高三数学试题(理)

合集下载

高三理科数学试题及答案

高三理科数学试题及答案

高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。

2023届河南省部分学校高三12月大联考数学(理)试题(解析版)

2023届河南省部分学校高三12月大联考数学(理)试题(解析版)

2023届河南省部分学校高三12月大联考数学(理)试题一、单选题1.已知集合{A x y ==,{}e x B y y a ==+(a ∈R ),若A B ⋂=∅,则a 的取值范围为( ) A .(],1-∞- B .(),1-∞- C .()3,+∞ D .[)3,+∞【答案】D【分析】分别求出集合A 和集合B ,再由A B ⋂=∅进行求解.【详解】由已知,集合A 即函数y = 由不等式2320x x +-≥,即2230x x --≤,解得13x -≤≤,∴{{}[]131,3A x y x x ===-≤≤=-,集合B 即函数e x y a =+的值域,因为指数函数e x y =的值域为()0,∞+,所以函数e x y a =+的值域为(),a +∞,∴{}()e ,xB y y a a ∞==+=+,∵A B ⋂=∅,∴a 的取值范围是[)3,+∞. 故选:D.2.已知复数z 满足(86i)512i z +=+,则z =( )A B .1310C .1714D .1513【答案】B【分析】先由复数的运算化简z ,再计算模长.【详解】()512i (86i)11266i 5633i (86i)(86i)10050z +-++===+-,1310z === 故选:B3.已知直线12:210,:220l x y l x my --=++=,若12l l ∥,则1l 与2l 之间的距离为( )A .1B .2C D 【答案】A【分析】根据直线平行求出m ,再由平行线间的距离公式求解即可. 【详解】因为12l l ∥,所以40m +=,解得4m =-,经检验符合题意;所以2:210l x y -=, 所以1l 与2l之间的距离1d ===, 故选:A4.我国古代历法从东汉的《四分历》开始,就有各节气初日晷影长度和太阳去极度的观测记录,漏刻、晷影成为古代历法的重要计算项目.唐代僧一行在编制《大衍历》时发明了求任何地方每日晷影长和去极度的计算方法——“九服晷影法”,建立了晷影长l 与太阳天顶距θ之间的对应数表(世界上最早的正切函数表).根据三角学知识知:晷影长l 等于表高h 与天顶距θ正切值的乘积,即tan l h θ=.若对同一表高进行两次测量,测得晷影长分别是表高的2倍和3倍,记对应的天顶距分别为1θ和2θ,则()12tan θθ-=( ) A .1- B .17-C .13D .1【答案】B【分析】根据已知条件得出12,tan tan θθ的值,利用两角差的正切公式可得结果. 【详解】由题意知12tan 2,tan 3θθ==,所以()121212tan tan 231tan 1tan tan 1237θθθθθθ---===-++⨯故选:B.5.已知12,F F 是平面内两个不同的定点,P 为平面内的动点,则“12PF PF -的值为定值m ,且12m F F <”是“点P 的轨迹是双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】直接利用双曲线的定义,直接判断,可得答案.【详解】“12PF PF -的值为定值m ,12m F F <”,若0m =,则P 点的轨迹不是双曲线,故充分性不成立;“点P 的轨迹是双曲线”,则必有12,F F 是平面内两个不同的定点,且满足1212PF PF m F F -=<,故必要性成立; 故选:B6.已知()sin 2tan 1f x x x =++,则曲线()y f x =在点ππ,44f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为( ) A .26π0x y ++-= B .23π0x y -+-= C .426π0x y -+-= D .426π0x y -++=【答案】C【分析】根据导数几何意义可求得切线斜率π4f ⎛⎫' ⎪⎝⎭,结合π34f ⎛⎫= ⎪⎝⎭可求得切线方程. 【详解】()212cos 2cos f x x x'=+,2ππ12cos 2π42cos 4f ⎛⎫'∴=+= ⎪⎝⎭, 又πππsin tan 13424f ⎛⎫=++= ⎪⎝⎭,∴所求切线方程为:π324y x ⎛⎫-=- ⎪⎝⎭,即426π0x y -+-=.故选:C.7.已知双曲线2222:1(0,0)y x C a b a b-=>>,F 为C 的下焦点.O 为坐标原点,1l 是C 的斜率大于0的渐近线,过Fl 交1l 于点A ,交x 轴的正半轴于点B ,若||||OA OB =,则C 的离心率为( ) A .2 BCD【答案】C【分析】分别表示出A 、B 坐标,利用||||OA OB =求得3a b ,即可求出离心率.【详解】因为F 为双曲线2222:1(0,0)y x C a b a b-=>>的下焦点,不妨设()0,F c -,所以过Fy c =-,所以),0B .因为1l 是C 的斜率大于0的渐近线,所以可设1:al y x b=.由y x ca y x b⎧=-⎪⎪⎨⎪=⎪⎩联立解得:A .因为||||OA OB =,所以2223c +=,解得:3ab .所以离心率c e a ====. 故选:C8.函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,将()f x 的图象向左平移π6个单位长度得到函数()g x 的图象,则()g x =( )A .2cos2xB π326x ⎛⎫- ⎪⎝⎭C π326x ⎛⎫+ ⎪⎝⎭D .π2sin 26x ⎛⎫+ ⎪⎝⎭【答案】A【分析】由函数周期可求出ω,又由特殊值5π()=012f 和(0)=1f ,可求得ϕ和A ,进而可得()f x 的解析式,再利用sin()y A x ωϕ=+的图象变换规律,求得()g x 的解析式.【详解】依题意有2π11π5π2π1212ω⎛⎫=⨯-= ⎪⎝⎭,得2ω=, 又5π5π()sin 2+=01212f A ϕ⎛⎫=⨯ ⎪⎝⎭,所以5π2+π2π,Z 12k k ϕ⨯=+∈,且π02ϕ<<,得π=6ϕ,又π(0)sin =16f A =,得=2A ,所以()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以()πππ2sin 22cos 2666g x f x x x ⎡⎤⎛⎫⎛⎫=+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A .9.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P 在线段AB 上,则12PF PF ⋅的取值范围为( )A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦【答案】D【分析】根据椭圆过点求出,a b ,再求出焦点坐标,利用数量积的坐标运算结合二次函数的最值求解. 【详解】因为椭圆2222:1(0)x y C a b a b+=>>过点(2,0)A -和(0,1)B ,所以224,1a b ==,可得223c a b - 所以1(3,0)F -,23)F ,设(,)P x y ,由题意直线AB 的方程为12xy +=-,即220x y , 因为点P 在线段AB 上,所以(,)P x y 满足20,01x y -≤≤≤≤,则222212(,),)3(22)3PF PF x y x y x y y y ⋅=--⋅-=+-=-+-224115815()55y y y =-+=--,[0,1]y ∈,当45y =时,12min 11()5PF PF ⋅=-,当0y =时,12max ()1PF PF ⋅=, 所以12PF PF ⋅的取值范围为11,15⎡⎤-⎢⎥⎣⎦.故选:D10.已知定义在(0,)+∞上的函数()f x 满足:①0,()0x f x ∀><;②对任意正数x ,y ,当x y <时,()()yf x xf y >恒成立.若(0.1)(sin0.1)sin0.1,,(tan0.1)tan0.110f a f b c f ===,则( ) A .a b c >> B .c a b >>C .b c a >>D .b a c >>【答案】A【分析】根据函数性质可知,()f x x在(0,)+∞上单调递减,又根据0,()0x f x ∀><,可构造函数()xf x ,且函数()xf x 为单调递减,又因为sin0.10.1tan0.1<<,即可得出a b c >>. 【详解】由题意可知,对任意正数x ,y ,当x y <时,()()yf x xf y >,即()()f x f y x y> 所以函数()f x x在(0,)+∞上单调递减,即导函数2()()0xf x f x x -<'在(0,)+∞恒成立; 可得()()xf x f x '<;构造函数()()g x xf x =,则()()()2()0g x f x xf x f x ''=+<<, 所以,()()g x xf x =在(0,)+∞上单调递减;设函数()sin ,(0,1)h x x x x =-∈,则()cos 10h x x '=-<,即()h x 在(0,1)为单调递减,所以(0.1)(0)0h h <=,即sin 0.10.1<; 设函数()tan ,(0,1)x x x x ϕ=-∈,则221()1tan 0cos x x xϕ'=-=-<, 即()ϕx 在(0,1)为单调递减,所以(0.1)(0)0ϕϕ=<,即0.1tan 0.1<; 综上可知,sin0.10.1tan0.1<<,(sin 0.1)(0.1)(tan 0.1)g g g >> 即(0.1)(sin 0.1)sin 0.10.1(0.1)(tan 0.1)tan 0.110f f f f =>> 即得a b c >>. 故选:A.11.在四面体ABCD 中,,AB AC AB BD ⊥⊥,异面直线AC 与BD 所成的角为30︒,二面角C AB D--为锐二面角,4,5,3AB AC BD ===,则四面体ABCD 的体积为( ) A .234153- B .3C .5D .10【答案】C【分析】根据题意,如图,将四面体放在长方体中,为三棱锥D ABC -,过点D 作DE BE ⊥于E ,则DE ⊥平面ABC ,结合二面角和异面直线所成的角的定义可得30DBE ︒∠=,求出DE ,利用三棱锥的体积公式计算即可.【详解】如图,在长方体中,4,5,3AB AC BD ===, 过点D 作DE BE ⊥于E ,则DE ⊥平面ABC , 所以DBE ∠为二面角C AB D --的所成角,为锐角,DBE ∠为异面直线AC 与BD 的所成角,所以30DBE ︒∠=,所以1322DE BD ==. 由题意知,该四面体ABCD 为三棱锥D ABC -, 由1102ABCSAC AB =⋅=, 所以该三棱锥D ABC -的体积为113105332D ABC ABCV SDE -=⋅=⨯⨯=. 故选:C.12.将曲线221:1(0)169x y C x +=≤和曲线222:1(0)49x y C x +=>合成曲线E .斜率为k 的直线l 与E 交于A ,B 两点,P 为线段AB 的中点,则下列判断错误的是( ) A .曲线E 所围成图形的面积小于36 B .曲线E 与其对称轴仅有两个交点 C .存在k ,使得点P 的轨迹总在某个椭圆上 D .存在k ,使得点P 的轨迹总在某条直线上 【答案】D【分析】画出曲线表示的图形,分析AB 选项;选项C ,分析当0k =时,设()()1122,,,A x y B x y ,且12x x <,()00,P x y ,然后根据题意分析点P 的轨迹总在某个椭圆上即可;选项D ,结合C 的部分条件,加上中点公式,以及差点法,若存在k ,使得点P 的轨迹总在某条直线上,则0000(R)y k x k -∈为常数,化简分析即可解决问题. 【详解】选项A :如图,曲线E 所围成图形在正方形PQGH 内部,由正方形PQGH 的面积为6636⨯=,所以曲线E 所围成图形的面积小于36,故A 正确; 由A 中图形可知,曲线E 关于x 轴对称,所以曲线E 与其对称轴仅有两个交点,故B 正确; 选项C :设()()1122,,,A x y B x y ,且12x x <,()00,P x y 1212022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩, 当0k =时,12120,x x y y <<=221122221169149x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减的:22112202164x x x x -=⇒=- 所以222200200122222x x x x x x y y y y y -+⎧=-==-⎧⎪⇒⎨⎨=⎩⎪==⎩, 又2222149x y +=,所以()22220000114992y y x x -+=⇔+= 故存在0k =,使得点P 的轨迹总在某个椭圆上,C 正确选项D : 由()00,P x y ,1212022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,由题意若存在k ,使得点P 的轨迹总在某条直线上,则221122221169149x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:2222121201649x x y y --+=即()()2212121201649y y y y x x --++=, 又12012122y y y y y k x x +=⎧⎪-⎨=⎪-⎩,所以()2201212201649ky x x x x --+=, 即()222101294162x x y k x x ⎛⎫- ⎪⎝⎭=-, 又1202x x x +=, 所以若存在k ,使得点P 的轨迹总在某条直线上, 则0000(R)y k x k -∈为常数,即()222112012941622x x x x k k x x ⎛⎫- ⎪+⎝⎭--()()()()2221012121212941622x x kk x x x x k x x k x x ⎛⎫- ⎪-+⎝⎭=--- ()()2222210121294162x x kk x x k x x ⎛⎫--- ⎪⎝⎭=- ()22020112994162kk x kk x k x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=-为定值, 因为分子分母12,x x 次数不同,故若上式为定值,则22020*******kk x kk x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭恒成立,即00990416kk kk +=+=,无解,假设不成立, 所以不存在k ,使得点P 的轨迹总在某条直线上 所以选项D 不正确; 故选:D.二、填空题13.已知向量,a b 满足||3,||1,||2a b a b ==+=,则a b +与a b -的夹角为_______________. 【答案】π3【分析】根据平面向量夹角公式,结合平面向量数量积的运算性质进行求解即可. 【详解】()222||242431240a b a ba b a b a b a b +=⇒+=⇒++⋅=⇒++⋅=⇒⋅=,()2222312a b a b a b a b -=-=+-⋅=+-,设a b +与a b -的夹角为([0,π])θθ∈,()()22311cos 2242a b a b ab a b a bθ⋅-+--==⨯⋅-==+, 因为[0,π]θ∈, 所以π3θ=, 故答案为:π314.直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________. 【答案】2x =或43110x y +-=.【分析】先求出圆的圆心和半径,然后分直线l 的斜率不存在和存在两种情况求解即可. 【详解】由22(1)9x y ++=,得圆心为(1,0)C -,半径3r =,当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线恰好与圆相切,符合题意, 当直线l 的斜率存在时,设直线l 的方程为1(2)y k x -=-,则3=,22(13)9(1)k k -=+,解得43k =-,所以直线l 的方程为41(2)3y x -=--,即43110x y +-=,综上,直线l 的方程为2x =或43110x y +-=, 故答案为:2x =或43110x y +-=.15.如图,直线x t =与抛物线2:2(0)C y px p =>交于A ,B 两点,D 为C 上异于A ,B 的一点,若AD BD ⊥,则点D 到直线x t =的距离与p 的比值为__________.【答案】2【分析】根据题意得到,A B 的坐标,设(002D x px ,由题意可得1AD BD k k ⋅=-,列出方程即可得到结果.【详解】因为直线x t =与抛物线2:2(0)C y px p =>交于A ,B 两点,不妨设((2,,2A t pt B t pt 且D 为C 上异于A ,B 的一点,由抛物线的对称性,不妨设(002D x px则00002222AD BD px pt px ptk k -+由AD BD ⊥000022221px pt px pt-+=-化简可得()()02021p x t x t -=--,因为0x t ≠,则02p t x =-即点D 到直线x t =的距离与p 的比值为02t x p-= 故答案为:216.若12,x x 是函数()()21e 12xf x ax a =-+∈R 的两个极值点,且212x x ≥,则实数a 的取值范围为_____________. 【答案】2,ln 2⎡⎫+∞⎪⎢⎣⎭【分析】根据极值点定义可将问题转化为y a =与()e xg x x=有两个不同交点12,x x ;利用导数可求得()g x 单调性,并由此得到()g x 的图象;采用数形结合的方式可确定1201x x <<<且e a >;假设212x x t ==,由()()12g x g x =可确定2ln 2t =,进而得到()1g x 的值,结合图象可确定a 的取值范围. 【详解】()e x f x ax '=-,12,x x 是()f x 的两个极值点,12,x x ∴是e 0x ax -=的两根,又当0x =时,方程不成立,y a ∴=与e xy x=有两个不同的交点;令()e x g x x =,则()()21e x x g x x -'=, ∴当()(),00,1x ∈-∞时,()0g x '<;当()1,x ∈+∞时,()0g x '>;()g x ∴在()(),0,0,1-∞上单调递减,在()1,+∞上单调递增,则()g x 图象如下图所示,由图象可知:1201x x <<<且e a >; 212x x ≥,212x x ∴≥; 当212x x =时,不妨令212x x t ==,则2e e 2ttt t =,即2e 2e t t =,2e 2t∴=,解得:2ln 2t =,∴当212x x =时,()()2ln 212e 22ln 2ln 2g x g x ===, ∴若212x x ≥,则2ln 2a ≥,即a 的取值范围为2,ln 2⎡⎫+∞⎪⎢⎣⎭. 故答案为:2,ln 2⎡⎫+∞⎪⎢⎣⎭. 【点睛】方法点睛:本题考查根据极值点求解参数范围问题,可将问题转化为已知函数零点(方程根)的个数求参数值(取值范围)的问题,解决此类问题的常用的方法有: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin ()sin a A c C b c B -=-. (1)求A 的大小;(2)若ABC 为锐角三角形,求bc 的取值范围.【答案】(1)π3(2)1,22⎛⎫ ⎪⎝⎭【分析】(1)根据正弦定理可得到222a b c bc =+-,进而得到2cos 1A =,即可求出A 的大小; (2)根据三角形内角和为π,且ABC 为锐角三角形,从而可得出C 的取值范围,再将bc 转化为关于tan C 的函数即可求解.【详解】(1)由sin sin ()sin a A c C b c B -=-,则根据正弦定理有22()a c b c b -=-,即222a b c bc =+-, 又由余弦定理有2222cos a b c bc A =+-,得2cos 1A =, 所以在ABC 中,得π3A =;(2)由ABC 为锐角三角形,且π3A =,则有π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,得ππ,62C ⎛⎫∈ ⎪⎝⎭,即tan C ⎫∈+∞⎪⎪⎝⎭,即(1tan C ∈,所以根据正弦定理有π1sin sin sin 111322,2sin sin sin tan 22C C Cb Bc C C C C ⎛⎫++ ⎪⎛⎫⎝⎭====+∈ ⎪⎝⎭. 18.已知直线12:20,:20()l x ay l ax y a a -+=+-=∈R ,若1l 与2l 的交点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)若圆22:220E x y mx ny +--=的圆心在直线y =上,且与曲线C 相交所得公共弦MN的长为m ,n 的值. 【答案】(1)224(2)x y x +=≠(2)1,m n =1,m n =-=【分析】(1)由12,l l 判断出点P 的轨迹为以AB 为直径的圆(除去点(2,0)B ),进而求其方程; (2)由圆E 的圆心的位置得m ,n 的关系,两个圆方程相减得MN 的方程,由弦长求m ,n . 【详解】(1)当0,2y x ==-故直线1:20l x ay -+=过定点(2,0)A -,直线2:l (2)0a x y -+=,当2,0x y ==,故其过定点(2,0)B , 又110a a ⨯-⨯=,所以12l l ⊥,所以点P 的轨迹为以AB 为直径的圆, 当0a =时,两直线交点为()2,0A -,但交点P 无法与点B 重合, 故需除去点()2,0B其圆心为原点O ,半径为2r =,所以曲线C 的方程为224(2)x y x +=≠; (2)由(1)知,曲线C 的方程为224(2)x y x +=≠,又圆22:220E x y mx ny +--=的圆心为(,)E m n 在直线y =上,所以n =,0m ≠,两圆方程作差得两个圆的公共弦MN 的方程为224mx ny +=,即20mx -=,因为两个圆的公共弦MN 的长为原点O 到直线MN 的距离为1||d m ==,所以=解得1m =或1m =-,所以1,m n =1,mn =-=19.在正项数列{}n a 中,11a =,2n ∀≥,12113232n n a a a a n --+++=-. (1)求{}n a 的通项公式;(2)若数列{}n b 满足11b a =,221b a =-,且21ln ln 2ln n n n b b b +++=,设数列{}n b 的前n 项和为n T ,证明:221n n n T T T ++⋅<.【答案】(1)21n a n =- (2)证明见解析【分析】(1)由12113232n n a a a a n --+++=-可得到12121n n a n a n ++=-,根据累乘法求通项的方法,即可求出{}n a 的通项公式;(2)由21ln ln 2ln n n n b b b +++=可知221n n n b b b ++⋅=,可判断数列{}n b 为等比数列,根据等比数列的前n项和公式求出n T ,2210n n n T T T ++⋅<-即可求证. 【详解】(1)解:已知1211,23232n n a a a a n n --+++=≥-①, 则212312a a a -=⇒=,且11211,323212n n n a a a aa n n -+-++++=--②, -②①,得1212n n n a a an +-=-,整理得121,221n na n n a n ++=≥-, ∴3253a a =,3475a a =,,212325n n a n a n ---=-12123n n a n a n --=-,, 由累乘法可得()`2212133n n a n a n n a -=-=⇒≥, 又11a =,23a =,符合上式, 所以数列{}n a 的通项公式为21n a n =-.(2)由(1)可知111b a ==,221312b a =-=-=,因为21ln ln 2ln n n n b b b +++=,所以221n n n b b b ++⋅=,则数列{}n b 是首项为1,公比为212b b =的等比数列, ∴()1122112n n n T -==--,()()()222121212121n n n n n n T T T ++++∴⋅---=⋅--()2222222221221n n n n n ++++=--+--+20n =-<,即221n n nT T T ++⋅<,得证.20.在边长为2的正方形ABCD 外作等边BCQ △(如图1),将BCQ △沿BC 折起到PBC 处,使得PD =E 为AB 的中点(如图2).(1)求证:平面PDE ⊥ 平面PCD ; (2)求二面角E PD A --的正弦值. 【答案】(1)答案见解析 7【分析】取BC 中点为O ,建立以O 为原点的空间直角坐标系.(1)设平面PDE 法向量为m ,平面PCD 法向量为n , 利用0m n ⋅=可证面面垂直.(2)求得平面P AD 的法向量t ,后用向量法可求得二面角E PD A --的余弦值,后可求得正弦值. 【详解】(1)因四边形ABCD 为正方形,则DC CB ⊥.又在三角形PCD 中,2PC CD ==,22PD =222PC CD PD +=, 则DC PC ⊥.又CB ⊂平面PCD ,PC ⊂平面PCD ,∩CBPC C =, 则DC ⊥平面PCD .取BC 中点为O ,AD 中点为F ,连接PO ,OF . 则//,,OF CD PO BC OF BC ⊥⊥.又PO ⊂平面PCD ,则DC PO ⊥, 得FO PO ⊥.故如图建立以O 为原点,以射线OB 方向为x 轴正方向,射线FO 方向为y 轴正方向, 射线OP 方向为z 轴正方向的空间直角坐标系.则()()()()()000120100100120,,,,,,,,,,,,,,O A B C D ----, (()003110,,,,P E -.得()()(103123113,,,,,,,,PC PD PE =--=---=--, 设平面PDE 法向量为()111,,m x y z =,则11111123030PD m x y z PE m x y z ⎧⋅=--=⎪⎨⋅=-=⎪⎩,取(123,,m =-.设PCD 法向量为()222,,x n y z =,则2222223030PD n x y z PC n x z ⎧⋅=---=⎪⎨⋅=--=⎪⎩,取()3,0,1n =-. 因330m n ⋅=-+=,则平面PDE ⊥ 平面PCD .(2)由(1)分析可知,平面PDE 法向量为()123,,m =-. 又()123,,PA =--,设平面P AD 的法向量()333,,t x y z =, 则333332230230PD t x y z PA n x y z ⎧⋅=---=⎪⎨⋅=--=⎪⎩,取()032,,t =-. 则434342714334227cos ,m t m t m t⋅====++⨯+⨯⋅,又由图可知二面角E PD A --平面角α为锐角,则427cos α=, 得二面角E PD A --的正弦值4271497sin α=-=.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为1(1,0)F -,其左顶点为A ,上顶点为B ,且1F 到直线AB 的距离为7||7OB (O 为坐标原点).(1)求C 的方程;(2)若椭圆2222:(01)x y E a bλλλ+=>≠且,则称椭圆E 为椭圆C 的λ倍相似椭圆.已知椭圆E 是椭圆C的3倍相似椭圆,直线:l y kx m =+与椭圆C ,E 交于四点(依次为M ,N ,P ,Q ,如图),且2PQ NQ MQ +=,证明:点(,)T k m 在定曲线上. 【答案】(1)22143x y +=; (2)证明见解析.【分析】(1)由已知条件推导出2227(1)a b a +=-,221b a =-,由此能求出椭圆C 的方程. (2)分别联立直线与椭圆C 、椭圆E 的方程消元,可证明线段NP 、MQ 中点相同,然后结合2PQ NQ MQ +=可得3MQ PN =,由此可证明.【详解】(1)()(),0,0,A a B b -,∴直线AB 的方程为1x ya b+=-,即0bx ay ab -+=,1(1,0)F ∴-到直线AB 的距离为d ==, 2227(1)a b a ∴+=-,又221b a =-,解得2a =,b = ∴椭圆C 的方程为:22143x y +=.(2)椭圆C 的3倍相似椭圆E 的方程为221129x y +=, 设N ,P ,M ,Q 各点坐标依次为1(x ,1)y ,2(x ,2)y ,3(x ,3)y ,4(x ,4)y , 将y kx m =+代入椭圆C 方程,得:222(34)84120k x kmx m +++-=, ∴222221(8)4(34)(412)48(43)0km k m k m ∆=-+-=+->,(*)122834km x x k +=-+,212241234m x x k -=+,12x x ∴-, 将y kx m =+代入椭圆E 的方程得222(34)84360k x kmx m +++-=,342834km x x k ∴+=-+,234243634m x x k -=+,34x x -1234x x x x ∴+=+,∴线段NP ,MQ 中点相同,MN PQ ∴=,由2PQ NQ MQ +=可得NM PN =,3P MQ N ∴=,所以3412||3||x x x x -=-,∴3=化简得221294k m +=,满足(*)式,∴2244193m k -=,即点(,)k m 在定曲线2244193y x -=上.22.已知()2ln =++f x x x a x (a ∈R ).(1)讨论()f x 的单调性;(2)若1a =,函数()()1g x x f x =+-,1x ∀,2(0,)x ∈+∞,12x x ≠,()()122112x g x x g x x x λ->-恒成立,求实数λ的取值范围.【答案】(1)当0a ≥时,()f x 在区间()0,∞+上单调递增;当a<0时,()f x在区间⎛ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增. (2)15,ln 222⎛⎤-∞+ ⎥⎝⎦【分析】(1)先求出()f x 的导数()22x x af x x'++=,根据a 的取值范围进行分类讨论即可;(2)当120x x >,时,()()122112x g x x g x x x λ->-⇔()()21212111g x g x x x x x λ->-,去绝对值后,构造函数求解即可.【详解】(1)由已知,()2ln =++f x x x a x (a ∈R )的定义域为()0,∞+,()2221a x x a f x x x x++'=++=,①当0a ≥时,0f x在区间()0,∞+上恒成立,()f x 在区间()0,∞+上单调递增;②当0a <时,令()0f x '=,则220x x a ++=,180a ∆=->,解得10x =<(舍),20x >,∴当x ⎛∈ ⎝⎭时,220x x a ++<,∴()0f x '<, ∴()f x在区间⎛ ⎝⎭上单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,220x x a ++>,∴0f x ,∴()f x在区间⎫+∞⎪⎪⎝⎭上单调递增, 综上所述,当0a ≥时,()f x 在区间()0,∞+上单调递增;当a<0时,()f x在区间⎛ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增. (2)当1a =时,()()221ln ln 1g x x x x x x x =+-++=--+,()0,x ∈+∞,1x ∀,2(0,)x ∈+∞,12x x ≠, ()()122112x g x x g x x x λ->-等价于()()1221121212x g x x g x x x x x x x λ-->, 即()()21212111g x g x x x x x λ->-, 令()()g x h x x=,()0,x ∈+∞,则()()212111h x h x x x λ->-恒成立 ()()()()2222212ln 1ln 2x x x x xg x g x x x x h x x x x ⎛⎫-----+ ⎪'---⎝⎭'===, 令()2ln 2F x x x =--,()0,x ∈+∞,则()21122x F x x x x-'=-=,令()0F x '=,解得x =x ⎛∈ ⎝⎭时,()0F x '>,()Fx 在区间⎛ ⎝⎭单调递增;当x ⎫∈+∞⎪⎪⎝⎭时,()0F x '<,()F x 在区间⎫+∞⎪⎪⎝⎭单调递减,∴当()0,x ∈+∞时,()Fx的最大值为1152ln 20222F =--=--<⎝⎭, ∴当()0,x ∈+∞时,()215ln 2ln 2022F x x x =--≤--<,即()22ln 20x x h x x --'=<,∴()()g x h x x=在区间()0,∞+上单调递减,不妨设12x x <,∴1x ∀,2(0,)x ∈+∞,有()()12h x h x >,又∵1y x=在区间()0,∞+上单调递减, 1x ∀,2(0,)x ∈+∞,且12x x <,有1211x x >, ∴()()212111h x h x x x λ->-等价于()()121211h x x x x h λ⎛⎫->- ⎪⎝⎭, ∴()()2121h x x x h x λλ->-,设()()G x h x xλ=-,()0,x ∈+∞,则1x ∀,2(0,)x ∈+∞,且12x x <,()()2121h x x x h x λλ->-等价于()()12G x G x >,即()G x 在(0,)+∞上单调递减,∴()()20G x h x xλ''=+≤,∴()2x h x λ'≤-,∴()222ln 2x x x F x xλ--≤-⋅=-, ∵当()0,x ∈+∞时,()F x的最大值为15ln 222F =--⎝⎭, ∴()F x -的最小值为15ln 222+,∴15ln 222λ≤+,综上所述,满足题意的实数λ的取值范围是15,ln 222⎛⎤-∞+ ⎥⎝⎦.【点睛】本题第(2)问解题的关键点有两个,一个是将()()122112x g x x g x x x λ->-等价转换为()()21212111g x g x x x x x λ->-,便于构造函数;另一个是通过构造函数()()g x h x x =,借助导数判断出函数()h x 的单调性去绝对值.。

【高三数学试题】高三数学试题1(理科)及参考答案

【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

高三理科数学试卷(含答案)

高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。

高三数学(理)联考试卷

高三数学(理)联考试卷

2023届高三年级11月联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x -y =0},B ={(x ,y )|x -y 2=0},则A ∩B =A .{0,1}B .{(0,1)}C .{(0,0),(1,1)}D .∅2.若a >b >0>c ,则A .(a -b )c >0B .c a >cb C .a -b >a -cD .1a c +<1b c+3.已知等差数列{n a }的前n 项和为n S ,且n a >0,则6328S S a a -+=A .2B .32C .1D .124.已知α为第三象限角,且1cos23α=,则cos α=A.-3B.-3C.3D.35.已知数列{n a }是1a >0的无穷等比数列,则“{n a }为递增数列”是“k ∀≥2且k N *∈,k a >1a ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知非零向量a ,b的夹角正切值为,且(a +3b )⊥(2a -b ),则ab=A .2B .23C .32D .17.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且a :b :c =2:3:4,则△ABC的面积为A .21512a B .21512b C .212a D .212b 8.已知函数f (x )=x 3+bx 2+cx ,不等式()f x x<0的解集为((312,0)∪(0,()312),则不等式f (x )≤-27的解集为A .{x |x ≤-3或x =3}B .{x |x ≤3}C .{x |x ≥-3}D .{x |x ≥3或x =-3}9.若2a =3b =6c 且abc ≠0,则A .a c -a b=1B .b a -bc =1C .a c -b c=1D .a b -b c=110.已知函数f (x )=sin 3x πω⎛⎫⎪⎝⎭-(ω>0)的最小正周期为π,则A .f (2)<f (0)<f (-2)B .f (0)<f (-2)<f (2)C .f (-2)<f (0)<f (2)D .f (0)<f (2)<f (-2)11.对任意实数x ,定义[x]为不大于x 的最大整数,如[0.2]=0,[1.5]=1,[2]=2.已知函数f (x )=[x]·sin x π,则方程|f (x )|=3-50x在(0,+∞)上的实根个数为A .290B .292C .294D .29612.已知点P 在曲线y =-1x(x >0)上运动,过P 点作一条直线与曲线y =e x 交于点A ,与直线y )1x -交于点B ,则||PA |-|PB ||的最小值为A .1B +1C D 二、填空题:本题共4小题,每小题5分,共20分.13.在等比数列{n a }中,3a =2,5a =4,则11a =__________.14.在平行四边形ABCD 中,AE =AD λ ,AF=AB μ ,λμ>0,且E ,C ,F 三点共线,则λ+μ的最小值为__________.15.已知函数f (x )是定义在R 上的奇函数,满足f (2π+x )=f (2π-x ),f (2π)=3,且()sin f x x '+f (x )cosx >0在(0,2π)内恒成立(()f x '为f (x )的导函数),若不等式f (4π+x )sin (3π-x )≤a 恒成立,则实数a 的取值范围为__________.16.设-1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公差为d 的等差数列,a 2,a 4,a 6成公比为3的等比数列,则d 的最小值为__________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在直角坐标系xOy 中,角α,β,γ(α,β,γ∈(0,2π))的顶点在原点,始边均与x 轴正半轴重合,角α的终边经过点A (-1,2),角β的终边经过点B (3,4).(Ⅰ)求tan (α-β)的值;(Ⅱ)若角γ的终边为∠AOB (锐角)的平分线,求2sin γ的值.18.(12分)已知数列{n a }的各项均不为0,其前n 项的乘积n T =12n -·1n a +.(Ⅰ)若{n a }为常数列,求这个常数;(Ⅱ)若1a =4,设n b =2log n a ,求数列{n b }的通项公式.19.(12分)如图所示,在平面四边形ABCD 中,∠ADC =2π,∠BCD =4π,5BC =CD ,AB,AD =3.(Ⅰ)求tan ∠BDC 的值;(Ⅱ)求BD .20.(12分)已知数列{n a }的前n 项和为n S ,1a =1,1n S +=4n a .(Ⅰ)证明:数列{12nn S -}为等差数列;(Ⅱ)求数列{n S }的前n 项和n T .21.(12分)已知函数f (x )=2x -1+x ae的最小值为1.(Ⅰ)求实数a 的值;(Ⅱ)若直线l :y =kx -1与曲线y =f (x )没有公共点,求实数k 的取值范围.22.(12分)已知函数f(x)=ln x+x(x-3).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若存在x1,x2,x3∈(0,+∞),且x1<x2<x3,使得f(x1)=f(x2)=f(x3),求证:2x1+x2>x3.。

高三数学第一学期期末考试理科试题

高三数学第一学期期末考试理科试题

石景山区2021—2021学年高三第一学期期末考试数学〔理科〕一、选择题:本大题一一共8个小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,把所选项前的字母填在题后括号内. 1.集合}2,1,0{=P ,},2|{P a a x x Q ∈==,那么Q P =〔 〕A .}0{B .}1,0{C .}2,1{D .}2,0{2.“b a +是偶数〞是“a 与b 都是偶数〞的〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数x x f ln 21)(=的反函数是〔 〕 A .21)(x e x f=- B .2110)(x x f=- C .x e x f21)(=-D .x x f2110)(=-4.在ABC ∆中,︒=∠90C ,)1,(x BC =,)3,2(=AC ,那么x 的值是〔 〕A .5B .5-C .23 D .23-5.不等式212>++x x 的解集是〔 〕 A .),1()0,1(+∞- B .)1,0()1,( --∞ C .)1,0()0,1( - D .),1()1,(+∞--∞6.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,那么543a a a ++=( )A .33B .72C .84D .1897.设函数⎩⎨⎧>≤++=)0(2)0()(2x x c bx x x f ,假设)0()4(f f =-,2)2(-=-f ,那么关于x的方程x x f =)(的解的个数为〔 〕 A .1B .2C .3D .48.计算机中常用的十六进制是逢16进1的记数制,采用数字-09和字母F A -一共16个记数符号.这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:B D E 1=+,那么=⨯B A 〔 〕 A .E 6 B .72C .F 5D .0B二、填空题:本大题一一共6个小题,每一小题5分,一共30分.把答案填在题中横线上. 9.复数ii4321-+的实部是 . 10.从4名男生和3名女生中选出4人参加某个座谈会,假设这4人中必须既有男生又有女生,那么不同的选法种数一共有 .〔用数字答题〕11.nx x )(1-+的展开式中各项系数的和是128,那么=n ;展开式中3x 的系数是 .〔用数字答题〕12.函数=)(x f ⎪⎩⎪⎨⎧≤+>--)1()1(112x a x x x x 在1=x 处连续,那么实数a 的值是 .13.在半径为35的球面上有A 、B 、C 三点,6=AB ,8=BC ,10=CA ,那么球心到平面ABC 的间隔 为 .14.设函数)(x f 的图象与直线a x =,b x =及x 轴所围成图形的面积称为函数)(x f 在],[b a 上的面积,函数nx y sin =在[0,nπ]上的面积为n 2〔*∈N n 〕,那么〔1〕函数x y 3sin =在[0,3π]上的面积为 ;〔2〕函数1)3sin(+-=πx y 在[3π,34π]上的面积为 . 三、解答题:本大题一一共6个小题,一共80分.解答题应写出文字说明,证明过程或者演算步骤. 15.〔此题满分是12分〕在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,73tan =C .〔Ⅰ〕求C cos 的值; 〔Ⅱ〕假设25=⋅CA CB ,且9=+b a ,求c 的长.16.〔此题满分是12分〕函数b ax ax x x f +++=23)(的图象过点)2,0(P .〔Ⅰ〕假设函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式; 〔Ⅱ〕假设3>a ,求函数)(x f y =的单调区间.17.〔此题满分是14分〕如图,在三棱锥BCD A -中,面⊥ABC 面BCD ,ABC ∆是正三角形,︒=∠90BCD ,︒=∠30CBD .〔Ⅰ〕求证:CD AB ⊥;〔Ⅱ〕求二面角C AB D --的大小; 〔Ⅲ〕求异面直线AC 与BD 所成角的大小.ACBD18.〔此题满分是14分〕袋中装有4个黑球和3个白球一共7个球,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的时机是等可能的,用ξ表示取球终止时所需的取球次数.〔Ⅰ〕求恰好取球3次的概率;〔Ⅱ〕求随机变量ξ的概率分布;〔Ⅲ〕求恰好甲取到白球的概率.19.〔此题满分是14分〕等差数列}{n a 中,公差0>d ,其前n 项和为n S ,且满足:4532=⋅a a ,1441=+a a .〔Ⅰ〕求数列}{n a 的通项公式; 〔Ⅱ〕通过公式cn S b nn +=构造一个新的数列}{n b .假设}{n b 也是等差数列, 求非零常数c ; 〔Ⅲ〕求1)25()(+⋅+=n n b n b n f 〔*N n ∈〕的最大值.20.〔此题满分是14分〕设)(2)(x f xppx x g --=,其中x x f ln )(=. 〔Ⅰ〕假设)(x g 在其定义域内为增函数,务实数p 的取值范围; 〔Ⅱ〕证明: ()1≤-f x x ;〔Ⅲ〕证明:2*222ln 2ln 3ln 21(,2)234(1)n n n n N n n n --+++<∈≥+.石景山区2021—2021学年第一学期期末考试试卷高三数学〔理科〕参考答案一、选择题:本大题一一共8个小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,把所选项前的字母填在题后括号内.二、填空题:本大题一一共6个小题,每一小题5分,一共30分.把答案填在题中横线上.注:第11、14题第1个空3分,第2个空2分.三、解答题:本大题一一共6个小题,一共80分.解答题应写出文字说明,证明过程或者演算步骤. 15.〔此题满分是12分〕 解:〔Ⅰ〕∵ 73tan =C , ∴ 73cos sin =CC. 又∵ 1cos sin 22=+C C , 解得 1cos 8C =±. ……………………3分 ∵ 0tan >C ,∴ C 是锐角.∴ 81cos =C . ………………………6分 〔Ⅱ〕∵ 25=⋅CA CB ,∴ 25cos =C ab . 解得 20=ab . …………………8分又∵ 9=+b a , ∴ 4122=+b a . ∴ 36cos 2222=-+=C ab b a c .∴ 6=c . ………………………12分16.〔此题满分是12分〕解:〔Ⅰ〕a ax x x f ++='23)(2. ………………………2分由题意知⎩⎨⎧=+-=-'==623)1(2)0(a a f b f ,得⎩⎨⎧=-=23b a . …………………5分 ∴ 233)(23+--=x x x x f . ……………………6分〔Ⅱ〕023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=∆a a .由0)(>'x f 解得332a a a x ---<或者332aa a x -+->,由0)(<'x f 解得333322aa a x a a a -+-<<---. ……………10分∴ )(x f 的单调增区间为:)33,(2a a a ----∞和),33(2+∞-+-aa a ; )(x f 的单调减区间为: )33,33(22aa a a a a -+----.……12分17.〔此题满分是14分〕 解法一:〔Ⅰ〕证明:∵ 面ABC ⊥面BCD ,︒=∠90BCD ,且面ABC 面BCD BC =,∴ ⊥CD 面ABC . ……………2分 又∵ ⊂AB 面ABC ,∴ AB DC ⊥. ………………4分〔Ⅱ〕解:如图,过点C 作CM ⊥AB 于M ,连结DM .由〔Ⅰ〕知⊥CD 面ABC .∴ CM 是斜线DM 在平面ABC 内的射影, ∴ AB DM ⊥.〔三垂线定理〕∴ CMD ∠是二面角C AB D --的平面角. …………………6分 设1=CD ,由︒=∠90BCD ,︒=∠30CBD 得3=BC ,2=BD .∵ ABC ∆是正三角形,∴ 2323=⋅=BC CM . ∴ 32tan ==∠CM CD CMD . ∴ 32arctan =∠CMD .∴ 二面角C AB D --的大小为32arctan. …………………9分 〔Ⅲ〕解:如图,取三边AB 、AD 、BC 的中点M 、N 、O ,连结AO 、MO 、NO 、MN 、OD , 那么AC OM //,AC OM 21=;BD MN //,BD MN 21=. ∴ OMN ∠是异面直线AC 与BD 所成的角或者其补角. ………………11分 ∵ ABC ∆是正三角形,且平面⊥ABC 平面BCD , ∴ ⊥AO 面BCD ,AOD ∆是直角三角形,AD ON 21=. 又∵ ⊥CD 面ABC ,故2222==+=ON AC DC AD .在OMN ∆中,23=OM ,1=MN ,1=ON . ∴ 4321cos ==∠MN MOOMN . ∴ 异面直线AC 和BD 所成角为43arccos. ……………14分 解法二:〔Ⅰ〕分别取BC 、BD 的中点O 、M ,连结AO 、OM . ∵ ABC ∆是正三角形,ACBD∴ BC AO ⊥.∵ 面ABC ⊥面BCD ,且面ABC 面BCD BC =, ∴ ⊥AO 平面BCD .∵ OM 是BCD ∆的中位线,且⊥CD 平面ABC , ∴ ⊥OM 平面ABC .以点O 为原点,OM 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系. ……………2分设1=CD , 那么)0,0,0(O ,)23,0,0(A ,)0,23,0(-B , )0,23,0(C ,)0,23,1(D . ∴ )23,23,0(--=AB ,)0,0,1(=CD . ……………………4分 ∴ 00)23(0)23(10=⨯-+⨯-+⨯=⋅CD AB . ∴ CD AB ⊥,即 CD AB ⊥. …………………6分 〔Ⅱ〕∵ ⊥CD 平面ABC ,∴ 平面ABC 的法向量为)0,0,1(=CD . ……………………7分 设平面ABD 的法向量为),,(z y x n =,∴ )23,23,0(--=AB ,)23,23,1(-=AD . ∴ 0)23()23(0=⨯-+⨯-+⨯=⋅z y x AB n ,即 033=+z y .0)23(231=⨯-+⨯+⨯=⋅z y x AD n ,即 0332=-+z y x . y∴ 令3=y ,那么3-=x ,1-=z .∴ )1,3,3(--=n . ……………………9分∴ n CD n CD <,cos 13133-=. ∵ 二面角C AB D --是锐角,∴ 二面角C AB D --的大小为13133arccos. ………………11分〔Ⅲ〕∵ )0,3,1(=BD ,)23,23,0(-=AC , ∴ AC BD <,cos 43)23()23(00)3(1)23(023301222222=-++⋅++-⨯+⨯+⨯=. ∴ 异面直线AC 和BD 所成角为43arccos . ……………14分18.〔此题满分是14分〕解:〔Ⅰ〕恰好取球3次的概率3565673341=⨯⨯⨯⨯=P ; ……………………3分〔Ⅱ〕由题意知,ξ的可能取值为1、2、3、4、5,()317P ξ==, ()4322767P ξ⨯===⨯,()4336376535P ξ⨯⨯===⨯⨯,()432334765435P ξ⨯⨯⨯===⨯⨯⨯, ()43213157654335P ξ⨯⨯⨯⨯===⨯⨯⨯⨯. 所以,取球次数ξ的分布列为:…………………10分〔Ⅲ〕 因为甲先取,所以甲只有可能在第1次,第3次和第5次取球.记“甲取到白球〞的事件为A .那么()()“1”“3”“5”P A P ξξξ====或或.因为事件“1=ξ〞、“3=ξ〞、“5=ξ〞两两互斥, 所以)5()3()1()(=+=+==ξξξP P P A P 352235135673=++=. 所以恰好甲取到白球的概率为3522. ……………14分19.〔此题满分是14分〕解:〔Ⅰ〕∵ 数列{}n a 是等差数列,∴ 144132=+=+a a a a .又4532=a a , ∴ ⎩⎨⎧==9532a a ,或者⎩⎨⎧==5932a a . ……………2分∵ 公差0>d ,∴ 52=a ,93=a . ∴ 423=-=a a d ,121=-=d a a .∴ 34)1(1-=-+=n d n a a n . …………4分 〔Ⅱ〕∵ n n n n n d n n na S n -=-+=-+=212)1(2)1(21,∴ cn nn c n S b n n +-=+=22. ………………6分 ∵ 数列{}n b 是等差数列, ∴ 212+++=n n n b b b .∴ cn n n c n n n c n n n +++-+++-=+++-+⋅)2()2()2(22)1()1()1(22222. 去分母,比拟系数,得 21-=c . ……………9分 ∴ n n nn b n 22122=--=. ………………10分〔Ⅲ〕)1(2)25(2)(+⋅+=n n nn f2625125262++=++=nn n n n≤361. ……………12分当且仅当n n 25=,即5=n 时,)(n f 获得最大值361. ……………14分20.〔此题满分是14分〕 解:〔Ⅰ〕∵ x xppx x g ln 2)(--=〔0>x 〕, ∴ 22222)(x px px x x p p x g +-=-+=' . ……………1分 令p x px x h +-=2)(2,要使)(x g 在),0(+∞为增函数, 只需)(x h 在),0(+∞上满足:0)(≥x h 恒成立, 即022≥+-p x px .22(0,)1xp x ≥+∞+在上恒成立. 又∵ )0(1122121202>=⋅≤+=+<x xx xx x x, ………4分∴ 1p ≥. …………5分〔Ⅱ〕证明:要证 1ln -≤x x ,即证 01ln ≤+-x x )0(>x , 设1ln )(+-=x x x k ,xxx x k -=-='111)(则. ………………6分 当]1,0(∈x 时,0)(>'x k ,∴ )(x k 为单调递增函数; 当),1(+∞∈x 时,0)(<'x k ,∴ )(x k 为单调递减函数;∴ 0)1()(max ==k x k . …………………9分 即 01ln ≤+-x x ,∴ 1ln -≤x x . …………10分〔Ⅲ〕由〔Ⅱ〕知1ln -≤x x ,又0>x ,∴xx x x x 111ln -=-≤. ∵ *∈N n ,2≥n ,可令2n x =,得 22211ln nn n -≤. …………12分∴ )11(21ln 22n n n -≤. ∴ )11311211(21ln 33ln 22ln 222222nn n -++-+-≤+++)]13121()1[(21222nn +++--=)])1(1431321()1[(21+++⨯+⨯--<n n n )]11141313121()1[(21+-++-+---=n n n )]1121(1[21+---=n n )1(4122+--=n n n . ……………14分注:假设有其它解法,请酌情给分.。

高三数学试题(理科)

高三数学试题(理科)

高三理科数学试题说明:试题满分150分,时间120分钟。

分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .62. 设集合{}12S x x =->,{}6T x a x a =<<+,S T =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-3. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为 ( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 5. 已知a 、b 、c∈R,下列命题正确的是( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.2C.34D. 19. 已知实数x ,y 满足条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,i z x y =+ (i 为虚数单位),则|12i |z -+的最小值是( ) AB.1C.2D.1210. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S ∆= ;其中正确命题的序号为_________________________________。

高三数学(理)

高三数学(理)

晋城中学高三12月半月考数 学 试 题(理)命题人:冯志雄一、选择题(每小题5分,共60分)1、若函数)sin(3)(ϕω+=x x f 对任意实数x 都有)6()6(x f f -=+πππ,则)6(πf 等于( ) A 、0 B 、3 C 、3- D 、3或3- 2、已知条件2:-≠+y x p ,条件y x q 、:不都是1-,则p 是q 的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 3、把函数)42sin(π+=x y 的图像向右平移π83,再把所得图像上各点的横坐标缩短到原来的21,则所得图像的函数是( )A 、)834sin(π+=x y B 、)84sin(π+=x yC 、x y 4cos -=D 、x y sin =4、已知函数)(x f y =)(R x ∈满足)()2(x f x f =+,且当]1,1[-∈x 时,2)(x x f =,则)(x f y =与x y 7log=的图像的交点的个数为( )A 、3B 、4C 、5D 、6 5、函数3|3|)1lg(2-+-=x x y 是( )A 、奇函数B 、偶函数C 、既是奇函数又是偶函数D 、非奇非偶函数 6、在ΔABC 中,O 为中线AM 上的一个动点,若AM =2,则)(OC OB OA +⋅的最小值为( ) A 、-2 B 、-1 C 、2 D 、不存在 7、在ΔABC 中,C B C B A si n si n si nsi nsi n 222-+≤,则A 的取值范围是( )A 、]6,0(πB 、],6(ππC 、]3,0(πD 、],3(ππ8、已知函数|lg |)(x x f =,若b a <<0且)()(b f a f =,则b a 2+的取值范围是( )A 、)22(∞+B 、)22[∞+C 、),3(+∞D 、),3[+∞ 9、设)56cos 56(sin 21ooa -=,0128cos 50cos 38cos 40cos o o o b +=,)150cos 280(cos 2120+-=oc ,则a 、b 、c 的大小关系为( )A 、c b a >>B 、b c a >>C 、b a c >>D 、c a b >> 10、当20x x <<时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为( )A 、2B 、32C 、4D 、3411、已知⎪⎩⎪⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若)()2(2a f a f >-则实数a 的取值范围( )A 、),2()1,(+∞--∞B 、)2,1(-C 、)1,2(-D 、),1()2,(+∞--∞12、已知函数)0()(23≠+++=a d cx bx ax x g 的导函数为)(x f ,0=++c b a ,且0)1()0(>⋅f f 设:21,x x 是方程0)(=x f 的两个根,则||21x x -的取值范围为( )A 、)32,33[B 、)94,31[C 、)33,31[ D 、)31,91[ 二、填空题(每小题4分,共16分) 13、在△ABC中,t a n t a n t a n t a n ,s i n c o s ,4A B A B A A ++=⋅⋅且则此三角形为 。

高三数学.(理)

高三数学.(理)

晋城中学高三12月阶段性测试数 学 试 题(理科)命题人:张烜彦一、选择题:(本大题共12小题,每小题5分,共60分) 1.若集合M ={y|y=x -2},P ={y |y=x -1 },那么M ∩P=( )A .(1,+∞)B .(0,+∞)C .[1,+∞)D .[0,+∞) 2.设i 是虚数单位,复数12ai i+-为纯虚数,则实数a 为 ( )A. 12-B. 2-C. 12D.23.下列命题正确的是( ) A .032,0200=++∈∃x x R xB .23,x x N x >∈∀C .若22,b a b a >>则D 112>>x x 是的充分不必要条件4.设X 、Y 、Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X//Y ”为真命题的是( ) ①X 、Y 、Z 是直线;②X 、Y 是直线,Z 是平面;③Z 是直线,X 、Y 是平面;④X 、Y 、Z 是平面A .①②B .②③C .①③D .③④5.如果函数f (x )=sin(2x+φ)+3cos(2x +φ)的图像关于原点对称,如果πϕ≤≤0,那么=ϕ ( ) A .6πB .3πC .2πD .32π6.阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )A. B.2C.D .07.已知向量OP = (2,1),OA = (1,7),OB = (5,1),设M 是直线OP 上的一点(O 为坐标原点),那么MB MA ⋅ 的最小值是 ( ) A .16-B .8-C .0D .48.数列{}{},n n a b 满足*11111,2,n n n nb a b a a n N b ++==-==∈,则数列{}n a b 的前10项和为( ) A.()94413- B.()104413- C.()91413- D.()101413-9.已知M 是△ABC 内的一点,且32=⋅AC AB ,︒=∠30BAC ,若△MBC ,△MCA ,△MAB 的面积分别为21,y x ,,则yx41+的最小值为( )A .12B .18C .6D .1010.当x ∈[0,2]时,函数3)1(4)(2--+=x a ax x f 在x=2时取得最大值,则a 的取值范围是( ) A .[-21,+∞) B .[0,+∞) C .[1, +∞) D .[32,+∞)11.已知nn a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A =( )A.9331)(B.9231)(C. 9431)(D.11231)(12. 设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围为( )A. (,2]-∞-B.[1,0]-C. 9(,2]4-- D.9(,)4-+∞二、填空题(本大题共4个小题,每小题4分,共16分)13. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为14.数列}{n a 的前n 项和为n S ,32922++-=n n S n ,则数列}{n S 中取得最大值的项是第_______项15.已知圆C 的圆心是抛物线2116y x =的焦点。

高三数学毕业班试卷理试题

高三数学毕业班试卷理试题

高三数学毕业班联考试卷理制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

本套试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两局部,一共150分,考试时间是是120分钟。

在在考试完毕之后以后,上交答题卡。

参考公式:〔1〕34,3V R π=球 〔2〕 ,V S h =柱底 (3)1.3V S h =锥底 (4)假设事件,A B 互相HY ,那么A 与B 同时发生的概率()()()P A B P A P B ⋅=⋅.第I 卷〔选择题,一共40分〕一、选择题〔此题一共8个小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.〕1.复数z 满足i z i +-=-31)(,那么z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.假设实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤-+0001x y x y x ,那么y x z 32-=的最小值是( )A. 1B. -21C. -3D. 0 3.某程序框图如下图,该程序运行后输出的k 的值是( ) A .4 B .5 C .6 D .74.集合{}5|4||1||<-+-=x x x A ,集合{})2(log ||22x x y x B -==, 那么””是““B x A x ∈∈的〔 〕 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 假设dx x c b a ⎰===-π021sin 41,5,2ln ,那么c b a ,,的大小关系为〔 〕 A .b c a >> B.a c b >> C. b a c >> D.a b c >>6. 在△ABC 中,23sin )sin(=+-A C B ,AB AC 3=,那么角C =( ) A. π2 B. π3 C.π6或者π3 D. π67.双曲线1322=-y x 的右焦点恰好是抛物线)0(22>=p px y 的焦点F ,且M 为抛物线的准线与x 轴的交点,N 为抛物线上的一点,且满足||23||MN NF =,那么点F 到直线MN 的间隔 为〔 〕 A. B. 1 C. D. 28. 函数⎪⎩⎪⎨⎧<++≥+=)0(12)0(1)(2x x x x e xx f x ,假设函数1))((--=a x f f y 有三个零点,那么实数a 的取值范围是〔 〕A .]3,2()11,1(⋃+eB. }13{]3,2()11,1(ee +⋃⋃+C. }13{)3,2[)11,1(ee +⋃⋃+ D. ]3,2()21,1(⋃+e第二卷 (非选择题,一共110分)二.填空题(本大题一一共6小题,每一小题5分,一共30分.)9. 在二项式251()x x-的展开式中,含7x 的项的系数是10.曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线l 的参数方程是)(22221为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=,假设直线l 与曲线C 相交于B A ,两点,那么||AB =_________21侧〔左〕视图11.某几何体的三视图如下图,俯视图是由一个半圆 与其直径组成的图形,那么此几何体的体积是12.在平行四边形ABCD 中,,1,2==AD AB ∠BAD=60°,E 为CD 的中点,假设F 是线段 BC 上一动点,那么FE AF ⋅的取值范围是_________13. 假设正实数,x y ,满足52=+y x ,那么yy x x 121322-++-的最大值是 14. 3个男生和3个女生排成一列,假设男生甲与另外两个男同学都不相邻,那么不同的排法一共 有 种〔用数字答题〕三.解答题(本大题6小题,一共80分.解容许写出文字说明,证明过程或者演算步骤.) 15. (本小题满分是13分) 函数21)6(sin )2cos(cos 3)(2--+-=ππx x x x f . 〔Ⅰ〕求)(x f 的单调递增区间;〔Ⅱ〕假设63)(],4,0[=∈x f x π,求cos 2x 的值;16. (本小题满分是13分) 某单位年会进展抽奖活动,在抽奖箱里装有1张印有“一等奖〞的卡片,2张印有“二等奖〞的卡片,3张印有“新年快乐〞的卡片.抽中“一等奖〞获奖200元,抽中“二等奖〞获奖100元,抽中“新年快乐〞无奖金。

高三数学理科试题参考答案

高三数学理科试题参考答案

高三理科数学试题参考答案CADDC ADACA BC 13.{}52x x x <≠且 14.6a ≥- 15. 9 16.①③④17答案:解:(Ⅰ)()1cos 22f x x x ωω=-π2sin 216x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π()2sin 216f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤, 所以π1sin 226x ⎛⎫-- ⎪⎝⎭≤2≤. 因此π0sin 216x ⎛⎫-+ ⎪⎝⎭≤≤3,即()f x 的取值范围为[]03,. 18解:(1)由3cos()cos 2A CB -+=及π()B AC =-+得 3cos()cos()2A C A C --+=,-------2分 3cos cos sin sin (cos cos sin sin )2A C A C A C A C +--=, 3sin sin 4A C =. 又由题知2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,-------4分sin 2B =或sin 2B =-(舍去), 于是π3B =或2π3B =.又由2b ac =知b a ≤或b c ≤, 所以π3B =.------------6分 由以上知:π3B =代入3cos()cos 2A C B -+=得:cos()1A C -=; 即3A C π==;因此ABC △为等边三角形,-------9分(2)因为ABC △为等边三角形,π83b B ==,. 所以ABC △的面积为21sin 2ABCS b B ∆==分 19.解:设1(1)n a a n d =+-,则1125,613,a d a d +=⎧⎨+=⎩解得11,2a d ==.………………4分 所以}{n a 的通项公式为1(1)221n a n n =+-⨯=-.…………………………………6分(2)解:依题意得2133n a n n b -==.……………………………………………………8分 因为21121393n n n n b b ++-==,所以}{n b 是首项为1133b ==,公比为9的等比数列,……10分 所以}{n b 的前n 项和3(19)3(91)198n n n T ⨯-==--.………………………………12分 20解:(1)21,3nn n a n b =-=。

高三数学理科测试题函数、导数、三角函数、解三角形(供参考)

高三数学理科测试题函数、导数、三角函数、解三角形(供参考)

高三数学《函数与导数、三角函数与解三角形》测试题(理科)一、选择题1.设2:f x x →是集合A 到集合B 的映射,若{}1,2B =,则AB 为( ) A .∅B .{1}C .∅或{2}D .∅或{1}2.函数x x x f ln )(+=的零点所在的区间为( ) A .(-1,0)B .(0,1)C .(1,2)D .(1,e )3.若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,则a 的取值范围是( )A .(0,1)B .(1,+∞)C .(1,23)D .(0,1)∪(1,23)4.若0()ln 0xe x g x xx ⎧≤=⎨>⎩,则1(())2g g = ( )A .12B .1C .12e D .ln 2-5.已知32()f x ax bx cx d =+++的图象如图所示,则有 ( ) A .0b < B .01b <<C .12b <<D .2b >6. 已知函数()f x 定义域为R ,则下列命题:①若()y f x =为偶函数,则(2)y f x =+的图象关于y 轴对称. ②若(2)y f x =+为偶函数,则()y f x =关于直线2x =对称. ③若函数(21)y f x =+是偶函数,则(2)y f x =的图象关于直线12x 对称. ④若(2)(2)f x f x -=-,则则()y f x =关于直线2x =对称. ⑤函数(2)y f x =-和(2)y f x =-的图象关于2x =对称.其中正确的命题序号是 ( ) A.①②④ B.①③④ C.②③⑤ D.②③④ 7.y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数8.把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )xA .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π129.若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0 C .(0,0)D.⎝⎛⎭⎫-π4,0 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =211.tan10°+tan50°+tan120°tan10°·tan50°的值应是( )A .-1B .1C .- 3D.3 12. 函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<二、填空题13.设()f x 是定义在R 上且以3为周期的奇函数,若(1)1f ≤,23(2)1a f a -=+,则实数a 的取值范围是 .14.已知函数xx x f 2)(+=,x x x g ln )(+=,1)(--=x x x h 的零点分别为,,21x x 3x ,则321,,x x x 的大小关系是 .15.已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.16.对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上). 三、简答题17.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos2C =72.(1)求角C 的大小; (2)求△ABC 的面积.18.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.19.向量m =(a +1,sin x ),n =(1,4cos(x +π6)),设函数g (x )=m ·n (a ∈R ,且a 为常数).(1)若a 为任意实数,求g (x )的最小正周期;(2)若g (x )在[0,π3)上的最大值与最小值之和为7,求a 的值.20.设函数22()(1)ln(1)f x x x =+-+ (1)求函数)(x f 的单调区间;(2)当]1,11[--∈e ex 时,不等式()f x m <恒成立,求实数m 的取值范围; (3)关于x 的方程2()f x x x a =++在[0,2]上恰有两个相异实根,求a 的取值范围. 21.设函数bx xex f xa +=-)(,曲线)(x f y =在点(2,)2(f )处的切线方程为4)1(+-=x e y .(1)求a ,b 的值; (2)求)(x f 的单调区间. 22.答案解析选择题 1—5 DBCAA 6—12 CDBAC CB填空题 13. 213aa <-≥或 14. 321x x x >> 15.[-1,2] 16.②③ 简答题17.[解析] (1)∵A +B +C =180°,4sin 2A +B 2-cos2C =72.∴4cos 2C 2-cos2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,∴4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°. (2)∵c 2=a 2+b 2-2ab cos C , ∴7=(a +b )2-3ab ,解得ab =6. ∴S △ABC =12ab sin C =12×6×32=332.18.[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C=3,得ab =4.联立方程组⎩⎨⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A , 当cos A =0时,A =π2,B =π6,a =433,b =233,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433. 所以△ABC 的面积S =12ab sin C =233.19.[解析] g (x )=m ·n =a +1+4sin x cos(x +π6)=3sin2x -2sin 2x +a +1 =3sin2x +cos2x +a =2sin(2x +π6)+a(1)g (x )=2sin(2x +π6)+a ,T =π.(2)∵0≤x <π3,∴π6≤2x +π6<5π6当2x +π6=π2,即x =π6时,y max =2+a .当2x +π6=π6,即x =0时,y min =1+a ,故a +1+2+a =7,即a =2.20. (1)函数定义域为),1()1,(+∞---∞ ,,1)2(2]11)1[(2)(++=+-+='x x x x x x f 由,0)(>'x f 得210x x -<<->或 ;由,0)(<'x f 得.012<<--<x x 或则递增区间是(2,1),(0,)--+∞递减区间是(,2),(1,0)-∞--。

高三数学试题(理科)

高三数学试题(理科)

高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。

高三数学综合测试题(含答案)

高三数学综合测试题(含答案)

高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。

2023年高考真题及答案解析《数学理》(全国甲卷)

2023年高考真题及答案解析《数学理》(全国甲卷)

甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。

高三数学起点考试试题理试题

高三数学起点考试试题理试题

监利县2021届高三数学起点考试试题 理〔无答案〕本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

一、选择题(本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的).1.全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},那么图中的阴影局部所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}2.A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,那么满足f (0)>f (1)的映射有 ( )A .3个B .4个C .5个D .2个3.以下函数中,既是偶函数又在区间),0(+∞上单调递减的是 〔 〕A .3x y =B .x y ln =C .)2sin(x y -=π D .12--=x y 4.设x ,y ,z >0且x +3y +4z =6,那么x 2y 3z 的最大值为 ( )A .1B .2C .3D .45.以下命题中,真命题是 ( )A .0,00≤∈∃x e R xB .22,x R x x >∈∀C .0=+b a 的充要条件是1-=ba D .1,1>>b a 是1>ab 的充分条件 6.定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有f ′(x )<3,那么不等式f (x )<3x -15的解集为 ( )A .(-∞,4)B .(-∞,-4)C .(-∞,-4)∪(4,+∞)D .(4,+∞)7.对于满足40≤≤p 的所有实数p ,使不等式342-+>+p x px x 都成立的x 的取值范围 〔 〕A .13-<>x x 或B .13-≤≥x x 或C .31<<-xD .31≤≤-x8.“a =1〞是“函数f (x )=lg(ax )在(0,+∞)上单调递增〞的 ( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件9.在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+22t ,y =1+22t (t 为参数),曲线C 的极坐标方程是ρ=2,直线l 与曲线C 交于A 、B ,那么|AB |= ( ) A . 2 B .2 2 C .4 D .4 210.函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.假设直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公一共点,那么实数a 的值是( )A .0B .0或者-12C .-14或者-12D .0或者-1411.函数1)(,)(+==x x g e x f x ,那么关于)(),(x g x f 的语句为假命题的是 〔 〕A .)()(,x g x f R x >∈∀B .)()(,,2121x g x f R x x <∈∃C .)()(,000x g x f R x =∈∃D .R x ∈∃0,使得)()()()(,00x g x f x g x f R x -≤-∈∀12.函数()()b ax x x x x f +++=22)(,假设对R x ∈∀,均有)2()(x f x f -=,那么)(x f 的最小值为 〔 〕A .49- B .1635- C .2- D .0 二、填空题(此题一共4小题,每一小题5分,一共20分,把答案填在答题卡中横线上).13.f (x )=⎩⎪⎨⎪⎧ 0 x >0,-ex =0,x 2+1 x <0,那么f {f [f (π)]}的值是__________.14.全集{}4321,,,a a a a U =,集合A 是全集U 的恰有两个元素的子集,且满足以下三个条件:①假设A a ∈1,那么A a ∈2;②假设A a ∉3,那么A a ∉2;③假设A a ∈3,那么A a ∉4.那么集合=A 〔用列举法表示〕.15.以下命题:①112-=x y 的值域是),0(+∞;②21x y -=的值域是[]1,0;③3++=x x y 的值域为[)+∞-,3;④21x x y -+=的值域为[]2,2-,其中错误命题的个数为 . 16.设正数c b a ,,满足c b a c b a ++≤++642541,那么=++ac b a .三、解答题(本大题一一共6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤).17.(本小题满分是10分)集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)假设A ∩B =[0,3],务实数m 的值;(2)假设A ⊆∁R B ,务实数m 的取值范围.18.(本小题满分是12分)R m ∈,命题p :对[]1,0∈∀x ,不等式m m x 3222-≥-恒成立;命题q :[]1,1-∈∃x ,使得ax m ≤成立.〔1〕假设p 为真命题,务实数m 的取值范围;〔2〕当1=a 时,假设q p ∧为假,q p ∨为真,务实数m 的取值范围.19.(本小题满分是12分)函数f (x )=lg(x +1).(1)假设0<f (1-2x )-f (x )<1,求x 的取值范围;(2)假设g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),当x ∈[1,2]时,求函数y =g (x )的解析式.20.(本小题满分是12分)直线l :⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 213235 (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA|·|MB|的值.21.(本小题满分是12分)函数f (x )=|x -1|+2a (a ∈R ).(1)解关于x 的不等式f (x )<3;(2)假设不等式f (x )≥ax ,∀x ∈R 恒成立,求a 的取值范围.22.(本小题满分是12分)函数32,1()ln ,1x x x f x a x x ⎧-+<=⎨⎩≥,其中0a >.〔Ⅰ〕求()f x 在(,1)-∞上的单调区间;〔Ⅱ〕求()f x 在[1,]e -〔e 为自然对数的底数〕上的最大值;〔III 〕对任意给定的正实数a ,曲线()y f x =上是否存在两点P 、Q ,使得POQ ∆是 以原点O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期学分认定考试 高三数学(理)试题
2014.01
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:
1.用0.5毫米黑色签字笔(中性笔)将有关信息填在答题卡规定的位置上,按要求贴好条形码.
2.第I 卷答案请用2B 铅笔把答题纸上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试题卷上.
3.第II 卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题纸各题目指定区域;如需改动,先划掉原来的解答,然后再写上新的解答;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:
2341
=4==;=33
S R V R V S h V S h ππ球球锥体底柱体底;;
第I 卷(选择题 共60分)
一、选择题:本题共12小题,每小题5分,共60分;在每小题给出的四个选项中只有
一个是符合题目要求的.
1.设集合{}
{}{}24=lg 1x
A x R
B x R y x =∈≤∈=-,集合,则下列说法正确的是
A.[]1,2A B ⋂=
B.()()102U U x C A C B x R
x ⎧-⎫
⋃=∈≥⎨⎬-⎩⎭
C.()(],1U A C B ⋃==-∞
D.()U C A B B ⋂=
2.已知命题22
:2:23p x R q a y x ax ∃∈===-+;命题是函数在区间
[)1,+∞递增的充分但不必要条件.给出下列结论:①命题“p q ∧”是真命题;②命题
“p q ⌝∧”是真命题;③命题“p q ⌝∨”是真命题;④命题“p q ∨⌝”是假命题 其中正确说法的序号是
A.②④
B.②③
C.②③④
D.①②③④
3.已知(()
4,log a 2a b a b b =-=-⊥ ,若,则向量a b
与的夹角是
A.60
B.30
C.120
D.150
4.设变量,x y 满足约束条件22x y x x y ≤⎧⎪
≤⎨⎪+≥⎩
则目标函数2z x y =+的最小值为
A.6
B.4
C.3
D.2
5.函数()ln 1f x x =-的图象大致形状是
6.函数()()s i n 0,2f
x A x A πωϕϕ⎛
⎫=
+
>< ⎪⎝
⎭其中的图象如图所示,为了得到()sin 3g x x =的图象,只需将()f x 的图象
A.向右平移4π
个单位 B.向左平移

个单位 C.向右平移12
π
个单位
D.向左平移12
π
个单位
7.函数()()2
1
13x m f x --+⎛⎫= ⎪⎝⎭
的单调增区间与值域相同,则
实数m 的取值为 A.
13
B.3
C.1-
D.1
8.若,αβ为两个不同的平面,m ,n 为不同直线,下列推理: ①若,,,m n m n αβαβ⊥⊥⊥⊥则直线;
②若直线//m n m n αβ⊥⊥平面,直线直线,则直线平面; ③若直线m//n ,,m n αβαβ⊥⊂⊥,则平面平面;
④若平面//,m n m αββα⊥⊂⊥平面,直线平面,则直线直线n ;
其中正确说法的序号是 A.②③④ B.①③④
C.①②③④
D.①②④
9.以抛物线2
20y x =的焦点为圆心,且与双曲线221169
x y -=两条渐近线都相切的圆的方
程为
A.2
2
20640x y x +-+= B.22
20360x y x +-+= C.2
2
10160x y x +-+=
D.2
2
1090x y x +-+=
10.已知(
)
6
21ax +(a 是正整数)的展开式中,8x 的系数小于120,则实数a 的值为 A.4
B.3
C.2
D.1
11.若在区间()1,1-内任取实数a ,在区间(0,1)内任取实数b ,则直线
()()22
0121ax by x y -=-+-=与圆相交的概率为
A.
38
B.
516
C.
58
D.
3
16
12.设函数()f x 的定义域为R ,()0111103x
x x f x x R x ≤≤⎧⎪
=∈⎨⎛⎫--≤<⎪⎪⎝⎭
⎩,且对任意的都有()()11f x f x +=-,若在区间[]()()1,5g x f x mx m -=--上函数,恰有6个不同零
点,则实数m 的取值范围是 A.11,46⎛⎤ ⎥⎝⎦
B.11,34
⎛⎤ ⎥⎝⎦
C.10,5
⎛⎤ ⎥⎝

D.10,6
⎛⎤ ⎥⎝

第II 卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分.
13.由2
,1,2,0y x x x y ====所围成的封闭图形的面积为__________.
14.设袋中有黑球、白球共9个(有不同编号),从中任取3个球,若其中含有白球的概率为
20
21
,则袋中白球的个数为________.
15.一个几何体的三视图如右图所示,则这个几何体的表面积为________. 16.设曲线()()1
*
11
n y x
n N +=∈在点,处的切线与x 轴的交点的横坐标为123999,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.
三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)
已知()()()2
2sin .cos 2,,,f x x x x a b c ππ=---分别为△ABC 中中角A ,B ,
C 的对边,角A 为锐角且()0f A (I )求角A 的大小;
(II )若2,a b ==ABC 的面积S.
某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润与其无故障使用时间T (单位:年)有关.若1T ≤,则每台销售利润为0元;若1<T ≤3,则每台销售利润为100元;若3T >,则每台销售利润为200元.设每台该种电视机的无故障使用时间1,1T ≤<T ≤3,T >3这三种情况发生的概率分别为12312,,,,P P P P P 又知是方程2
1060x x a -+=,且23P P =. (1)求123,,,P P P 的值;
(II )记ξ表示销售两台这种电视机的销售利润总和,写出ξ的所有结果,并求ξ的分布列;
(III )求销售两台这种型号电视机的销售利润总和的期望值.
已知四边形ABCD 满足1
//,2
AD BC BA AD DC BC a ===
=,E 是BC 的中点,将△BAE 沿AE 翻折成11,B AE B AE AECD ∆⊥使面面,F 为1B D 的中点. (I )求四棱锥
1B AECD -的体积; (II )证明:1//B E ACF 面; (III )求面11ADB ECB 与面所成二面角的余弦值.
设数列{}n b 的前n 项和为{}*
,22n n n n S n N b S a ∈=-对任意,都有;数列为等差数
列,且5714,20a a == (I )求数列{}n b 的通项公式;
(II )若{}7,1,2,3,,.2
n n n n n n c a b n T c n T =⋅=⋅⋅⋅<设为数列的前项和求证:.
21.(本小题满分12分)
已知()()3
2
3,ln f x x ax x g x x b =-+=+
(I )若曲线()()()1f x h x g x x x
=
+=在处的切线是0x y +=,求实数a 和b 的值;
(III )若()3x f x =是的极值点,求()[]02f x 在,
上的最大最小值.
已知()22
12121x F F C y a a +=>1、分别是椭圆:的左、右焦点,O 为坐标原点.
(I )若椭圆22
12131y x C C -=与双曲线:的离心率互为倒数,求此时实数a 的值;
(II )若直线()101l F 经过点和点,
,且原点到直线l 又另一条直线m ,斜率为1,与椭圆1C E F OE OF ⊥
交于,两点,且,求直线m 的方程;
(III )若在直线2
x =上存在点P ,使线段121PF M MF PF ⊥
的中点满足.求a 的
取值范围.。

相关文档
最新文档