .有一抛物线形拱桥,中午 点时,拱顶离水面 米,桥下的水面宽 米;下午 点,水位下降了 米,桥下的水面宽 ✉✉✉✉✉ 米.如图,甲站在水库底面上的点 处,乙站在水坝斜面上的点 处,已知测得从 到库底与水坝的交线的距离分别为 米、 米, 的长为 米, 的长为 米,则库底与水坝所成的二面角的大小为 ✉✉✉✉✉ 度.已知平面 经过点 ,且 是它的一个法向量 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面 的方程是 ✉✉✉✉✉ 三、解答题:本大题有 题,共 分,解答应写出文字说明、证明过程或演算步骤.(本小题满分 分)在如图的多面体中, 平面 , , , , , , 是 的中点.☎♊✆ 求证: 平面 ;☎♋✆ 求二面角 的余弦值.(本小题满分 分)已知抛物线 与直线 交于 两点☎♊✆求弦 的长度;☎♋✆若点 在抛物线 上,且 的面积为 ,求点 的坐标.☎本小题满分 分✆已知双曲线 与椭圆 有相同的焦点,实半轴长为 ☎♊✆求双曲线 的方程;☎其中 为原点✆求 的取值范围.☎本小题满分 分✆如图,在平行四边形 中, ,将它们沿对角线 折起,折后的点 变为 ,且 . 学科网☎♊✆求证:平面 平面 ;☎♋✆ 为线段 上的一个动点,当线段 的长为多少时 与平面 所成的角为 ? 学科网.(本小题满分 分)如图,已知椭圆 , 是椭圆 的顶点,若椭圆 的离心率 ,且过点 ☎♊✆求椭圆 的方程;☎♋✆作直线 ,使得 ,且与椭圆 相交于 两点(异于椭圆 的顶点),设直线 和直线 的倾斜角分别是 ,求证: 参考答案一、选择题: - : ✌ ✌✌二、填空题:. . . . 三、解答题:.解 ☎♊✆证法一: , 又 是 的中点, ,四边形 是平行四边形, 平面 , 平面 , 平面 证法二: 平面 , 平面 , 平面 ,, ,又 两两垂直以点☜为坐标原点, 分别为 轴建立如图的空间直角坐标系 由已知得, ( , , ), ( , , ),( , , ), ( , , ), ( , , ), ( , , )设平面 的法向量为则 ,即 ,令 得 ,即 ☎♋✆由已知得 是平面 的法向量设平面 的法向量为 , ,,即 ,令 得 则 , 二面角 的余弦值为.解:☎♊✆设✌(⌧⍓✆、 ☎⌧⍓✆由 得⌧⌧法一:又由韦达定理有⌧⌧⌧⌧ ✌ 法二:解方程得:⌧或 , ✌、 两点的坐标为( ✆、( )✌☎♋✆设点 设点 到✌的距离为♎则✌ ❿ ❿ , ,解得 或点为( , )或( , ).解:☎♊✆设双曲线的方程为 故双曲线方程为 ☎♋✆将 代入 得由 得 且设 则由 得得又 , 即. ☎♊✆又 ,平面 平面(♋)在平面 过点 作直线 分别直线 为⌧,⍓, 建立空间直角坐标系 ⌧⍓则✌☎✆, ☎ ✆, ☎ ✆设 ,则 又 是平面 的一个法向量解得 ,即 时, 与平面 所成的角为 . 解:(♊)由已知得: , 椭圆 的方程为 (♋)由(♊)知: , ,故可设直线 的方程为 ,设 ,由 得,即 异于椭圆 的顶点, 。
高二下文科数学期末复习题及答案
高二下学期期末复习题文科数学一、选择题。
(本大题共12小题;每小题5分;满分60分;在每小题给出的四个选项中;有一项是符合题目要求的。
)1.在复平面内;复数sin 2cos2z i =+对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知0,0a b ≥≥;且2a b +=;则( )A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤ 3.设a R ∈;且2()a i i +为正实数;则a 等于 ( )A .2B .1C .0D .-14.设函数()1f x x x a =++-的图象关于直线1x =对称;则a 的值为 ( ) A .3 B .2 C .1 D .-15.下面的程序框图;如果输入三个实数a ;b ;c ;要求输出这三个数中最大的数;那么在空白的判断框中;应该填入下面四个选项中的 ( ) A .c x > B .x c > C .c b > D .b c>6.已知函数2,0,()2,0,x x f x x x +⎧=⎨-+>⎩≤则不等式2()f x x ≥的解集为 ( )A .[-1;1]B .[-2;2]C .[-2;1]D .[-1;2]7.已知平面a ⊥平面β; a l β= ;点A a ∈;A l ∉;直线AB l ∥;直线AC l ⊥;直线m α∥;m β∥;则下列四种位置关系中;不一定...成立的是( )A .AB m ∥ B .AC m ⊥ C .AB β∥D .AC β⊥8.设函数1()21(0)f x x x x=+-<;则()f x( )A .有最大值B .有最小值C .是增函数D .是减函数9.设直线m 与平面α相交但不.垂直;则下列说法中正确的是 ( )A .在平面α内有且只有一条直线与直线m 垂直B .过直线m 有且只有一个平面与平面α垂直C .过直线m 垂直的直线不.可能与平面α平行 D .与直线m 平行的平面不.可能与平面α垂直10.在平面直角坐标系xOy 中;满足不等式组1x yx ⎧⎪⎨<⎪⎩≤的点(,)x y 的集合用阴影表示为下列图中的( )11.如图;模块①∼⑤均由4个棱长为1的小正方体构成;模块⑥由15个棱长为1的小正方体构成.现从模块①∼⑤中选出三个放到模块⑥上;使得模块⑥成为一个棱长为3的大正方体;则下列选择方案中;能够完成任务的为 ( )A .模块①;②;⑤B .模块①;③;⑤C .模块②;④;⑤D .模块③;④;⑤12.若7,34(0),P a a Q a a a =+=++≥则P 、Q 的大小关系是( )A .P Q >B .P Q =C .P Q <D .由a 的取值确定二、填空题。
(完整版)高二下期末文科数学试题及答案,推荐文档
(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.
高二文科数学第二学期期末考试试题及答案
复习试卷.答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题.充分13.丁 142S?S=S ABC ΔΔΔBOCBDC n.3.15(n+1)(n+2) …(n+n)=2×1××…×(2n-1) 16 三、解答题2?)(1(1?tan A?tan B) 17.证明:由?tan A?tan?21?tan A4)?A?tan(?tan B??1??4?tan A1?tan A1A tantan1?4 (5)分可得??)Z k???A?k?(k?Z k)A?B???(B44即因为A,B都是钝角,?2B???A?,即?5??BA4所以10分.…………………………列联表如下:(Ⅰ)2218.解:及格不及格总计40 4 甲班 3640 24 16 乙班806020总计分………………62236)?24?16n(bcad?)?80?(429.6??K?6020?40?40?ac?)(b?d))((a?bc?d)((Ⅱ)20.005?7.879)(PK?由99.5%,所以有的把握认为“成绩与班级有关系”.…………………12分19.解:(Ⅰ)…………………2分11?????58x?4?5?6?3040?60?50?70?50?2y??55分...4,, (Ⅱ)50??1380?556.5?b?17.55???bx?50?6.5?ay25145?5?8分,…………………,y?6.5x?17.5.…………………10∴回归直线方程为分y?10?6.5?17.5?82.5y10x?分12.…………………的值为时,预报(Ⅲ)当20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE,则△ABE为直角三角形,,,∠AEB=∠ACB因为∠ABE=∠ADC=90 ,所以△ABE∽△ADC 则=,ADAE. =即ABAC ,AB=BC又分ADAE. …………………6所以ACBC=的切线,FC是⊙O(Ⅱ)因为2AFBF. =所以FC ,CF=6又AF=4,5.=BF-AFBF=9,AB=则,CFB=∠AFC因为∠ACF=∠CBF,又∠,AFC∽△CFB所以△…………………12分则=,即AC==. (2)坐标系与参数方程20.解析:(Ⅰ)直线参数方程可以化为的直线.…………………6分根据直线参数方程的意义,这是一条经过点,倾斜角为60xly(Ⅱ)直线=的直角坐标方程为+,yx+=即0-,22=1,ρ=2cos的直角坐标方程为+极坐标方程l所以圆心到直线的距离d==,AB12分2|==.所以|………………… 3)不等式选讲20.(??3f?x3|?|x-a3a+-3?x?a.得,解:(Ⅰ)由,解得1,??a?3????3f?x5,3?a?5}?-1?x{x|?2a=,所以又已知不等式解得的解集为………………….6分??????5)+fxf=(fxxx=|x-2|g+2=a,(Ⅱ)当时,,设3,?1,x??2x?????2,?x?3|=5,?x3=|x-2|+|x+g??2,1,x?2x??于是??????55gx??5gxx=g2???x2x-3-x?3.;当所以当;当时,时,时,??xg5.综上可得,的最小值为??m?xf+x5)+f(,从而若??m?xg x即对一切实数恒成立,m 12分则.…………………的取值范围为(-∞,5] 1)几何证明选讲21.(CAD. =∠解析:(Ⅰ)证明:由已知条件,可得∠BAE AEB因为∠与∠ACB是同弧上的圆周角,ACD.所以∠AEB=∠ 6分ADC. 故△ABE∽△…………………,所以=,(Ⅱ)因为△ABE∽△ADCADAE. ABAC即= ADAEBACS又=ABACsin ∠,且S=,ADAE. 故BAC∠=ABACsin=1,BACsin 则∠ BAC又∠为三角形内角,所以∠1290. =BAC…………………分)坐标系与参数方程21.(2222?????yx?y?2?sin22sin?,即(Ⅰ)可得22yx?y?2的直角坐标方程为.…………………6分所以曲线C42)y??(x?l3,(Ⅱ)直线的普通方程为(0,1)(2,0)y?0M2x?,又曲线令C,即,可得C的圆心坐标为为圆,圆5?MC1r?.,则半径1??r?5?MN?MC分.…………………12 21.(3)不等式选讲1?2x-1||101?x?-1?2x-1?. 解(Ⅰ)由,解得得??1??M=xx|0.…………………所以6分10?b?b?M0?a?1a,.)和,可知(Ⅱ)由(Ⅰ-)=(a+1)-(a+b1)(b-1)?0(ab所以.b?a+ab+1…………………12分故.1)几何证明选讲22.(BCMMCMBEE,连接90于点,则∠解析:(Ⅰ)延长,交圆=EBCBMBE30=4,∠,又==2ACBCAB=2,又∵,∴=BCAB.∴==2ABACAF9. ==由切割线定理知=3AF分=3. …………………6∴ADFEDHEEHBCH与△(Ⅱ)证明:过点于点作相似,⊥,则△EDAD 3分. …………………从而有==,因此12=)坐标系与参数方程22.(2?2cos x????222sin y?4x?y??可得)由(I,???2??????)??4?4sin(cos?(sinsin)cos333由得,22224?y?1)2x?y?y?x23x(?3)?(,整理得分即.…………………6CC3,1)((II)圆表示圆心在原点,半径为的圆,,半径为22的圆,圆表示圆心为21CC3,1)(在圆12分的圆心又圆上,由几何性质可知,两圆相交.…………………12)不等式选讲(322.4??4||x?2?|x|2?a,解:(I)当时,1??4x2?2x?6x?时,得;当,解得4<2<x4?2时,得当,无解;5?4x2x?6?x?4当,解得时,得;5}x??x1或{x|故不等式的解集为6分.…………………222}?a?a?x?aaa|x?|?a{x|)(II可解得,226}?2?x??a?x?aa}?{x||{xa?因为,2?a??2?a?2?a?1????26?a?a2??a?3???2a???1解得所以即,1a?又因为,2a??112所以.…………………分。
高二文科数学第二学期期末考试试题及答案
复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。
高二下学期期末考试数学(文)试卷 Word版含答案
高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。
高二第二学期期末文科数学练考卷(三)含答案解析
高二第二学期期末文科数学练考卷(三)含答案解析卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 已知i为虚数单位,则1−3i1−i=( )A.2+iB.2−iC.−2+iD.−2−i2. 下列关于不等式的结论中正确的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则ab >ba3. 现抛掷两枚骰子,记事件A为“朝上的2个数之和为偶数”,事件B为“朝上的2个数均为偶数”,则P(B|A)=()A.1 8B.14C.25D.124. 已知圆的方程为x2+y2−2y=0.以原点为极点,x轴正半轴为极轴建立极坐标系,该圆的极坐标方程为()A.ρ=−2sinθB.ρ=2sinθC.ρ=−2cosθD.ρ=2cosθ5. 已知函数f(x)=e x(−2x2+ax+b)(a,b∈R)在区间(−1,1)上单调递增,则a2+8b+16的最小值是()A.8B.16C.4√2D.8√26. (文)下列说法中正确的是()A.合情推理就是类比推理B.归纳推理是从一般到特殊的推理C.合情推理就是归纳推理D.类比推理是从特殊到特殊的推理7.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归方程是y ̂=0.7x +0.35,则实数m 的值为( ) A.3.5 B.3.85 C.4 D.4.158. 已知x 1>0,x 1≠1且x n+1=x n ⋅(x n 2+3)3x n2+1(n =1, 2,…),试证:“数列{x n }对任意的正整数n ,都满足x n >x n+1,”当此题用反证法否定结论时应为( ) A.对任意的正整数n ,有x n =x n+1 B.存在正整数n ,使x n ≤x n+1C.存在正整数n ,使x n ≥x n−1,且x n ≥x n+1D.存在正整数n ,使(x n −x n−1)(x n −x n+1)≥09. 函数f(x)=(x +a)e x 的一个极值点为−3,则f(x)>0的解集为( ) A.(0,+∞) B.(−1,+∞) C.(−2,+∞) D.(−3,+∞)10. 已知曲线C 1的极坐标方程为ρsin θ=3,曲线C 2的极坐标方程为ρ=4sin θ(ρ≥0, 0≤θ<π2),则曲线C 1与C 2交点的极坐标为( ) A.(2√3, π3) B.(2,π2)C.(√3,π3)D.(1,π2)11. 已知函数f(x)的定义域为R ,f(12)=−12,对任意的x ∈R 满足f ′(x)>4x ,当α∈[0, 2π]时,不等式f(sin α)+cos 2α>0的解集为( ) A.(π6,5π6) B.(π3,2π3) C.(4π3,5π3) D.(7π6,11π6)12. 已知函数f(x)=ln x +(a −1)x +2−2a .若不等式f(x)>0的解集中整数的个数为3,则a 的取值范围是( ) A.(1−ln 3, 0]B.(1−ln 3, 2ln 2]C.(1−ln 3, 1−ln 2]D.[0, 1−ln 2]卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 , )13. 已知|z|=1,且z ∈C ,则|z −2−2i|(i 为虚数单位)的最大值是________14. 若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________.15. f(n)=1+12+13+⋯+1n(n∈N∗),计算f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,推测当n≥2时,有________.16. 用篱笆围一个面积为100m2的矩形菜园,则所用篱笆长度最短为________.三、解答题(本题共计 6 小题,共计70分,)17.(10分) 已知函数f(x)=|2x−a|+|2x+3|,g(x)=|2x−3|+2.(1)解不等式g(x)<5;(2)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.18. (12分)手机作为客户端越来越为人民所青睐,通过手机实现衣食住行消费已经成为一种主要的下方方式,在某市,随机调查了200名顾客购物时所用手机支付的情况,得到如下的2×2列联表,已知从所用手机支付的人群中随机抽取1人,抽到青年的概率为710.(Ⅰ)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?2×2列联表:“使用手机支付”和“不使用手机支付”抽取得到一个容量为5的样本,设事件A为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”求事件A发生的概率.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.(12分) 已知函数f(x)=2ln x+ax2+b在x=1处取得极值1.(1)求a,b的值;(2)求f (x )在[e −1,e]上的最大值和最小值.20.(12分) 在直角坐标系xOy 中,曲线C 1:{x =3cos θy =sin θ (θ为参数),在以O 为极点,x轴的非负半轴为极轴的极坐标系中,曲线C 2:ρ(cos θ−sin θ)=4. (1)写出曲线C 1和C 2的普通方程;(2)若曲线C 1上有一动点M ,曲线C 2上有一动点N ,求使|MN|最小时M 点的坐标.21.(12分) 已知a >0,b >0,c >0函数f(x)=|x +a|+|x −b|+c . (1)当a =b =c =1时,求不等式f(x)>5的解集;(2)若f(x)的最小值为5时,求a +b +c 的值,并求1a+1b+1c的最小值.22. (12分) 已知函数f(x)=x +2+a ln (ax). (Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a >0,t ∈[3, 4],若对任意x 1,x 2∈(0, 1],且x 1≠x 2,都有|f(x 1)−f(x 2)|<t|1x 1−1x 2|,求实数a 的取值范围.参考答案与试题解析高二第二学期期末文科数学练考卷(三)含答案解析一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】解:1−3i1−i=(1−3i)(1+i) (1−i)(1+i)=2−i.故选B.2.【解答】对于A,当c=0时,不成立,对于B,当a=2,b=−3时,则不成立,对于C,当a=−3,b=−1时,则不成立,对于D,根据不等式的性质,a<b<0,ab −ba=(a+b)(a−b)ab>0,即可得到ab>ba,则成立,3.【解答】事件A为“朝上的2个数之和为偶数“所包含的基本事件有:(1, 1),(2, 2),(3, 3),(4, 4),(5, 5),(6, 6),(1, 3),(3, 1),(1, 5)、(5, 1),(3, 5),(5, 3),(2, 4),(4, 2),(2, 6),(6, 2),(4, 6),(6, 4)共18个事件AB,所包含的基本事件有:(2, 2),(4, 4),(6, 6),(2, 4),(4, 2),(2, 6),(6, 2),(4, 6),(6, 4)共9个根据条件概率公式P(B|A)=n ABn A =918=12,4.【解答】圆的方程为x2+y2−2y=(0)转换为:x2+y2=2y.转换为极坐标方程为:ρ2=2ρsinθ,即:ρ=2sinθ.5.【解答】解:函数f(x)=e x(−2x2+ax+b)(a,b∈R)的导函数f′(x)=e x(−2x2−4x+ax+a+b),令g(x)=−2x2−4x+ax+a+b,因为函数f(x)=e x(−2x2+ax+b)(a,b∈R)在区间(−1,1)上单调递增,则g(x)≥0在区间(−1,1)上恒成立,所以{g(1)≥0,g(−1)≥0,即{2a +b −6≥0,b +2≥0,作出其可行域,如图中阴影部分所示, 设z =a 2+8b +16, 则b =−18a 2−2+z8,由图可知当曲线b =−18a 2−2+z8过点(4,−2)时, z 取得最小值,最小值为16. 故选B .6.【解答】解:类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,合情推理不是类比推理,故A 错; 归纳推理是由部分到整体的推理,故B 、C 错; 类比推理是由特殊到特殊的推理.故D 对. 故选D 7. 【解答】解:根据所给的表格可以求出x ¯=14×(3+4+5+6)=4.5,y ¯=14×(2.5+3+m +4.5)=10+m 4.∵ 这组数据的样本中心点在线性回归直线上, ∴10+m 4=0.7×4.5+0.35,∴ m =4.故选C . 8.【解答】解:根据全称命题的否定,是特称命题,即“数列{x n }对任意的正整数n ,都满足x n >x n+1”的否定为:“存在正整数n ,使x n ≤x n+1”, 故选B . 9.【解答】解:∵ f(x)=(x +a)e x ,∴ f ′(x)=e x +(x +a)e x =e x (1+x +a) ∵ x =−3是函数的一个极值点, ∴ f ′(−3)=0,即1−3+a =0, ∴ a =2,∴ f(x)=(x +2)e x , 令f(x)>0,则x >−2. 故选C . 10.【解答】解:已知曲线C 1的极坐标方程为ρsin θ=3, 转化为直角坐标方程为:y =3,曲线C 2的极坐标方程为ρ=4sin θ(ρ≥0, 0≤θ<π2), 转化为直角坐标方程为:x 2+(y −2)2=4,组建方程组:{y =3x 2+(y −2)2=4,解得:{x =√3y =3,转化为极坐标为:(2√3, π3). 故选A . 11.【解答】令g(x)=f(x)+1−2x 2,则g′(x)=f′(x)−4x >0, 故g(x)在R 上单调递增,又g(12)=f(12)+1−2×14=−12+1−12=0, ∴ g(x)>0的解集为x >12,∵ cos 2α=1−2sin 2α,故不等式f(sin α)+cos 2α>0等价于f(sin α)+1−2sin 2α>0, 即g(sin α)>0,∴ sin α>12,又α∈[0, 2π],∴ π6<α<5π6.12. 【解答】f′(x)=1x+(a −1),当a −1≥0时,f′(x)>0,此时函数f(x)单调递增,不满足条件,舍去. 当a −1<0时,f′(x)=(a−1)(x−11−a)x=0,可得x =11−a 时取得极大值即最大值.f(11−a)=−ln (1−a)+1−2a >0.而f(1)=1−a >0,f(2)=ln 2>0,∴ 必须f(3)=ln 3+a −1>0,f(4)=ln 4+2a −2≤0.解得:1−ln 3<a ≤1−ln 2.∴ a 的取值范围是(1−ln 3, 1−ln 2]. 故选:C .二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【解答】由于|z −2−2i|≤|z|+|2+2i|,(当复数z 与2+2i 对应向量反向时,等号成立), 又|z|=1,|2+2i|=2√2,∴ |z −2−2i|的最大值是1+2√2. 14.【解答】解:设切点为(x 0, x 0ln x 0),对y =x ln x 求导数,得y′=(x ln x)′=ln x +x ⋅1x =ln x +1, ∴ 切线的斜率k =ln x 0+1,故切线方程为y −x 0ln x 0=(ln x 0+1)(x −x 0), 整理得y =(ln x 0+1)x −x 0, 与y =2x +m 比较得{ln x 0+1=2−x 0=m ,解得x 0=e ,故m =−e . 故答案为:−e. 15.【解答】观察已知中等式: 得 f(2)=32,即f(21)=2+12f(4)>2,即f(22)>2+22f(8)>52,即f(23)>3+22f(16)>3,即f(24)>4+22f(32)>72,即f(25)>5+22…则f(2n)≥n+22(n∈N∗)16.【解答】解:设这个矩形菜园长、宽各为xm,ym;所用篱笆为lm;故xy=100;l=2x+2y=2(x+y)≥4√xy=40;(当且仅当x=y=10时,等号成立);故当这个矩形菜园长、宽各为10m时,所用篱笆最短;最短的篱笆是40m.故答案为:40m.三、解答题(本题共计 6 小题,共计70分)17.【解答】由|2x−3|+2<5,得0<x<3,由题意对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x−a|+|2x+3|≥|(2x−a)−(2x+3)|=|a+3|,g(x)=|2x−3|+ 2≥2,所以|a+3|≥2⇒a≥−1或a≤−5.18.【解答】(Ⅰ)从使用手机支付的人群中随机抽取1人,抽到青年的概率为710,∴使用手机支付的人群中的青年人数为710×120=84(人),则使用手机支付的人群中老年人数为120−84=36(人);由此填写2×2列联表,如下;根据表中数据,计算K2=200×(84×48−32×36)2116×84×80×120=3600203≈17.734,由17.734>7.879,且P(K2≥7.879)=0.005,由此判断有99.5%的把握认为“市场购物用手机支付与年龄有关”;(Ⅱ)这200名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本中,使用手机支付的人有5×120200=3人,记编号为A、B、C,不使用手机支付的人有2人,记编号为d 、e , 则从这5人中任选2人,基本事件为:AB 、AC 、Ad 、Ae 、BC 、Bd 、Be 、Cd 、Ce 、de 共10种; 其中至少有1人是不使用手机支付是: Ad 、Ae 、Bd 、Be 、Cd 、Ce 、de 共7种; 故所求的概率为P =710.19.【解答】解:(1)因为f (x )=2ln x +ax 2+b , 所以f ′(x )=2x +2ax ,依题意得f ′(1)=0,f (1)=1, 即{2+2a =0,a +b =1,解得a =−1,b =2, 经检验,a =−1,b =2符合题意. 所以a =−1,b =2.(2)由(1)可知f (x )=2ln x −x 2+2 所以f ′(x )=2x −2x =2(1+x )(1−x )x令f ′(x )=0,得x =−1,x =1.当x 在[e −1,e]上变化时, f (x ),f ′(x )的变化情况如下表:又4−e ,所以f (x )在上的[e −1,e]最大值为1,最小值为4−e 2. 20. 【解答】∵ 曲线C 1:{x =3cos θy =sin θ (θ为参数),∴ 曲线C 1的普通方程为x 29+y 2=1,∵ 曲线C 2:ρ(cos θ−sin θ)=4,得ρcos θ−ρsin θ=4. ∴ 曲线C 2的普通方程为x −y =4;∵ 曲线C 1上有一动点M ,曲线C 2上有一动点N , ∴ 设M(3cos θ, sin θ),M 到直线x −y −4=0的距离d =√1+1=√2=√10sin √2,(sin α=3√1010, cos α=√1010). 要使|MN|最小,则sin (θ−α)=−1,cos (θ−α)=0,∴sinθ=sin[(θ−α)+α]=sin(θ−α)cosα+cos(θ−α)sinα=−√1010,cosθ=cos[(θ−α)+α]=cos(θ−α)cosα−sin(θ−α)sinα=3√1010.∴使|MN|最小时M点的坐标为(9√1010,−√1010).21.【解答】当a=b=c=1时,不等式f(x)>5即|x+1|+|x−1|+1>5,化为:|x+1|+|x−1|>4.①x≥1时,化为:x+1+x−1>4,解得x>2.②−1<x<1时,化为:x+1−(x−1)>4,化为:0>2,解得x∈⌀.③x≤−1时,化为:−(x+1)−(x−1)>4,化为:x<−2.综上可得:不等式f(x)>5的解集为:(−∞, −2)∪(2, +∞).不妨设a≥b>0.①x>b时,f(x)=x+a+x−b+c=2x+a−b+c,②−a≤x≤b时,f(x)=a+x−(x−b)+c=a+b+c,③x<−a时,f(x)=−(a+x)+b−x+c=−2x−a+b+c.可知:−a≤x≤b时,f(x)取得最小值a+b+c=5.∴1a +1b+1c=15(a+b+c)(1a+1b+1c)≥15×3√abc3×3√1a×1b×1c3=95,当且仅当a=b=c=53时取等号.∴1a +1b+1c的最小值为95.22.【解答】(1)已知函数f(x)=x+2+a ln(ax).f′(x)=1+1x,当a>0时,函数定义域为(0, +∞),f′(x)>0恒成立,此时,函数在(0, +∞)单调递增;当a<0时,函数定义域为(−∞, 0),f′(x)>0恒成立,此时,函数在(−∞, 0)单调递增.(2)a>0时,函数定义域为(0, +∞),f(x)在(0, 1]上递增,而y=1x在(0, 1]上递减,不妨设0<x1≤x2≤1,则|f(x1)−f(x2)|=f(x2)−f(x1),即|1x1−1x2|=1x1−1x2∴|f(x1)−f(x2)|<t|1x1−1x2|,等价于f(x2)−f(x1)<t(1x1−1x2)即f(x2)+tx2<f(x1)+tx1令g(x)=f(x)+tx =x+2+a ln(ax)+tx|f(x1)−f(x2)|<t|1x1−1x2|等价于函数g(x)在(0, 1]上是减函数,∴a≤tx−x,试卷第11页,总12页令g′(x)=x+ax −tx2=即x2+ax−tx2≤0,即x2+ax−t≤0在(0, 1]恒成立,分离参数,得a≤tx−x,令ℎ(x)=tx −x,ℎ(x)=−tx2−1<0.∴ℎ(x)=tx−x在(0, 1]递减,ℎ(x)≥ℎ(1)=t−1,∴a≤t−1,又t∈[3, 4],∴a≤2,又a>0,故实数a的取值范围为(0, 2].试卷第12页,总12页。
高二下学期数学期末试卷及答案(文科)
下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。
1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。
2020-2021年高二数学(文)下册期末考试试题(含解析)
h
x
在0,
上为增函数,
Q f 2 2,h
2 h 2 4 f 2 8,又h 0
0,
所以,函数y
h
x
与直线y
1的交点个数为
2,应选:C.
【点睛】此题考察函数的零点个数,解题的重点就是要依据不等式的结构结构新函数,并利用导数研究函数的单一性,但也不要忽视函数奇偶性的应用,考察剖析问题与解决问题的能力,属于难题.
列结论错误的选项是()
A.各年的月招待旅客量顶峰期大概在
的
7,8月份
B.年招待旅客量逐年增添
C.月招待旅客量逐月增添
D.各年1月至6月的月招待旅客量相对
7月至12月,颠簸性更小,变化比较安稳
- 1 -
【答案】C
【分析】
【剖析】
依据折线图挨次判断各个选项,可经过反例获得C错误.
【详解】由折线图可知,每年旅客量最多的月份为:7,8月份,可知A正确;
二、填空题(本大题共
4小题,每题5分,共20分)
13.如表供给了某厂节能降耗技术改造后在生产
A产品过程中记录的产品
x(吨)与相应的生
产能耗y(吨)的几组对应数据,依据表中供给的数据,求出
y对于x的线性回归方程为
$
0.8x 0.9,那么表中t的值为________.
y
x
3
4
5
6
y
t
5
【答案】4.
【分析】
对于B选项,当x
2
时,f
x
0,当2
1
时,f
x
0
,
2为f
x的极小值
x
2
点,B选项错误;
对于C选项,当1
高二数学(文科)第二学期期末考试试题(含参考答案)
A.
或
B.
或
C.
或
D.
或
【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此
即
又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(
)
2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分
与
.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(
)
A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:
高二下学期期末(文科)数学试卷 (解析版)
高二第二学期期末数学试卷(文科)一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.45.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤986.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.44211.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.201612.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z ﹣|≥2x C.z2=x2+y2D.|z ﹣|=2y二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a =,b=.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=.会外语不会外语总计男a b20女6d总计185015.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z等于.16.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用年.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.19.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82820.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82822.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.参考答案一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i解:由iz=1﹣i,得z=.故选:A.2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z==,∴z在复平面内对应的点的坐标为(﹣1,﹣1),位于第三象限.故选:C.4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.5.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤98解:由程序框图知:算法的功能是求S=++…+=1﹣的值,∵输出的结果为0.99,即S=1﹣=0.99,∴跳出循环的i=100,∴判断框内应填i≤99或i<100.故选:A.6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人解:“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选:C.7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”解:∵3.481<K2=5<6.635,而在观测值表中对应于3.841的是0.05,对应于6.635的是0.01,∴有1﹣0.05=95%以上的把握认为“X和Y有关系”.故选:C.8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元解:由题意,该方程在R上为单调递减,函数模型是一个递减的函数模型,产量每增加1000件,单位成本下降1.82元.故选:A.9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限解:z==,z的共轭复数为,故A错误;z的虚部为,故B错误;,故C错误;z在复平面内对应的点的坐标为(),在第一象限,故D正确.故选:D.10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.442解:由x1+x2+x3+x4+x5=250,得,又,∴,∴y1+y2+y3+y4+y5=.故选:D.11.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.2016解:根据题意,3阶幻方是将9个连续的正整数排成的正方形数阵,则这9个数成等差数列,设这个数列为{a n},且其公差为1,其同一行、同一列和同一对角线上的3个数的和都相等,则幻方中最中间的数是这9个数中的最中间的1个,若3阶幻方正中间的数是2018,即a5=2018,则其最小的数a1=a5﹣4d=2014;故选:B.12.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z﹣|≥2x C.z2=x2+y2D.|z﹣|=2y解:∵z=x+yi(x,y∈R),∴|z|2=x2+y2≤x2+y2+2|x||y|=(|x|+|y|)2,∴|z|≤|x|+|y|,即A正确,C错误;又|z﹣|=2|y|,可排除B与D,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a=6,b=35.解:观察各个等式可得,各个等式左边的分数的分子与前面的整数相同、分母是分子平方减1,等式右边的分数与左边的分数相同,前面的整数与左边的整数相同,∴等式中的a=6、b=36﹣1=35,故答案为:6;35.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=44.会外语不会外语总计男a b20女6d总计1850解:由题意填写列联表如下,会外语不会外语总计男12820女62430总计183250所以a=12,b=8,d=24,a+b+d=12+8+24=44.故答案为:44.15.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z 等于1﹣i.解:∵(1+i)z=|+i|=,∴z =.故答案为:1﹣i.16.某设备的使用年数x与所支出的维修总费用y 的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.5)=5.1,且回归直线方程=1.3x+过样本中心点(,),∴5.1=1.3×4+,解得=﹣0.1;∴回归直线方程为=1.3x﹣0.1;令=1.3x﹣0.1≥12,解得x≥9.308,据此模型预测该设备最多可使用10年,其维修总费用超过12万元,就应报废.故答案为:10.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是①④.解:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高,不正确.②线性回归直线必过样本数据的中心点(,),正确;③如果两个变量的相关性越强,则相关性系数r就越接近于1,正确,应为相关性系数r的绝对值就越接近于1;④甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好,不正确,应为模型甲的拟合效果更好.故答案为:①④.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.解:(1)若复数z是实数,则,得,即m=5;(2)复数z是虚数,则,即,即m≠5且m≠﹣3;(3)复数z是纯虚数,则,得,即m=3,或﹣219.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)根据题意知,70名患者中采用甲种治疗方案的患者为50人,采用乙种治疗方案的患者有20人,填写2×2列联表如下;复发未复发总计甲方案203050乙方案21820总计224870(2)由列联表中数据,计算K2=≈5.966>3.841,所以有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.20.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.解:(1),,,,.∴相关系数r=≈0.98.∵|r|>0.75,∴y与x具有较强的线性相关关系,可用线性回归方程拟合y与x的关系;(2),.∴y关于x的线性回归方程为.取x=6,求得.∴预测当x为6时,生产总成本的估计值为14.3万元.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)男生对问题的评价更高,理由如下:①由茎叶图知,评价分数不低于70分的男生比女生多2人(33.3%),因此男生对网课的评价更高;②由茎叶图知,男生评分的中位数是77,女生评分的中位数是72,因此男生对网课的评价更高;③由茎叶图知,男生评分的平均数为×(68+69+70+74+77+78+79+83+86+96)=78,女生评分的平均数为×(55+58+63+64+71+73+75+76+81+86)=70.2,因此男生对网课的评价更高;(以上三条理由给出一条理由,即可得到满分)(2)由茎叶图知,该20名学生评分的中位数是m==74.5,由此填写列联表如下;超过m不超过m总计男生6410女生4610总计101020计算K2==0.8<2.706,所以没有90%的把握认为男生和女生的评分有差异.22.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.解:(1)由已知可得R12=1﹣,R22=0.9998,∵R12<R22,∴的拟合效果较好;(2)由题意,=1,.=,.∴回归方程为y=10lnx+4.6.当x=8时,y=10ln8+4.6=30ln2+4.6≈25.6.∴预测入驻平台8周后,对应的累计粉丝数y为25.6百万=2560万.。
第二学期高二文科数学期末试题及答案
第二学期学期期末考试高二数学试题(文科)一、填空题:本大题共14小题;每小题5分;共70分。
请把答案填写在答题卡相应位置上{1,0,1,2},{|(1)0}M N x x x =-=-=;则=N M _________.2.命题“2,x R x x ∀∈>”的否定是 .3. 已知复数a+bi=错误!(i 是虚数单位;a ; b ∈R);则a+b= .4.若实数a ;b ;c 满足:数列1;a ;b ;c ;4是等比数列;则b 的值为 .5.双曲线9x 2-16y 2=144的渐近线方程为___________.6. “a=1”是“函数2()2x x af x a-=+在其定义域上为奇函数”的_________条件.(填充分不必要、必要不充分、充分必要、既不充分也不必要) 7.函数x x f ln 1)(-=的定义域为_______.8.已知α;β是不重合的两个平面;则下列条件中;可推出α∥β的是_______(填序号) . ①,l m 是α内的两条直线且∥β;m ∥β; ②α内有不共线的三点到β的距离相等; ③α;β都与直线成等角; ④,l m 是异面直线且∥α;m ∥α;∥β;m ∥β.9. 已知函数⎩⎨⎧>≤+=-,2,3,2),1()(x x x f x f x则)2(log 3f 的值为 . 10.已知不等式2691x xx k对一切实数x (,1]∈-∞恒成立; 则实数k 的取值范围为___.11.由“若直角三角形两直角边长分别为a 、b ;则其外接圆半径 类比可得“若三棱锥三条侧棱两两垂直; 侧棱长分别为a 、b 、c ;则其外接球半径r =_____________” . 12.设直线y=a分别与曲线2y x =和xy e =交于点M 、N ;则当线段MN 取得最小值时a的值为___________.13.下列说法:①当101ln 2ln x x x x>≠+≥且时,有;②函数x y a =的图象可以由函数2x y a =(其中01a a >≠且)平移得到;③若对R x ∈;有)(),()1(x f x f x f 则-=-的周期为2;④ “若260,2x x x +-≥≥则”的逆否命题为真命题;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.其中正确的命题的序号 .2x-1=0的解可视为函数y =x的图象与函数y =1x的图象交点的横坐标.若4x +ax -9=0的各个实根1x ;2x ;…;k x (k ≤4)所对应的点9()i ix x ,(i =1;2;…;k)均在直线y =x 的同侧;则实数a 的取值范围是 .二、解答题:本大题共6小题;共90分。
高二期末下学期(文科)数学试卷 (解析版)
高二第二学期期末数学试卷(文科)一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4} 2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.26.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.10.数列的第10项是()A.B.C.D.二、填空题11.曲线(θ为参数)两焦点间的距离是.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为.13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为、.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.参考答案一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4}解:集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},集合A∩B={x|﹣2≤x<﹣1}.故选:C.2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0所以“(2x﹣1)x=0”是“x=0”的必要不充分条件.故选:B.3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件解:因为y=e x>0,x∈R恒成立,所以A不正确;因为x=﹣5时2﹣5<(﹣5)2,所以∀x∈R,2x>x2不成立.a=b=0时a+b=0,但是没有意义,所以C不正确;a>1,b>1是ab>1的充分条件,显然正确.故选:D.4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i解:∵z===1+i,∴=1﹣i,故选:B.5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.2解:已知点,所以,∴△P1OP2为直角三角形,由勾股定理可得|P1P2|==10.故选:B.6.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.解:直线即y=,代入圆x2+y2=16化简可得x2﹣6x+8=0,∴x1+x2=6,即AB的中点的横坐标为3,∴AB的中点的纵坐标为3﹣4=﹣,故AB的中点坐标为,故选:D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.解:由f(x)=﹣x3+ax2﹣x﹣1,得到f′(x)=﹣3x2+2ax﹣1,因为函数在(﹣∞,+∞)上是单调函数,所以f′(x)=﹣3x2+2ax﹣1≤0在(﹣∞,+∞)恒成立,则△=,所以实数a的取值范围是:[﹣,].故选:B.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.解:,故选:D.10.数列的第10项是()A.B.C.D.解:从分子上看,2,4,6,8,对应的通项为2n,从分母上看,3,5,7,9,对应的通项为2n+1,所以该数列的通项公式,所以.故选:D.二、填空题11.曲线(θ为参数)两焦点间的距离是2.解:曲线(θ为参数),转换为普通方程是,故.故答案为:12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为(﹣1,﹣).解:∵函数f(x)的定义域为(﹣1,0),∴由﹣1<2x+1<0,解得:﹣1.∴函数f(2x+1)的定义域为(﹣1,﹣).故答案为:(﹣1,﹣).13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为7+4、7﹣4.解:根据题意,实数x,y满足方程x2+y2﹣4x+1=0,则点(x,y)是圆x2+y2﹣4x+1=0上的点,设t=x2+y2,其几何意义为圆上的一点与原点距离的平方,而圆x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,其圆心为(2,0),半径r=,又圆心到原点的距离为=2,则圆x2+y2﹣4x+1=0上的点到原点距离最大值为2+,最小值为2﹣,所以x2+y2的最大值是,x2+y2的最小值是;故答案为:7+4,7﹣4.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.解:由y=ax2﹣lnx,得:,∴y′|x=1=2a﹣1.∵曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,∴2a﹣1=0,即a=.故答案为:.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.解:(1)根据题意得:直线l的方程为x﹣y﹣1=0,曲线C的方程为x2+(y﹣2)2=4,即圆心C(0,2),半径r=2,∵圆心C到直线l的距离d==>2=r,∴直线l与曲线C相离;(2)根据题意得:点P到直线l的最大距离为d+r=+2,过圆心且垂直于直线l的直线方程为y=﹣x+2,联立得:,消去y得:x2=4,解得:x=﹣(正值不合题意,舍去),则在曲线C上存在一点P(﹣,2+),使得它到直线l的距离最大为+2.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.解:(1)直线l的参数方程为(t为参数),可得l的普通方程为y=(x﹣1),再由x=ρcosθ,y=ρsinθ,可得极坐标方程:ρcosθ﹣ρsinθ﹣=0;(2)由椭圆C的参数方程为(θ为参数),由sin2θ+cos2θ=1,可得椭圆C的普通方程为x2+=1,将直线l的参数方程为(t为参数),代入x2+=1,得(1+t)2+=1,即7t2+16t=0,解得t1=0,t2=﹣,所以|AB|=|t1﹣t2=.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.解:(1)根据题意,由旧养殖法的频率分布直方图可得:P(A)=(0.012+0.014+0.024+0.034+0.040)×5=0.62;(2)根据题意,补全列联表可得:箱产量<50kg箱产量≥50kg总计旧养殖法6238100新养殖法3466100总计96104200则有K2=≈15.705>6.635,故有99%的把握认为箱产量与养殖方法有关;(3)由频率分布直方图可得:旧养殖法100个网箱产量的平均数1=(27.5×0.012+32.5×0.014+37.5×0.024+42.5×0.034+47.5×0.040+52.5×0.032+57.5×0.02+62.5×0.012+67.5×0.012)×5=5×9.42=47.1;新养殖法100个网箱产量的平均数2=(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.054+57.5×0.046+62.5×0.010+67.5×0.008)×5=5×10.47=52.35;比较可得:1<2,故新养殖法更加优于旧养殖法.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.解:(Ⅰ)f(x)的定义域是(0,+∞),∵f(x)=lnx﹣ax2,∴f′(x)=﹣ax=,∵只需x﹣2y+1=0的斜率是,∴×=﹣1,∴a=;(Ⅱ)由(Ⅰ)得f′(x)=,当a≤0时,f′(x)>0,∴f(x)在(0,+∞)递增,a>0时,由f′(x)>0,得x<,由f′(x)<0,解得:x>,∴f(x)在(0,)递增,在(,+∞)等价,综上,当a≤0时,函数f(x)的递增区间是(0,+∞),a>0时,函数f(x)的递增区间是(0,),递减区间是(,+∞),(Ⅲ)法一:由f(x)=0,得a=,令g(x)=,则g′(x)=,由g′(x)>0得,1<x<,由g′(x)<0,得<x<e2,∴g(x)在区间[1,]递增,在区间[,e2]递减,又∵g(1)=0,g()=,g(e2)=,∴当0≤a<或a=时,f(x)在[1,e2]上有一个零点,当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]上没有零点;法二:由(Ⅱ)可知:当a<0时,f(x)在[1,e2]递增,∵f(1)=﹣a>0,∴f(x)在[1,e2]上有一个零点,当a>0时,①若≤1,即a≥1时,f(x)在[1,e2]递减,∵f(1)=﹣a<0,∴f(x)在[1,e2]上没有零点;②若1<<e2,即<a<1时,f(x)在[1,]上递增,在[,e2]递减,∵f(1)=﹣a<0,f()=﹣lna﹣,f(e2)=2﹣ae4,若﹣lna﹣<0,即a>时,f(x)在[1,e2]上没有零点,若﹣lna﹣=0,即a=时,f(x)在[1,e2]上有一个零点,若lna﹣>0,即a<时,由f(e2)=2﹣ae4>0得a<,此时f(x)在[1,e2]有一个零点,由f(e2)=2﹣ae4≤0,得a≥,此时在[1,e2]上有2个零点,③若≥e2,即0<a≤时,f(x)在[1,e2]单调递增,∵f(1)=﹣a<0,f(e2)=2﹣ae4>0,∴f(x)在[1,e2]上有1个零点,综上,当0≤a<或a=时,f(x)在[1,e2]上有1个零点;当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]没有零点,(法三:本题还可以转化为lnx=ax2,再转化为y=lnx与y=ax2的图象的交点个数问题,可用数形结合的方法求解).。
高二文科下学期期末考试数学试题(含答案)
高二文科下学期期末考试数学试题一、单选题1.设集合U={-1,0,1,2,3,4,5}, A={1,2,3}, B={-1,0,1,2},则A∩(C U B)=A. {1,2,3}B. {3}C.D. {2}2.已知iA. 1+iB. 1-iC.D. 3.设:12,:21x p x q <><,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知抛物线24x y =上一点A 纵坐标为4,则点A 到抛物线焦点的距离为( )A. B. 4 C. 5 D. 5.正项数列{a n }成等比数列,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是A. -24B. 21C. 48D. 246 cos (等于A. B. C. D. 7.设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A. B.C. D.8 A. 有最大值3,最小值-1 B. 有最大值2,最小值-2C. 有最大值2,最小值0D. 有最大值3,最小值029.执行如图程序框图,输出的 为( )A. B. C. D. 10.若函数f(x) = x 3-ax-2在区间(1,+∞)内是增函数,则实数a 的取值范围是 A. (],3-∞ B. (],9-∞ C. (-1, +∞) D. (-∞,3)11.如图,三棱柱A 1B 1C 1 - ABC 中,侧棱AA 1丄底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是A. CC 1与B 1E 是异面直线B. AC 丄平面ABB 1A 1C. A 1C 1∥平面AB 1ED. AE 与B 1C 1为异面直线,且AE 丄B 1C 112.过椭圆A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2C 的离心率的取值范围是A.B.C.D.二、填空题13.已知向量a =(1,-1) , b =(6,-4).若a 丄(t a +b ),则实数t 的值为____________.14.若x , y∈ R,且满足1{230 x x y y x≥-+≥≥,则z=2x+3y 的最大值等于_____________.15.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c,又边长3b c =,那么sin C = __________.16.已知函数()()3,0{ 1,0x x f x ln x x ≤=+>,若()()22f x f x ->,则实数x 的取值范围是____________.三、解答题17.选修44-:坐标系与参数方程选讲 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为 (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P 的坐标为18.在等差数列{a n }中,a 1 =-2,a 12 =20.(1)求数列{a n }的通项a n ;(2)若b n a n ++,求数列{3n b}的前n 项和.419.如图所示,已知AB 丄平面BCD ,M 、N 分别是AC 、AD 的中点,BC 丄 CD.(1)求证:MN//平面BCD ;(2)若AB=1,AC 与平面BCD 所成的角.20.已知椭圆C 1: ,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆Q 的方程;(2)设0为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.21.已知函数()()3x f x a bx e =-,()f x 的图象在点()1,e 处的切线与直线210ex y +-=平行.(1)求,a b ;(2)求证:当()0,1x ∈时, ()()2f x g x ->.1参考答案1.B2.B3.A4.C5.D6.D7.C8.D9.A10.A11.D12.B13.-514.151516.(-2,1)17.(1(218.(1)24n a n =-;(219.(1)见解析;(2)30°.20.(1) ;(2) 或 .21.(1)a 2,b 1==;(2)见解析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。