带电粒子在有界磁场中运动(超经典)..

合集下载

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。

带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。

带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。

2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。

一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。

二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

高考物理一轮复习讲义带电粒子在复合场中的运动

高考物理一轮复习讲义带电粒子在复合场中的运动

课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

带电粒子在有界磁场中的运动 经典练习(含答案详解)

带电粒子在有界磁场中的运动   经典练习(含答案详解)

带电粒子在有界磁场中的运动图38101.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出.∠AOB =120°,如图3810所示,则该带电粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D解析 从AB 弧所对圆心角θ=60°,知t =16 T =πm 3qB.但题中已知条件不够,没有此选项,另想办法找规律表示t .由匀速圆周运动t =ABv 0,从题图分析有R =3r ,则:AB =R ·θ=3r ×π3=33πr ,则t =AB v 0=3πr 3v 0.D 正确. 带电粒子在复合场中的运动图38112.一正电荷q 在匀强磁场中,以速度v 沿x 正方向进入垂直纸面向里的匀强磁场中,磁感应强度为B ,如图3811所示,为了使电荷能做直线运动,则必须加一个电场进去,不计重力,此电场的场强应该是( )A .沿y 轴正方向,大小为Bv qB .沿y 轴负方向,大小为BvC .沿y 轴正方向,大小为v BD .沿y 轴负方向,大小为Bv q答案 B解析 要使电荷能做直线运动,必须用电场力抵消洛伦兹力,本题正电荷受洛伦兹力的方向沿y 轴正方向,故电场力必须沿y 轴负方向且qE =Bqv ,即E =Bv .带电粒子在组合场中的运动图38123.如图3812所示,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求:(1)电场强度的大小E ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从进入电场到离开磁场经历的总时间t .答案 见解析解析 粒子的运动轨迹如右图所示(1)设粒子在电场中运动的时间为t 1则有2h =v 0t 1,h =12at 21根据牛顿第二定律得Eq =ma求得E =mv 202qh.(2)设粒子进入磁场时速度为v ,在电场中,由动能定理得Eqh =12mv 2-12mv 20又Bqv =m v 2r, 解得r =2mv 0Bq(3)粒子在电场中运动的时间t 1=2h v 0粒子在磁场中运动的周期T =2πr v =2πm Bq设粒子在磁场中运动的时间为t 2,t 2=38T ,求得t =t 1+t 2=2h v 0+3πm 4Bq.(时间:60分钟)题组一 带电粒子在匀强磁场中的匀速圆周运动1.(2014·临沂高二检测)运动电荷进入磁场(无其他场)中,可能做的运动是( )A .匀速圆周运动B .平抛运动C .自由落体运动D .匀速直线运动答案 AD解析 若运动电荷平行磁场方向进入磁场,则电荷做匀速直线运动,若运动电荷垂直磁场方向进入磁场,则电荷做匀速圆周运动,A 、D 正确;由于电荷的质量不计,故电荷不可能做平抛运动或自由落体运动.B 、C 错误.图38132.如图3813所示,带负电的粒子以速度v 从粒子源P 处射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A .aB .bC .cD .d答案 BD解析 粒子的出射方向必定与它的运动轨迹相切,故轨迹a 、c 均不可能,正确答案为B 、D.图38143.(2013·孝感高二检测)如图3814所示,在x >0,y >0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有四个质量及电荷量均相同的带电粒子,由x 轴上的P 点以不同的初速度平行于y 轴射入此磁场,其出射方向如图所示,不计重力的影响,则( )A .初速度最大的粒子是沿①方向射出的粒子B .初速度最大的粒子是沿②方向射出的粒子C .在磁场中运动时间最长的是沿③方向射出的粒子D .在磁场中运动时间最长的是沿④方向射出的粒子答案 AD解析 显然图中四条圆弧中①对应的半径最大,由半径公式R =mv Bq可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A 对B 错;根据周期公式T =2πm Bq 知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t =θm Bq,圆心角越大则运动时间越长,圆心均在x 轴上,由半径大小关系可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,D 对C 错.图38154.利用如图3815所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q 、具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB L +3d 2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大答案 BC解析 由左手定则可判断粒子带负电,故A 错误;由题意知:粒子的最大半径r max =L +3d 2、粒子的最小半径r min =L 2,根据r =mv qB,可得v max =qB L +3d 2m 、v min =qBL 2m,则v max -v min =3qBd 2m ,故可知B 、C 正确,D 错误.图38165.如图3816所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2Bqd 2m答案 BC解析 粒子射入磁场后做匀速圆周运动,由r =mv 0qB知,粒子的入射速度v 0越大,r 越大,当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图(a)所示(此时圆心为O 点),容易看出R 1sin 45°+d=R 1,将R 1=mv 0qB 代入上式得v 0=2+2Bqd m,B 项正确.若粒子带负电,其运动轨迹如图(b)所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入上式得v 0=2-2Bqdm ,C 项正确.图38176.如图3817所示的矩形abcd 范围内有垂直纸面向外的磁感应强度为B 的匀强磁场,且ab 长度为L ,现有比荷为q m的正电离子在a 处沿ab 方向射入磁场,求离子通过磁场后的横向偏移y (设离子刚好从C 点飞出).答案 mv Bq -mv Bq 2-L 2解析 离子作匀速圆周运动从a →c ,易知圆心在图中的O 处,即a 、c 两处速度垂线的交点处.横向偏移y =aO -dO =R -R 2-L 2由Bqv =mv 2R ,得R =mv Bq ,故有y =mv Bq -mv Bq 2-L 2图38187.如图3818所示,分布在半径为r 的圆形区域内的匀强磁场,磁感应强度为B ,方向垂直纸面向里.电量为q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆的半径AO 方向射入磁场,离开磁场时速度方向偏转了60°角.(不计粒子的重力)求:(1)粒子做圆周运动的半径.(2 )粒子的入射速度.答案 (1)3r (2)3Bqr m解析 (1)设带电粒子在匀强磁场中做匀速圆周运动半径为R ,如图所示,∠OO ′A = 30°,由图可知,圆运动的半径R =O ′A =3r(2)根据牛顿运动定律,有:Bqv =m v 2R有:R =mv Bq故粒子的入射速度v =3Bqr m .题组二 带电粒子的运动在科技中的应用图38198.如图3819所示是粒子速度选择器的原理图,如果粒子所具有的速率v =E /B ,那么( )A .带正电粒子必须沿ab 方向从左侧进入场区,才能沿直线通过B .带负电粒子必须沿ba 方向从右侧进入场区,才能沿直线通过C .不论粒子电性如何,沿ab 方向从左侧进入场区,都能沿直线通过D .不论粒子电性如何,沿ba 方向从右侧进入场区,都能沿直线通过答案 AC解析 按四个选项要求让粒子进入,洛伦兹力与电场力等大反向抵消了的就能沿直线匀速通过磁场.图38209.如图3820所示是磁流体发电机原理示意图.A、B极板间的磁场方向垂直于纸面向里.等离子束从左向右进入板间.下述正确的是( )A.A板电势高于B板,负载R中电流向上B.B板电势高于A板,负载R中电流向上C.A板电势高于B板,负载R中电流向下D.B板电势高于A板,负载R中电流向下答案 C解析等离子束指的是含有大量正、负离子,整体呈中性的离子流,进入磁场后,正离子受到向上的洛伦兹力向A板偏,负离子受到向下的洛伦兹力向B板偏.这样正离子聚集在A 板,而负离子聚集在B板,A板电势高于B板,电流方向从A→R→B.图382110.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图3821所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( ) A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案 A解析血液中的粒子在磁场的作用下会在a,b之间形成电势差,当电场给粒子的力与洛伦兹力大小相等时达到稳定状态(与速度选择器原理相似),血流速度v=EB≈1.3 m/s,又由左手定则可得a 为正极,b 为负极,故选A.图382211.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图3822,离子源S 产生的各种不同正离子束(速度可看作为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x ,可以判断( )A .若离子束是同位素,则x 越小,离子质量越大B .若离子束是同位素,则x 越小,离子质量越小C .只要x 相同,则离子质量一定相同D .x 越大,则离子的比荷一定越大答案 B解析 由qU =12mv 2 ① qvB =mv 2r ② 解得r =1B2mU q ,又x =2r 故选B.题组三 带电粒子在复合场中的运动图382312.如图3823所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v 沿直线从左向右水平飞越此区域.下列说法正确的是( )A .若一电子以速率v 从右向左飞入,则该电子也沿直线运动B .若一电子以速率v 从右向左飞入,则该电子将向上偏转C .若一电子以速率v 从右向左飞入,则该电子将向下偏转D .若一电子以速率v 从左向右飞入,则该电子也沿直线运动答案 BD解析 若电子从右向左飞入,静电力向上,洛伦兹力也向上,所以电子上偏,选项B 正确,A 、C 错误;若电子从左向右飞入,静电力向上,洛伦兹力向下.由题意,对正电荷有qE =Bqv ,会发现q 被约去,说明等号的成立与q 无关,包括q 的大小和正负,所以一旦满足了E =Bv ,对任意不计重力的带电粒子都有静电力大小等于洛伦兹力大小,显然对于电子两者也相等,所以电子从左向右飞入时,将做匀速直线运动,选项D 正确.图382413.一个带电微粒在如图3824所示的正交匀强电场和匀强磁场中的竖直平面内做匀速圆周运动,求:(1)该带电微粒的电性?(2)该带电微粒的旋转方向?(3)若已知圆的半径为r ,电场强度的大小为E ,磁感应强度的大小为B ,重力加速度为g ,则线速度为多少?答案 (1)负电荷 (2)逆时针 (3)gBr E解析 (1)带电粒子在重力场、匀强电场和匀强磁场中做匀速圆周运动,可知,带电粒子受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知带电粒子带负电荷.(2)磁场方向向外,洛伦兹力的方向始终指向圆心,由左手定则可判断粒子的旋转方向为逆时针(四指所指的方向与带负电的粒子的运动方向相反).(3)由粒子做匀速圆周运动,得知电场力和重力大小相等,得:mg =qE ①带电粒子在洛伦兹力的作用下做匀速圆周运动的半径为: r =mv qB② ①②联立得:v =gBr E题组四 带电粒子在电场和磁场组合场中的运动图382514.如图3825所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感应强度为B .在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电荷量为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与点O 的距离为L ,求此粒子射出的速度v 和运动的总路程s .(重力不计)答案 qBL 4m πL 2+qB 2L 216mE解析 由题意知第3次经过x 轴的运动如图所示由几何关系:L =4R设粒子初速度为v ,则有:qvB =m v 2R可得:v =qBL 4m; 设粒子进入电场作减速运动的最大路程为L ′,加速度为a ,则有:v 2=2aL ′qE =ma则电场中的路程:L ′=qB 2L 216mE粒子运动的总路程:s =2πR +2L ′=πL 2+qB 2L 216mE15.如图3826所示,平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成60°角射入磁场,最后从y 轴负半轴上的P 点与y 轴正方向成60°角射出磁场,不计粒子重力,求:图3826(1)粒子在磁场中运动的轨道半径R ;(2)匀强电场的场强大小E .答案 (1)2mv 0qB (2)3-3v 0B 2解析 (1)因为粒子在电场中做类平抛运动,设粒子过N 点时的速度为v ,把速度v 分解如图甲所示甲根据平抛运动的速度关系,粒子在N 点进入磁场时的速度v =v x cos 60°=v 0cos 60°=2v 0. 如图乙所示,乙分别过N 、P 点作速度方向的垂线,相交于Q 点,则Q 是粒子在磁场中做匀速圆周运动的圆心根据牛顿第二定律qvB =mv 2R所以R =mv qB, 代入v =2v 0得粒子的轨道半径R =2mv 0qB(2)粒子在电场中做类平抛运动,设加速度为a,运动时间为t由牛顿第二定律:qE=ma①设沿电场方向的分速度为v y=at②粒子在电场中x轴方向做匀速运动,由图根据粒子在磁场中的运动轨迹可以得出:粒子在x轴方向的位移:R sin 30°+R cos 30°=v0t③又v y=v0tan 60°④由①②③④可以解得E=3-3v0B2.。

高考物理一轮复习课件 第十章 专题强化十八 带电粒子在有界匀强磁场中的运动

高考物理一轮复习课件 第十章 专题强化十八 带电粒子在有界匀强磁场中的运动

场的磁感应强度大小均为B、方向分别垂直纸面向里、向外.三角形顶点A
处有一质子源,能沿∠A的角平分线发射速度大小不等、方向相同的质子
(质子重力不计、质子间的相互作用可忽略),所有质子恰能通过D点,已
知质子的比荷 q=k,则质子的速度L
3BkL C. 2
√D.B8kL
质子可能的运动轨迹如图所示,由几何关系可得 2nRcos 60°=L(n= 1,2,…),由洛伦兹力提供向心力,则有 Bqv=mvR2,联立解得 v=BmqR =BnkL(n=1,2,…),所以 A、B、D 正确,C 错误.
可知,在此过程中每个电子的速度方向都改变2θ,即轨迹圆心角为2θ,
电子在磁场中的运动时间t=22πθ T,故不同速率的电子在磁场中运动时
间都相同,C错误,D正确.
1 2 3 4 5 6 7 8 9 10 11 12
2.(多选)如图所示,水平放置的挡板上方有垂直纸面向里的匀强磁场,一
带电粒子a垂直于挡板从板上的小孔O射入磁场,另一带电粒子b垂直于
电子从 a 点射出时,其运动轨迹如图线①,轨迹半径为 ra=4l , 由洛伦兹力提供向心力,有 evaB=mvraa2,
又me =k,解得 va=k4Bl; 电子从 d 点射出时,运动轨迹如图线②,由几何关系有 rd2=l2+(rd-2l)2,解 得:rd=54l,由洛伦兹力提供向心力,有 evdB=mvrdd2,又me =k,解得 vd=5k4Bl, 选项 B 正确.
场边界上的a点垂直MN和磁场方向射入磁场,经t1时间从b点离开磁场.之
后电子2也由a点沿图示方向以相同速率垂直磁场方向射入磁场,经t2时
间从a、b连线的中点c离开磁场,则
t1为 t2
√A.3
B.2

专题10 带电粒子在磁场中的运动—备战2023年高考物理母题题源解密(全国通用)(原卷版)

专题10 带电粒子在磁场中的运动—备战2023年高考物理母题题源解密(全国通用)(原卷版)
(1)求直流电源的电动势 ;
(2)求两极板间磁场的磁感应强度 ;
(3)在图中虚线的右侧设计一匀强电场,使小球离开电容器后沿直线运动,求电场强度的最小值 。
【命题意图】本题考查带电粒子在匀强磁场中做匀速圆周运动时遵循的规律,涉及向心力、洛伦兹力、圆周运动知识,意在考查考生对物理规律的理解能力和综合分析能力。
A. 氕核和氘核第一次进入Ⅱ区时的速度方向相同
B. 氘核第一次进入Ⅱ区时的速度大小为
C. 氕核在Ⅱ区做匀速圆周运动的半径为
D. 氕核和氘核第一次刚出Ⅱ区时的位置相距
4、(2022·湖北省常德市高三下学期高考模拟)如图所示,在xOy平面内,0<x≤a区域有垂直于纸面向里、磁感应强度大小为B的匀强磁场,a<x≤2a区域有垂直于纸面向外的匀强磁场(大小未知)。一质量为m、带电量为q(q>0)、速度大小为 的粒子由坐标原点O沿x轴正方向射入磁场,仅在洛伦兹力的作用下,粒子最后又从y轴射出磁场区域。下列说法正确的是( )
(1)当离子甲从 点出射速度为 时,求电场强度的大小 ;
(2)若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度 ;
(3)离子甲以 的速度从 点沿 轴正方向第一次穿过 面进入磁场I,求第四次穿过 平面的位置坐标(用 表示);
(4)当离子甲以 的速度从 点进入磁场I时,质量为 、带电量为 的离子乙,也从 点沿 轴正方向以相同的动能同时进入磁场I,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差 (忽略离子间相互作用)。
A. 沿径迹 运动的粒子在磁场中运动时间最短B. 沿径迹 、 运动的粒子均为正电子
C. 沿径迹 、 运动的粒子速率比值为 D. 沿径迹 、 运动的时间之比为9:8
8、(2022·江苏盐城市高三下学期二模)如图所示,水平面的abc区域内存在有界匀强磁场,磁感应强度大小为B,边界的夹角为30°,距顶点b为L的S点有一粒子源,粒子在水平面内垂直bc边向磁场内发射速度大小不同的带负电的粒子、粒子质量为m、电量大小为q,下列说法正确的是( )

专题:带电粒子在有界磁场中的运动(103张PPT)

专题:带电粒子在有界磁场中的运动(103张PPT)
v s1 θ1
R1 R2 B O s2
2m T= Bq
r R tan
t = θ 2 T mv R= Bq

2
θ2
练、某离子速度选择器的原理图如图,在半径为R=10cm
的圆形筒内有B= 1×10-4 T 的匀强磁场,方向平行于轴 线。在圆柱形筒上某一直径两端开有小孔a、b。现有一 束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射, 其中入射角 α =30º ,且不经碰撞而直接从出射孔射出的 αa 离子的速度v大小是 ( ) C
两类典型问题
1.带电粒子在有界匀强磁场中(只受洛 伦兹力)做圆弧运动; 2.带电粒子在磁场中运动时的临界问题 (或多解问题)的讨论
概述 • 1、本类问题对知识考查全面,涉及到力学、 电学、磁学等高中物理的主干知识,对学生 的空间想象能力、分析综合能力、应用数学 知识解决物理问题能力有较高的要求,是考 查学生多项能力的极好的载体,因此成为历 年高考的热点。 • 2、从试题的难度上看,多属于中等难度或 较难的计算题。原因有二:一是题目较长, 常以科学技术的具体问题为背景,从实际问 题中获取、处理信息,把实际问题转化成物 理问题。二是涉及数学知识较多(特别是几 何知识)。
从x轴上的P(a,0)点以速度v,沿与x正方向成60º
的方向射入第一象限内的匀强磁场中,并恰好垂 直于y轴射出第一象限。求匀强磁场的磁感应强 度B和射出点的坐标。
解析 :
r
v
y
B
2a
mv 3 Bq
O′ O a
3 mv 得 B 2aq 射出点坐标为(0, 3 a )
v 60º
x
单边界磁场
练、如图,虚线上方存在磁感应强度为B的磁场, 一带正电的粒子质量m、电量q,若它以速度v沿与 虚线成300、900、1500、1800角分别射入, 1.请作出上述几种情况下粒子的轨迹 2.观察入射速度、出射速度与虚线夹角间的关系 3.求其在磁场中运动的时间。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界磁场中运动规律整合

带电粒子在有界磁场中运动规律整合

带电粒子在有界磁场中运动规律整合带电粒子在有界磁场中的运动问题,是高中物理学习的重点,对考生的空间想象能力、物理过程的分析能力以及物理规律的综合应用能力都有很高的要求。

粒子的运动轨迹往往是一个残缺圆,因此会出现一系列最值。

由于此类问题综合性强,思维含量高,具有很强的选拔功能,因此成为历年高考的热点。

1.速度之“最”带电粒子在有界磁场中的匀速圆周运动,其轨迹是圆的一段弧,当速度大小变化时,匀速圆周运动的半径随之变化,轨迹也将发生变化,当带电粒子在磁场中运动的轨迹与边界相切或运动轨迹恰好过边界端点时的速度,就是满足条件的最大或最小速度.例题1:如图1宽为d的有界磁场的边界为PQ、MN,一个质量为m,带电荷量为-q的微粒沿图示方向垂直射入磁场,磁感应强度为B,要使该粒子不能从边界MN射出,此粒子入射速度的最大值是多大?2.运动时间之“最”由和得带电粒子在磁场中运动时间,时间与速度无关,圆心角越大,则粒子运动时间越长,因此圆心角之“最”决定运动时间之“最”。

例题2:如图3所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。

以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。

D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。

质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。

粒子在s1处的速度和粒子所受的重力均不计。

当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。

例题3:如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件

新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件

电荷处在电场中
大小
F=qvB(v⊥B)
F=qE
方向
F⊥B且F⊥v
正电荷受力与电场方向相同,负电 荷受力与电场方向相反
可能做正功,可能做负功,也可能 做功情况 任何情况下都不做功
不做功
(二) 半径公式和周期公式的应用(固基点)
[题点全练通]
1.[半径公式、周期公式的理解]
(选自鲁科版新教材)(多选)在同一匀强磁场中,两带电量相等的粒子,仅受磁
[答案] D
类型(二) 平行直线边界的磁场 1.粒子进出平行直线边界的磁场时,常见情形如图所示:
2.粒子在平行直线边界的磁场中运动时存在临界条件,如图a、c、d所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间
[答案] BD
[例 3] 如图所示,平行边界区域内存在匀强磁场,比荷相同 的带电粒子 a 和 b 依次从 O 点垂直于磁场的左边界射入,经磁场 偏转后从右边界射出,带电粒子 a 和 b 射出磁场时与磁场右边界 的夹角分别为 30°和 60°,不计粒子的重力,下列判断正确的是( )
A.粒子 a 带负电,粒子 b 带正电 B.粒子 a 和 b 在磁场中运动的半径之比为 1∶ 3 C.粒子 a 和 b 在磁场中运动的速率之比为 3∶1 D.粒子 a 和 b 在磁场中运动的时间之比为 1∶2
(三) 带电粒子在有界匀强磁场中的圆周运动(精研点) 类型(一) 直线边界的磁场
1.粒子进出直线边界的磁场时,常见情形如图所示:
2.带电粒子(不计重力)在直线边界匀强磁场中的运动时具有两个特性: (1)对称性:进入磁场和离开磁场时速度方向与边界的夹角相等。 (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

电粒子在磁场中的圆周运动1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比答案 D解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B2πm ,故答案选D.带电粒子在有界磁场中的运动2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图377A .1∶2B .2∶1C .1∶ 3D .1∶1答案 B解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1.回旋加速器问题图3783.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBrm .若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m .所以要提高加速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .(时间:60分钟)题组一 带电粒子在磁场中的圆周运动图3791.如图379所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,方向垂直纸面向里.有一束粒子对准a 端射入弯管,粒子的质量、速度不同,但都是一价负粒子,则下列说法正确的是( )A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管C .只有质量和速度乘积大小一定的粒子可以沿中心线通过弯管D .只有动能大小一定的粒子可以沿中心线通过弯管 答案 C解析 由R =m vqB 可知,在相同的磁场,相同的电荷量的情况下,粒子做圆周运动的半径决定于粒子的质量和速度的乘积.图37102.如图3710所示,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小 答案 B解析 由左手定则可判断电子运动轨迹向下弯曲.又由r =m vqB 知,B 减小,r 越来越大,故电子的径迹是a .故选B.3.一电子在匀强磁场中,以一正电荷为圆心在一圆轨道上运行.磁场方向垂直于它的运动平面,电场力恰好是磁场作用在电子上的磁场力的3倍,电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的角速度可能为( )A .4Be mB .3Be mC .2Be m D.Be m答案 AC解析 向心力可能是F 电+F B 或F 电-F B ,即4eB v 1=m v 21R =mω21R 或2eB v 2=m v 22R =mω22R ,所以角速度为ω1=4Be m 或ω2=2Be m.故A 、C 正确.4.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度2倍的匀强磁场中做匀速圆周运动,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率减半,轨道半径变为原来的14D .粒子的速率不变,周期减半 答案 BD解析 由R =m v qB 可知,磁场加倍半径减半,洛伦兹力不做功,速率不变,由T =2πmBq 可知,周期减半,故B 、D 选项正确.图37115.如图3711所示,一带电粒子(重力不计)在匀强磁场中沿图中轨道运动,中央是一薄绝缘板,粒子在穿过绝缘板时有动能损失,由图可知( ) A .粒子的运动方向是abcde B .粒子带正电C .粒子的运动方向是edcbaD .粒子在下半周期比上半周期所用时间长 答案 BC题组二 带电粒子在有界磁场中运动图37126.空间存在方向垂直于纸面向里的匀强磁场,图3712中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答案 BD解析 由于粒子比荷相同,由R =m vqB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确.对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πmqB 知所有粒子在磁场运动周期都相同,A 、C 皆错误.再由t =θ2πT =θmqB可知D 正确,故选BD.图37137.如图3713所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( ) A .1∶3 B .4∶3 C .1∶1 D .3∶2答案 D解析 如图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=3∶2,故选D.图37148.如图3714所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 射出的粒子速度大 B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长 答案 BD解析 作出各自的轨迹如图所示,根据圆周运动特点知,分别从P 、Q 点射出时,与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以,从Q 点射出的粒子速度大,B 正确;根据图示,可知两个圆心角相等,所以,从P 、Q 点射出时,两粒子在磁场中的运动时间相等.正确选项应是B 、D. 题组三 质谱仪和回旋加速器图37159.如图3715是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于EBD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小答案 ABC解析 质谱仪是测量带电粒子的质量和分析同位素的重 要工具,故A 选项正确;速度选择器中电场力和洛伦兹力是一对平衡力,即:q v B =qE ,故v =EB ,根据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,故B 、C 选项正确.粒子在匀强磁场中运动的半径r =m v qB 0,即粒子的比荷qm =v B 0r ,由此看出粒子的运动半径越小,粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越大,故D 选项错误. 10.用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1∶1B .1∶2C .2∶1D .1∶3 答案 B图371611.(2014·高新区高二检测)一个用于加速质子的回旋加速器,其核心部分如图3716所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.下列说法正确的是( ) A .质子被加速后的最大速度随B 、R 的增大而增大 B .质子被加速后的最大速度随加速电压的增大而增大 C .只要R 足够大,质子的速度可以被加速到任意值 D .不需要改变任何量,这个装置也能用于加速α粒子 答案 A解析 由r =m v qB 知,当r =R 时,质子有最大速度v m =qBRm ,即B 、R 越大,v m 越大,v m 与加速电压无关,A 对、B 错.随着质子速度v 的增大、质量m 会发生变化,据T =2πmqB 知质子做圆周运动的周期也变化,所加交流电与其运动不再同步,即质子不可能一直被加速下去,C 错.由上面周期公式知α粒子与质子做圆周运动的周期不同,故此装置不能用于加速α粒子,D 错. 题组四 综合应用图371712.带电粒子的质量m =1.7×10-27kg ,电荷量q =1.6×10-19C ,以速度v =3.2×106 m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图3717所示.(1)带电粒子离开磁场时的速度多大? (2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?(g 取10 m/s 2) 答案 见解析解析 粒子所受的洛伦兹力F 洛=q v B ≈8.7×10-14 N ,远大于粒子所受的重力G =mg =1.7×10-26 N ,故重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106 m/s.(2)由q v B =m v 2r 得轨道半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m .由题图可知偏转角θ满足:sin θ=Lr =0.1 m 0.2 m =0.5,所以θ=30°=π6,带电粒子在磁场中运动的周期T =2πm qB,可见带电粒子在磁场中运动的时间t =θ2π·T =112T ,所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32)m ≈2.7×10-2 m.图371813.如图3718所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v 0从O 点垂直射入.已知两板之间距离为d .板长为d ,O 点是NP 板的正中点,为使粒子能从两板之间射出,试求磁感应强度B 应满足的条件(已知质子带电荷量为q ,质量为m ). 答案4m v 05dq ≤B ≤4m v 0dq解析 如图所示,由于质子在O 点的速度垂直于板NP ,所以粒子在磁场中做圆周运动的圆心O ′一定位于NP 所在的直线上.如果直径小于ON ,则轨迹将是圆心位于ON 之间的一段半圆弧. (1)如果质子恰好从N 点射出,R 1=d 4,q v 0B 1=m v 20R 1.所以B 1=4m v 0dq.(2)如果质子恰好从M 点射出R 22-d 2=⎝⎛⎭⎫R 2-d 22,q v 0B 2=m v 20R 2,得B 2=4m v 05dq.所以B 应满足4m v 05dq ≤B ≤4m v 0dq.图371914.如图3719,一个质量为m ,电荷量为-q ,不计重力的带电粒子从x 轴上的P (a,0)点以速度v ,沿与x 轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限,求: (1)匀强磁场的磁感应强度B ; (2)穿过第一象限的时间. 答案 (1)3m v 2qa (2)43πa 9v解析 (1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知: R cos 30°=a ,得:R =23a3Bq v =m v 2R 得:B =m v qR =3m v2qa .(2)运动时间:t =120°360°·2πm qB =43πa9v.。

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求3〕〕匀强磁场的磁感应强度B和射出点的坐标。

〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

高中物理:专题1《带电粒子在有界磁场中的运动》

高中物理:专题1《带电粒子在有界磁场中的运动》

专题1:带电粒子在有界磁场中的运动1.如图甲所示,有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B1、B2,B1与B2的比值为 ( )A.2cosθB.sinθC.cosθD.tanθ2.(多选)如下图所示,在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M、N两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法正确的是( )A.带电粒子在磁场中飞行的时间可能相同B.从M点射入的带电粒子可能先飞出磁场C.从N点射入的带电粒子可能先飞出磁场D.从N点射入的带电粒子不可能比M点射入的带电粒子先飞出磁场3.(多选)如右图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )A.从P射出的粒子速度大B.从Q射出的粒子速度大C.从P射出的粒子,在磁场中运动的时间长D.两粒子在磁场中运动的时间一样长4.真空中有一匀强磁场,磁场边界为两个半径分别为a和2a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示.一电子以速率v沿半径方向射入磁场.已知电子质量为m,电荷量为e,忽略重力.为使电子不能进入内部无磁场区域,磁场的磁感应强度B最小为( )A.mvae B.2mv3aeC.mv3aeD.mv2ae5.(多选)如图L1和L2为两平行的虚线,L1上方和L2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,A、B两点都在L2上.带电粒子从A点以初速v斜向上与L2成30°角射出,经过偏转后正好过B点,经过B点时速度方向也斜向上,不计重力影响,下列说法中正确的是()A.该粒子一定带正电B.带电粒子经过B点时速度一定与在A点时速度相同C.若将带电粒子在A点时初速度变大(方向不变),它仍能经过B点D.若将带电粒子在A点时初速度方向改为与L2成45°角斜向上,它仍能经过B点6.如图所示,abcd为边长为L的正方形,在四分之一圆abd区域内有垂直正方形平面向外的匀强磁场,磁感应强度大小为B .一个质量为m 、电荷量为+q 的带电粒子从b 点沿ba 方向射入磁场,粒子恰好能通过c 点,不计粒子的重力,则粒子的速度大小为( ) A.qBL m B.2qBL 2m C.2-1qBL m D.2+1qBL m7.(多选)如图所示,A 点的离子源沿纸面垂直OQ 方向向上射出一束负离子,离子的重力忽略不计.为把这束负离子约束在OP 之下的区域,可加垂直纸面的匀强磁场.已知O 、A 两点间的距离为s ,负离子的比荷为q m ,速率为v ,OP 与OQ 间的夹角为30°,则所加匀强磁场的磁感应强度B 的大小和方向可能是( )A.B >mv 3qs ,垂直纸面向里B.B >mvqs ,垂直纸面向里 C.B >mv qs ,垂直纸面向外 D.B >3mv qs,垂直纸面向外 8.如图所示,边长为L 的等边三角形区域ACD 内、外的匀强磁场的磁感应强度大小均为B 、方向分别垂直纸面向里、向外。

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。

两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。

已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。

物理经典模型(五:磁场偏转)_最新修正版

物理经典模型(五:磁场偏转)_最新修正版

物理经典模型(五:磁场偏转)[概述]:带电粒子在垂直进入匀强磁场做匀速圆周运动。

但从近年的高考来看,带电粒子垂直进入有界磁场中发生偏转更多,其中运动的空间还可以是组合形式的,如匀强磁场与真空组合、匀强磁场、匀强电场组合等,这样就引发出临界问题、数学等诸多综合性问题。

[要点]:从圆的完整性来看:完整的圆周运动和一段圆弧运动,即不完整的圆周运动。

无论何种问题,其重点均在圆心、半径的确定上,而绝大多数的问题不是一个循环就能够得出结果的,需要有一个从定性到定量的过程。

回旋模型三步解题法:①画轨迹:已知轨迹上的两点位置及其中一点的速度方向;已知轨迹上的一点位置及其速度方向和另外一条速度方向线。

②定圆心:(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).③找联系:③利用带电粒子只受洛伦兹力时遵循的半径及周期公式联系速度与轨道半径相联系:往往构成一个直角三角形,可用几何知识(勾股定理或用三角函数)已知角度与圆心角相联系:常用的结论是“一个角两边分别与另一个角的两个边垂直,两角相等”;圆心角与速度偏向角的关系;时间与周期相联系:(或)带电粒子在有界磁场中运动的几种常见情形(1)直线边界(进出磁场具有对称性,如图所示) (2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)[误区]:洛伦兹力永远与速度垂直、不做功;重力、电场力做功与路径无关,只由初末位置决定,当重力、电场力做功不为零时,粒子动能变化。

因而洛伦兹力也随速率的变化而变化,洛伦兹力的变化导致了所受合外力变化,从而引起加速度变化,使粒子做变加速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

粒子入射方向在与磁场B垂直的平面内,且散开在与PC夹角为θ的范围内,则在屏MN上被粒子打中的区域的长度为( )A. B.C. D.分析:如图6所示,打在屏上距P最远的点是以O1为圆心的圆与屏的交点,打在屏上最近的点是以O2或O3为圆心的圆与屏的交点(与例2相似,可先作出一系列动态圆)。

故答案选“D”。

第三类问题:例3(2009年山东卷)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴向右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子。

在0~3t0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。

上述m、q、l、t0、B为已知量。

(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U0的大小。

(2)求t0时刻进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

图丙分析:粒子进入电场做类平抛运动,由平抛运动规律即可求得偏转电压U0;t=t0时刻进入的粒子先做类平抛运动,t0后沿末速度方向做匀速直线运动,利用相应规律可求得射出电场的速度大小,进入磁场后做匀速圆周运动,洛仑兹力提供向心力,可求提半径R;2t0时刻进入的带电粒子加速时间最长(如图丙所示),加上此时粒子进入磁场是向上偏转,故运动时间最短,同样应用类平抛运动规律和圆周运动规律,即可求得此最短时间。

第四类问题:例4如图7所示,磁感应强度大小B=0.15T、方向垂直纸面向里的匀强磁场分布在半径R=0.10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的A点。

置于原点的粒子源可沿x轴正方向射出速度v0=3.0×106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1.0×108C/kg。

现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离。

分析:本题可先设想磁场是无界的,那么粒子在磁场中运动的一段圆弧如图8中的弧OE(半径r=2R=0.20m,圆心为O′),现在圆形磁场以O为轴在旋转相当于直径OA也在旋转,当直径OA旋转至OD位置时,粒子从圆形磁场中离开射向荧光屏MN时离A有最远距离(落点为F)。

图中△O′OD为等边三角形,FD与O′O2延长交于C点,图中θ=60°,,,。

练习:如图9所示,一个质量为m,带电荷量为+q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x轴上的b点穿过,其速度方向与x轴正方向的夹角为30°,粒子的重力可忽略不计,试求:(1)圆形匀强磁场区域的最小面积;(2)粒子在磁场中运动的时间;(3)b到O的距离。

分析:如图10,过b点作速度的反向延长线交y轴于C点,作∠OCb的角平分线交x轴于O1,再以O1为圆心、以O1O为半径画弧,与直线Cb相切于点A,粒子运动的轨迹即为O→A→b,圆形磁场即为以OA为直径的圆,利用相关物理公式及几何知识不难计算出本题的结果。

第五类问题:例5电子质量为m,电荷量为e,从坐标原点O处沿xOy平面射入第一象限,射入时速度方向不同,速度大小均为v0,如图11所示。

现在某一区域加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度为B,若这些电子穿过磁场后都能垂直射到荧光屏MN上,荧光屏与y 轴平行,求:(1)荧光屏上光斑的长度;(2)所加磁场范围的最小面积。

分析:本题可先作出这些射入第一象限的电子做圆周运动的轨道圆心的集合,必在弧O1O2上(如图12),然后设想以该弧上的各点(如图12中的O2等四点)为圆心作出粒子运动的轨迹,最终垂直射到MN上的PQ间,所以荧光屏上光斑的长度即为PQ=R=mv0/eB;所加磁场范围即为图中由弧OO4O3O所围的区域,其中弧O3O4可看成是由弧O1O2向上平移R得到的。

练习:例5若改为“磁场方向垂直于xOy平面向里,荧光屏MN移至y轴右侧,”其他条件不变,情况又怎样呢?读者可试作分析。

(所加磁场的最小范围为一“树叶”形状)综合以上题型,我们可以看到,这些问题的解答很能体现学生的分析思维能力以及想象能力,要求学生能够由一条确定的轨迹想到多条动态轨迹,并最终判定临界状态,这需要在平时的复习中让学生能有代表性地涉猎一些习题,才能在高考应试中得心就手,应对自如。

例析用圆心轨迹确定带电粒子在磁场中运动区域问题同种带电粒子从同一点以相同速率、沿不同方向进入同一匀强磁场中,粒子可能达到的区域的确定是教学中常遇,学生感到棘手,高考又考查的问题。

现就此类问题举例分析。

题目1(2005年全国高考) 如图1,在一水平放置的平板MN 的上方有一匀强磁场,磁感应强度的大小为B ,磁场方向垂直纸面向里,许多质量为m、带电荷量为+q的粒子,以相同的速率v0沿位于纸面内的各个方向,由小孔O射入磁场区域。

不计重力,不计粒子间的相互影响。

图2中阴影部分表示带电粒子可能经过的区域,其中r=m v0/B q,哪个图是正确的()析与解依据题意,所有带电粒子在磁场中做圆周运动的半径相同r = m v0/B q所以,在纸面内由O点沿不同方向入射的带电粒子作圆周运动的圆心轨迹是以O 为圆心, r为半径的圆周(A 图中虚线圆示)。

又因为带电粒子带正电、进磁场时只分布在以ON 和OM为边界的上方空间,而向心力由洛仑兹力提供,它既指向圆心又始终垂直速度,可确定:圆心轨迹只能是A图中虚线圆直径分隔的左半边虚线圆周;再以A图中左半虚线圆上各点为圆心、以r为半径作圆,圆周在磁场中所能达到的区域应为A图阴影区。

所以A图正确。

题目2如图3 所示,有许多电子(每个电子的质量为m,电量为e) 在xOy平面内从坐标原点O 不断地以相同大小的速度v0沿不同方向射入第一象限。

现加上一个方向向里垂直于xOy平面、磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴并向x轴的正方向运动。

试求符合该条件的磁场的最小面积。

析与解因为所有电子都在匀强磁场中作半径为r =m v0/B e的匀速圆周运动。

而沿y轴的正方向射入的边缘电子需转过1/4圆周才能沿x轴的正方向运动,它的轨迹应为所求最小面积磁场区域的上边界———如图中弧线a,其圆心在垂直入射速度的x轴上O1( r ,0) 。

现设沿与x轴成任意角α(0<α<90°) 射入的电子在动点p离开磁场。

这些从O点沿不同方向入射的电子做圆周运动的圆心O′到入射点O的距离又都为半径r。

所以,O′形成一个以入射点O (即坐标原点)为圆心、r为半径的1 /4圆弧轨迹———如图3中弧线c。

根据题目要求,各电子射出磁场时速度v要为平行x轴的正方向。

故由做圆周运动的物体的圆心又应在垂直出射速度的直线上可知,从不同点p射出的电子的圆心O′又必在对应出射点p的正下方,即曲线c上各点到对应正上方出射点p的距离也都等于r;因此将1 /4圆弧轨迹c沿y 轴正向平移距离后———如图中弧线b,弧线b就是各出射点p的轨迹,它实际是以O2(0 ,r) 为圆心,半径为r的1 /4圆弧;既然点p是出射点--即磁场的下边界,故弧线b应为所求最小面积磁场区域的下边界。

所以,所求面积为图中弧线a与b所围阴影面积。

由几何得:“带电粒子在磁场中的圆周运动”解析2011-12-15 13:58:53|分类:高三物理|字号大中小订阅处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。

重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。

下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。

一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。

带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。

【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V0从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。

求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。

相关文档
最新文档