初一数学下册习题
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
初中数学教材课后习题参考答案(七年级下册)
初中数学教材课后习题参考答案(七年级下册)练习:一、填空:(2′×9+4′=22′)1.如图,a ∥b 直线相交,∠1=360,则∠3=________,∠2=__________2.如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是_____________,∠AOD 的对顶角是_____________3.在同一平面内,两条直线的位置关系只有两种_________4.命题“两直线平行,内错角相等”的题设_________,结论____________5.如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________6.如图,∠1=700,a ∥b 则∠2=_____________,7.如图,若∠1=∠2,则互相平行的线段是________________8如图,若AB ⊥CD ,则∠ADC=____________, 9.如图,a ∥b,∠1=1180,则∠2=___________10.如图∠B 与∠_____是直线______和直线_______被直线_________所截的同位角。
11如图,在ΔABC 中,∠A=80°,∠B 和∠C 的平分线交于点O ,则∠BOC 的度数是_______。
二、选择题。
(3′×10=30′) 11.如图,∠ADE 和∠CED 是( )A 、 同位角B 、内错角C 、同旁内角D 、互为补角12.在下图中,∠1,∠2是对顶角的图形是( )13.若a ⊥b ,c ⊥d 则a 与c 的关系是( ) A 、 平行 B 、垂直 C 、 相交 D 、以上都不对14.下列语句中,正确的是( )A 、相等的角一定是对顶角B 、互为补角的两个角不相等C 、两边互为反向处长线的两个角是对顶角 D 、交于一点的三条直线形成3对对顶角321第(1)题b a O 第(2)题F E D C B A 第(5)题A 21第(6)题b a 21第(7)题D C B A 第(8)题D C B A 21第(9)题c b a 第(10)题F C B A 第(11)题A 2121B 21C 21D15.下列语句不是命题的是( )A 、 明天有可能下雨B 、同位角相等C 、∠A 是锐角D 、 中国是世界上人口最多的国家16.下列语句中,错误的是( )A 、一条直线有且只有一条垂线B 、不相等的两个角不一定是对顶角,C 、直角的补角必是直角D 、两直线平行,同旁内角互补17.如图,不能推出a ∥b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=180018.如图a ∥b,∠1与∠2互余,∠3=1150,则∠4等于( )A 、 1150B 、 1550C 、 1350D 、125019.如图,∠1=150 , ∠AOC=900,点B 、O 、D 在同一直线上,则∠2的度数为()A 、750B 、150C 、1050D 、 165020、如图,能表示点到直线(或线段)距离的线段有( )A 、 2条B 、3条C 、4条D 、5条三、解答题21.读句画图(13′)如图,直线CD 与直线AB 相交于C ,根据下列语句画图(1)过点P 作PQ ∥CD ,交AB 于点Q(2)过点P 作PR ⊥CD ,垂足为R (3)若∠DCB=1200,猜想∠PQC 是多少度? 并说明理由22.填写推理理由(1′×15)(1) 已知:如图,D 、E 、F 分别是BC 、CA 、AB 上的点,D ∥AB ,DF ∥AC试说明∠FDE=∠A解:∵DE ∥AB ( ) ∴∠A+∠AED=1800 ( ) ∵DF ∥AC ( )∴∠AED+∠FED=1800 ( ) ∴∠A=∠FDE ( )(2) 如图AB ∥CD ∠1=∠2,∠3=∠4,试说明AD ∥BE解:∵AB ∥CD (已知)∴∠4=∠_____( ) ∵∠3=∠4(已知) ∴∠3=∠_____( ) ∵∠1=∠2(已知) 第(17)题4321c b a d 第(18)题4321cb a 第(20)题DCB A O 第(19)题D CBA 21B FE D C B AE C B∴∠ 1+∠CAF=∠2+∠CAF ( )即 ∠_____ =∠_____( )∴∠3=∠_____∴AD∥BE( )23.已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE的度数(10′)24。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)
5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。
人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)
第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
(完整版)初一数学下册练习题
图 3AC21a初一数学下册练习题一、选择题(每小题3分,满分24分) 1、如图,下列推理正确的是( )A . ∵ ∠1=∠2,∴ AD ∥BCB . ∵ ∠3=∠4,∴ AB ∥CDC . ∵ ∠3=∠5,∴ AB ∥DCD . ∵ ∠3=∠5,∴ AD ∥BC2、如果两条直线被第三条直线所截,那么必定有 ( )A 、内错角相等B 、同位角相等C 、同旁内角互补D 、以上都不对3、如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0 B .y >0 C .y ≤0 D .y ≥04、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm 5、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b 6、某多边形的外角和等于内角和的一半,那么这个多边形是( ) A 、五边形 B 、六边形 C 、七边形 D 、八边形 7、下列图形中,不能镶嵌成平面图案的是( )A. 正三角形B. 正四边形C. 正五边形D. 正六边形8、某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠; ⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省( )。
A 、600元 B 、800元 C 、1000元 D 、2700元 二、填空题(每小题3分,满分21分) 9、“如果n 是整数,那么2n 是偶数”其中题设是 ,结论是 ,这是 命题(填真或假).10、如图2,∠ACD=1550,∠B=350,则∠A= 度。
11、如图3,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____ ,∠4的邻补角是______.∠2的补角是_________.12、如图,直线a ∥b,点B 在直线b 上,且A B ⊥BC ,∠1=55°,则∠2的度数为______。
人教版七年级数学下册练习题
人教版七年级数学下册练习题七年级数学第五章《相交线与平行线》班级:_______ 姓名:_________ 座号:_______ 成绩:_______一、选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、12.C、12.D、122、如图AB∥CD可以得到()A、∠1=∠2.B、∠2=∠3.C、∠1=∠4.D、∠3=∠43、直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6.②∠2=∠8.③∠1+∠4=180°。
④∠3=∠8其中能判断a∥b的条件的序号是()A、①②。
B、①③。
C、①④。
D、③④5、某角的补角是60°,则这个角的度数是()A、30°。
B、60°。
C、120°。
D、150°6、下列哪个图形是由左图平移得到的()A、D。
B、D。
C、D。
D、D7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4.B、5:8.C、9:16.D、1:28、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D、在平面内过一点有且只有一条直线与已知直线垂直。
10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A、23°。
B、42°。
C、65°。
D、19°二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=___________。
人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)
人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
初一下册数学练习题及答案
初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是3,那么这个数是______。
答案:27三、计算题1. 计算下列各题,并写出计算过程。
(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。
证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。
2. 一个水池的长是15米,宽是10米,求水池的面积。
答案:水池的面积为长×宽=15×10=150平方米。
通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。
希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。
七年级下册数学练习题精选
七年级下册数学练习题七年级下册数学练习题精选一、选择题1、取质量相同的砂土、粘土和壤土,分别放入大烧杯中加水搅拌,其中颗粒沉降最快( )A、砂土B、粘土C、壤土2、在农业措施中,排灌对土壤的( )影响最大。
A、矿物质B、腐殖质C、水分D、空气3、下列土壤中肥力最大的是( )A、砂土B、粘土C、壤土4、土壤形成时具有下列哪个特征( )A、岩石风化B、最低等生物出现C、有地衣、苔藓植物出现D、森林和草原的出现5、占土壤固体物质质量约5%的是( )A、矿物质B、腐殖质C、水分D、空气6、植物最容易发生缺水现象的土壤是( )A、砂土B、粘土C、壤土7、下列关于砂土叙述正确的是( )A、通气性能好,保水性能差B、通气性能差,保水性能好C、通气性能差,保水性能差D、通气性能好,保水性能好8、长期单一使用化肥会破坏土壤,下列不属于使用单一化肥引起的是( )A、团粒结构破坏B、土壤容易板结C、腐殖质得到补充D、土壤容易积水9、关于植物对土壤的保护作用叙述错误的是( )A、植物的根能把土壤颗粒紧紧地粘在一起B、植物的树冠能减缓雨水对土壤的冲击C、茎叶能减缓土壤的腐殖质形成D、植物能减小风力对土壤的侵蚀10、下列不属于黄土高原水土治理的措施是( )A、开荒种地B、退耕还草C、打坝淤地D、修筑梯田11、下列不属于塑料地膜有害影响的是( )A、土壤渗水透气B、作物根系生长C、保持土壤温度D、机械作业12、下列防治土壤污染的措施中,正确的'是( )A、控制和消除工业“三废”的排放B、禁止化学农药的使用C、只能少量使用化学肥料D、禁止污水灌溉二、填空题1、土壤中的矿物质由形成的,腐殖质由在土壤表层中经过一系列复杂的分解,转化而成的。
2、我国耕地质量总体不高,分析下列土壤要以通过改变什么成分来提高土壤质量。
⑴发生龟裂的土壤;⑵沼泽地;⑶缓坡上的梯田。
3、人类开垦利用土壤,栽种各种作物,获得及各种工农业生产的。
4、高山、平原、洼地、沿海和内陆的不同地区生长着不同的天然植物,这说明植物与土壤有怎样的关系。
七年级数学练习题大全
七年级数学练习题大全初一下册数学练习题——小编整理了关于初一下册数学练习题是关于初一下册数学所有的难题,希望同学们可以动手练一练以更好的巩固相关知识,关于初一下册数学练习题我们一起来分享吧!整式的运算习题大全一、选择题1.若单项式3xmy2m与-2x2n-2y8的和仍是一个单项式,则m,n的值分别是A.1, B.5,1 C.3, D.4,33.下列计算正确的是A.x3+x5=xB.2=x5C.x4·x3=x7D.2=x2+94.下列计算正确的是A.a2·a3=a B.a3÷a=a C.3=a D.4=12a85.多项式x3-2x2+5x+3与多项式2x2-x3+4+9x的和一定是A.奇数 B.偶数 C.2与7的倍数 D.以上都不对 6.如果0有意义,那么x的取值范围是A.x>11112B.x 7.若xm÷x3n=x,则m与n的关系是A.m=3n B.m=-3n C.m-3n=1 D.m-3n=-18.下列算式中,计算结果为x2-3x-28的是A.B.C. D.9.下列各式中,计算结果正确的是A.=x2-y B.=x4-y6C.=-x2-9yD.=2x4-y210.若a-1a=2,则a2+1a2的值为A.0B.C. D.612.下列计算正确的是A.a2?a3?a6B .2?a C.3?a?b D.a3?a3?a13.若?x2?mx?6.则m?A.-1B.1 C.D.-514.下列可以用平方差公式计算的是A. B. C. D.积累是最伟大的力量15.下列计算正确的是A.2?a2?b B.2?a2?b2C.2?a2?b2?2abD.2?a2?b2?2ab16.下列各式正确的是A.20?0B.2?1??C.2?1?2D.20?117、下列多项式中是完全平方式的是A.2x2+4x-4B.16x2-8y2+1C.9a2-12a+D.x2y2+2xy+y218.若2?2?M,则M=A.xyB. -2xyC.xyD. -4xy19.下列各式中,正确的是A.4?12x4y6B.2?4a6b10c2C.3?x6yD.5??25a10b5n20.已知4x2?8x?m是一个完全平方式,则m的值为A.B. ? C.D. ?421.下列运算中,正确的是A.3a+2b=5abB.2=a2-2a+1 C.a6÷a3=a D.5=a9 22.下列运算中,利用完全平方公式计算正确的是A.2=x2+yB.2=x2-y2C.2=x2-2xy+y2D.2=x2-2xy+y223.下列各式计算结果为2xy-x2-y2的是A. B.C.- D.-224.若等式2=x2-8x+m2成立,则m的值是A.1B.C.-4D.4或-425.平方差公式=a2-b2中字母a,b表示A.只能是数B.只能是单项式 C.只能是多项式 D.以上都可以26.下列多项式的乘法中,可以用平方差公式计算的是A.B.积累是最伟大的力量C. D.327.下列计算中,错误的有①=9a2-4;②=4a2-b2;③=x2-9;④·=-=-x2-y2.A.1个 B.2个 C.3个 D.4个28.若x2-y2=30,且x-y=-5,则x2+y2的值是A.30.5B.30.C.0.7D.30.829、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:-=-x_____+ y2222空格的地方被钢笔水弄污了,那么空格中的一项是A 、-7xyB、7xy C、-xy D、xy30、下列说法中,正确的是A、一个角的补角必是钝角B、两个锐角一定互为余角C、直角没有补角D、如果∠MON=180°,那么M、O、N三点在一条直线上34、已知m+n=2,mn= -2,则的值为A、-1B、1C、D、-338、如果三角形顶一个内角等于另外两个内角之和,那么这个三角形是A、锐角三角形B、直角三角形C、钝角三角形D、以上都有可能39、火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图所示的方式打包,则打包带的长至少为A、4x?4y?10zB、x?2y?3zC、2x?4y?6zD、6x?8y?6z二、填空题1.2=_____.2.若2=2+B,则B=_____.积累是最伟大的力量3.若a-b=3,ab=2,则a2+b2=______.4.2=x2-xy+______;2=a-6ab+_____.3165.=______.6.=9x4-4y4.7.=2-2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.9.若=x-21,则x=_______.10.[+c2]÷=_____.11.单项式2312xy的系数为,x2y?2x?1是次项式。
初一数学下册时间练习题
初一数学下册时间练习题一、选择题1. 计算下列时间差,正确的是:A. 3小时30分 - 1小时20分 = 2小时10分B. 3小时30分 - 1小时20分 = 2小时50分C. 3小时30分 - 1小时20分 = 1小时10分D. 3小时30分 - 1小时20分 = 2小时40分2. 将下列时间转换为分钟,正确的是:A. 1小时15分 = 75分钟B. 1小时15分 = 70分钟C. 1小时15分 = 85分钟D. 1小时15分 = 80分钟3. 计算下列时间的总和,正确的是:A. 2小时 + 45分 = 2小时45分B. 2小时 + 45分 = 3小时45分C. 2小时 + 45分 = 2小时15分D. 2小时 + 45分 = 3小时15分二、填空题4. 如果小明早上7点起床,晚上10点睡觉,那么他一天睡____小时。
5. 一节课通常持续40分钟,如果上午有4节课,那么上午上课的总时间是____分钟。
6. 从下午3点到晚上7点,总共经过了____小时。
三、计算题7. 小华从家到学校需要30分钟,如果他早上7:20出发,那么他到达学校的时间是____。
8. 如果一部电影时长为120分钟,开始播放的时间是下午2点,那么电影结束的时间是____。
9. 小明计划在周末完成作业,他计划周六用2小时,周日用3小时。
如果周六他从下午2点开始,周日他从上午10点开始,那么他完成作业的总时间是____小时。
四、应用题10. 一个工程项目原计划用时90天完成,但由于技术改进,实际用时缩短了10天。
请问实际完成项目用了多少天?11. 一个工厂原计划每天生产100个零件,但由于机器故障,第一天只生产了80个零件,第二天生产了120个零件。
请问两天的平均每天生产零件数是多少?12. 小红计划在暑假期间阅读一本300页的书,她计划每天阅读30页。
如果她从7月1日开始阅读,那么她将在几月几日读完这本书?。
人教版数学七年级下册垂线同步练习题含答案
人教版数学七年级下册垂线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,AB ⊥CD ,垂足为O ,EF 是过点O 的一条直线,已知⊥1=40°,则⊥2=( )A .40°B .45°C .50°D .60°2.入射光线和平面镜的夹角为40︒,转动平面镜,使入射角减小10︒,反射光线与入射光线的夹角和原来相比较将( ) A .减小40︒B .减小10︒C .减小20︒D .不变3.如图所示,已知:,1:23:2CD AB ⊥∠∠=,则FDC ∠=( )A .120︒B .126︒C .135︒D .144︒4.过一条线段外一点,作这条线段的垂线,垂足在( ) A .这条线段上 B .这条线段的端点处 C .这条线段的延长线上D .以上都有可能5.数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段,正确的是( )A .AB .BC .CD .D6.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A.120°B.60°C.90°D.150°7.如图,AB⊥AC于A,AD⊥BC于D,DE⊥AC于E,下列说法错误的是()A.点A到BC的距离是AD的长度B.点B到AD的距离是BD的长度C.点C到AD的距离是DE的长度D.点B到AC的距离是AB的长度DE=,点F是射线OB上的任意一点,8.如图,OD平分AOB∠,DE AO⊥于点E,5则DF的长度不可能是()A.4B.5C.6D.79.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度10.如图,在直角三角形ABC中,⊥BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离 B .线段AD 的长度表示点A 到BC 的距离 C .线段CD 的长度表示点C 到AD 的距离 D .线段BD 的长度表示点A 到BD 的距离 11.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线垂直B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .互相垂直的两条线段一定相交D .直线外一点与直线上各点连接的所有线段中,垂线段最短12.平面直角坐标系中,点()1,2A -,()2,1B ,经过点A 的直线a x ∥轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( ). A .()1,1- B .()1,2-C .()2,1D .()2,2二、填空题13.如图,当直线AB 与CD 相交于O 点,⊥AOD =______时,那么AB 与CD 垂直,记作:AB ______CD . 符号语言:因为⊥AOD =90°(已知) , 所以AB ⊥CD ( ) .14.如图,直线AB 和CD 交于O 点,OD 平分⊥BOF ,OE ⊥CD 于点O ,⊥AOC =40︒,则⊥EOF =_______.15.如图, 直线AB , CD , EF 相交于点O , 若:1:2AOE COE ∠∠=, AB CD ⊥, 则COF ∠=______度.16.如图,已知CF AB ⊥于C ,DC CE ⊥,则ACD ∠的余角是__.17.如图,直线AB 、CD 相交于点O ,⊥BOC =α,点F 在直线AB 上且在点O 的右侧,点E 在射线OC 上,连接EF ,直线EM 、FN 交于点G .若⊥MEF =n ⊥CEF ,⊥NFE =(1﹣2n )⊥AFE ,且⊥EGF 的度数与⊥AFE 的度数无关,则⊥EGF=__.(用含有α的代数式表示)18.如图所示,⊥AOC 与⊥BOD 都是直角,且⊥AOB :⊥AOD =2:11,则⊥AOB =_______.三、解答题19.如图,已知⊥AOB =20°.(1)若射线OC ⊥OA ,射线OD ⊥OB ,请你在图中画出所有符合要求的图形; (2)请根据(1)所画出的图形,求⊥COD 的度数.20.如图1,1A BC ∠、1ACM ∠的角平分线2BA 、2CA 相交于点2A ,(1)如果164A ∠=︒,那么2A ∠的度数是多少,试说明理由并完成填空; 解:(1)结论:2∠=A ______度.说理如下:因为2BA 、2CA 平分1A BC ∠和1ACM ∠(已知), 所以121A BC ∠=∠,122A CM ∠=∠(角平分线的意义). 因为111ACM A BC A ∠=∠+∠,221A ∠=∠+∠( ) (完成以下说理过程)(2)如图2,164A ∠=︒,如果2A BC ∠、2A CM ∠的角平分线3BA 、3CA 相交于点3A ,请直接写出3A ∠度数;(3)如图2,重复上述过程,1n A BC -∠、1n A CM -∠的角平分线n BA 、n CA 相交于点n A 得到n A ∠,设1A θ∠=︒,请用θ表示n A ∠的度数(直接写出答案)21.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .(1)求证:2BAC B E ∠=∠+∠.(2)若CA BE ⊥,30ECD ACB ∠-∠=︒时,求E ∠的度数.22.直线AB ,CD 相交于点O ,OF CD ⊥于点O ,作射线OE ,且OC 在AOE ∠的内部.(1)当点E ,F 在直线AB 的同侧;⊥如图1,若15BOD ∠=︒,120BOE ∠=︒,求EOF ∠的度数;⊥如图2,若OF 平分∠BOE ,请判断OC 是否平分AOE ∠,并说明理由; (2)若2AOF COE ∠=∠,请直接写出∠BOE 与AOC ∠之间的数量关系.23.如图所示,一辆汽车在直线形公路AB 上由A 向B 行驶,M 、N 分别是位于公路两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中的公路AB 上分别画出点P 和点Q 的位置(保留作图痕迹). (2)当汽车从A 出发向B 行驶时,在公路AB 的哪一段路上距离M 、N 两村庄都越来越近?在哪一段路上距离村庄N 越来越近,而离村庄M 越来越远?(分别用文字表述你的结论,不必说明)24.如图,所有小正方形的边长都是1个单位,A 、B 、C 均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ; (2)过点B 画线段BC 的垂线,垂足为B ; (3)过点C 画线段AB 的垂线,垂足为E ;(4)线段CE 的长度是点C 到直线________的距离;(5)线段CA 、CE 的大小关系是_________(用“<”连接),理由是__________________.参考答案:1.C【分析】根据垂直得到⊥BOD =90°,然后平角的性质求解即可. 【详解】⊥AB ⊥CD , ⊥⊥BOD =90°,⊥⊥1+⊥BOD +⊥2=180°,⊥1=40°, ⊥40°+90°+⊥2=180°, ⊥⊥2=50°, 故选:C .【点睛】此题考查了直角和平角的性质,解题的关键是熟练掌握直角和平角的性质. 2.C【分析】要知道入射角和反射角的概念:入射光线与法线的夹角,反射角是反射光线与法线的夹角,在光反射时,反射角等于入射角.【详解】解:入射光线与平面镜的夹角是40︒,所以入射角为904050︒-︒=︒.根据光的反射定律,反射角等于入射角,反射角也为50︒,所以入射光线与反射光线的夹角是100︒.入射角减小10︒,变为501040︒-︒=︒,所以反射角也变为40︒,此时入射光线与法线的夹角为80︒.则反射光线与入射光线间的夹角和原来比较将减小20︒. 故选:C .【点睛】本题考查了有关角的计算,首先要熟记光的反射定律的内容,搞清反射角与入射角的关系,特别要掌握反射角与入射角的概念,它们都是反射光线和入射光线与法线的夹角. 3.B【分析】根据CD AB ⊥,可得⊥ADC =⊥BDC =90°可得⊥1+⊥2=90°,由1:23:2∠∠=,可求⊥1=54︒,⊥2=36︒,由对顶角性质可得⊥ADF =⊥2=36°,利用角的和可得⊥FDC =⊥ADC +⊥ADF =126°. 【详解】解:⊥CD AB ⊥ ⊥⊥ADC =⊥BDC =90° ⊥⊥1+⊥2=90°, ⊥1:23:2∠∠=,设⊥1=3x ︒,⊥2=2x ︒, ⊥3x +2x =90, 解得18x =,⊥⊥1=54︒,⊥2=36︒, ⊥⊥ADF =⊥2=36°,⊥⊥FDC =⊥ADC +⊥ADF =90°+36°=126°. 故选:B .【点睛】本题考查垂直定义,角的和与比例,掌握垂直定义,根据角的和与比例建构方程,会解方程是解题关键. 4.D【分析】画一条线段的垂线,就是画线段所在的直线的垂线,进而得出答案.【详解】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上,可能在端点处,也可能在线段的延长线上. 故选:D .【点睛】本题考查线段垂线的画法.正确把握垂线的定义是解题关键. 5.A【详解】A.根据垂线段的定义,故A 正确; B.BD 不垂直AC ,所以错误;C.是过点D 作的AC 的垂线,所以错误;D.过点C 作的BD 的垂线,也错误. 故选:A. 6.C【分析】根据平角的概念结合角平分线的定义列式求解. 【详解】解:⊥O 是直线AD 上一点 ⊥180AOD ∠=︒⊥射线,OC OE 分别平分,AOB BOD ∠∠ ⊥12COB AOB ∠=∠,12EOB BOD ∠=∠⊥1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键. 7.C【分析】根据点到直线的距离的定义判断各选项即可.【详解】A 、点A 到BC 的距离是AD 的长度,本选项正确,不符合题意; B 、点B 到AD 的距离是BD 的长度,本选项正确,不符合题意; C 、点C 到AD 的距离是DE 的长度,故本选项错误,符合题意; D 、点B 到AC 的距离是AB 的长度,本选项正确,不符合题意. 故选C .【点睛】本题考查了点到直线的距离,关键是对点到直线的距离的意义的掌握. 8.A【分析】根据角平分线的性质,可知点D 到OB 和OA 的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.【详解】⊥OD 平分AOB ∠,DE AO ⊥于点E ,5DE =, ⊥D 到OB 的距离等于5, ⊥5DF ≥故DF 的长度不可能为4,故选A .【点睛】本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键. 9.C【分析】根据点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度进行求解即可.【详解】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C 到直线AB 的垂线段, 故选C.【点睛】本题考查了点到直线的距离,熟知点到直线的距离的概念是解题的关键. 10.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可. 【详解】解:A. 线段AC 的长度表示点C 到AB 的距离,说法正确,不符合题意; B. 线段AD 的长度表示点A 到BC 的距离,说法正确,不符合题意; C. 线段CD 的长度表示点C 到AD 的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.11.D【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,A没有告知在同一平面内,是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,B 是假命题;互相垂直的两条线段不一定相交,C是假命题;直线外一点与直线上各点连接的所有线段中,垂线段最短,D是真命题.答案:D题型解法:命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,确定假命题可举反例证明.12.D【分析】根据题意画出图形,根据直线a//x轴,得到直线a为直线y= 2,根据垂线段最短即可得出答案.【详解】如图,⊥直线a// x轴,⊥直线a为直线y= 2,当BC⊥a时,线段BC最短,⊥点C的坐标为(2,2).故选:D.【点睛】本题考查了坐标与图形性质,掌握平行于x轴的坐标的特点,以及垂线段最短是解题的关键.13.90°⊥垂直的定义【解析】略14.130°【分析】根据对顶角性质可得⊥BOD =⊥AOC=40°.根据OD 平分⊥BOF ,可得⊥DOF =⊥BOD =40°,根据OE ⊥CD ,得出⊥EOD =90°,利用两角和得出⊥EOF =⊥EOD +⊥DOF =130°即可.【详解】解:⊥AB 、CD 相交于点O ,⊥⊥BOD =⊥AOC=40°.⊥OD 平分⊥BOF ,⊥⊥DOF =⊥BOD =40°,⊥OE ⊥CD ,⊥⊥EOD =90°,⊥⊥EOF =⊥EOD +⊥DOF =130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.15.120【分析】根据垂直的定义和对顶角相等的性质可得答案.【详解】解:AB CD ⊥,90AOC BOC ∴∠=∠=︒,又:1:2AOE COE ∠∠=,119030123AOE AOC ∴∠=∠=︒⨯=︒+, AOE BOF ∠=∠,3090120COF BOF BOC ∴∠=∠+∠=︒+︒=︒,故答案为:120.【点睛】本题考查垂直的定义,对顶角相等的性质,解题的关键是掌握垂直的定义. 16.DCF ∠,ECB ∠【分析】根据垂直的定义和余角的定义,找和ACD ∠相加得90°的角即可.【详解】解:CF AB ⊥于C ,DC CE ⊥,90ACF BCF DCE ∴∠=∠=∠=︒,90ACD DCF∴∠+∠=︒,18090ACD BCE DCE∠+∠=︒-∠=︒ACD∴∠的余角是:DCF∠,ECB∠.答案:DCF∠,ECB∠.【点睛】本题考查了垂直的定义和余角的定义,解题关键是准确识图,找出图中90°角,准确进行推理判断.17.13α##α3【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:⊥⊥CEF=⊥AFE+⊥BOC,⊥BOC=α,⊥⊥CEF=α+⊥AFE,⊥⊥MEF=n⊥CEF,⊥⊥MEF=n(α+⊥AFE),⊥⊥EGF=⊥MEF﹣⊥NFE,⊥⊥EGF=n(α+⊥AFE)﹣(1﹣2n)⊥AFE=nα+(3n﹣1)⊥AFE,⊥⊥EGF的度数与⊥AFE的度数无关,⊥3n﹣1=0,即n=13,⊥⊥EGF=13α;故答案为:13α.【点睛】此题考查了三角形外角的性质及角度计算,解题的关键是理解⊥EGF的度数与⊥AFE 的度数无关的含义.18.20°【分析】由⊥AOB+⊥BOC=⊥BOC+⊥COD知⊥AOB=⊥COD,设⊥AOB=2α,则⊥AOD=11α,故⊥AOB+⊥BOC=5α=90°,解得α即可.【详解】解:⊥⊥AOB+⊥BOC=⊥BOC+⊥COD,⊥⊥AOB=⊥COD,设⊥AOB=2α,⊥⊥AOB:⊥AOD=2:11,⊥⊥AOB+⊥BOC=9α=90°,解得α=10°,⊥⊥AOB =20°.故答案为20°.【点睛】此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键. 19.(1)见解析;(2)⊥COD=20°或160°.【分析】(1)根据垂直的定义画射线OC ⊥OA ,射线OD ⊥OB ;(2)如图1,由于OC ⊥OA ,OD (或OD’)⊥OB ,则⊥BOD =⊥BOD’=⊥AOC =90°,于是利用周角的定义可计算出⊥COD =160°,利用⊥COD ′=⊥BOC ﹣⊥BOD’可得到⊥COD ′=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°.【详解】解:(1)如图1、如图2,OC 、OD (或OD ′)为所作;(2)如图1,⊥OC ⊥OA ,OD ⊥OB ,⊥⊥BOD =⊥BOD’=⊥AOC =90°,⊥⊥COD =360°﹣90°﹣90°﹣20°=160°,⊥COD ′=⊥BOC ﹣⊥BOD’=90°+20°﹣90°=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°,⊥⊥COD =20°或160°.【点睛】本题考查了基本作图—过一点作已知直线的垂线,分情况作出图形是解决此题的关键.20.(1)32;三角形的一个外角等于与它不相邻的两个内角的和;过程见解析(2)16° (3)1()2n θ︒-【分析】(1)利用角平分线的定义和三角形的外角的性质即可求解;(2)根据(1)的解法即可直接求解;(3)利用(1)的结论求解.(1)解:结论:⊥A 2=32度.说理如下:因为BA 2、CA 2平分⊥A 1BC 和⊥A 1CM (已知),所以⊥A 1BC =2⊥1,⊥A 1CM =2⊥2(角平分线的意义).因为⊥A 1CM =⊥A 1BC +⊥A 1,⊥2=⊥1+⊥A 2(三角形的一个外角等于和它不相邻的两个内角的和).所以⊥A 1CM =⊥A 1BC +⊥A 1=2⊥1+⊥A 1=2(⊥1+⊥A 2),所以⊥A 1=2⊥A 2,因为⊥A 1=64°,所以⊥A 2=32°.故答案为:32,三角形的一个外角等于和它不相邻的两个内角的和.(2)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,⊥⊥A 1=4⊥A 3,⊥⊥A 3=14⊥A 1=16°. (3)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,…,⊥An ﹣1=2⊥An ,⊥⊥A 1=2⊥A 2,⊥A 1=4⊥A 3,⊥A 1=8⊥A 4,…,⊥A 1=2n ﹣1•⊥An ,⊥⊥A 1=2n ﹣1•⊥An ,⊥⊥An =112n A -∠=1()2n θ-︒. 【点睛】本题考查了角的平分线的定义以及三角形的外角的性质:三角形的一个外角等于与它不相邻的两个内角的和,正确解决(1),读懂题意是关键.21.(1)见解析(2)20︒【分析】(1)利用外角的性质,BAC E ACE ∠=∠+∠,ECD E B ∠=∠+∠,再利用角平分线的定义推出ACE ECD ∠=∠,通过等量代换即可求证;(2)先利用30ECD ACB ∠-∠=︒,180ACD ACB ∠+∠=︒,求出40ACB ∠=︒,进而求出B ,再代入(1)中结论即可求解.(1)证明:⊥BAC ∠是ACE ∆的外角,⊥BAC E ACE ∠=∠+∠,⊥ECD ∠是BCE ∆的外角,⊥ECD E B ∠=∠+∠,⊥CE 是ACD ∠的平分线,⊥ACE ECD E B ∠=∠=∠+∠,⊥2BAC E ACE E B E B E ∠=∠+∠=∠+∠+∠=∠+∠;(2)解:⊥30ECD ACB ∠-∠=︒,⊥30ECD ACB ∠=∠+︒,⊥2260ACD ECD ACB ∠=∠=∠+︒,⊥180ACD ACB ∠+∠=︒,⊥260180ACB ACB ∠+︒+∠=︒,解得40ACB ∠=︒.⊥CA BE ⊥,⊥90BAC ∠=︒,⊥18050B BAC ACB ∠=︒-∠-∠=︒,由(1)知2BAC B E ∠=∠+∠,⊥90502E ︒=︒+∠,解得20E ∠=︒.【点睛】本题考查三角形外角的性质,三角形内角和定理,垂直的定义,角平分线的定义等,牢固掌握上述知识并灵活运用是解题的关键.22.(1)⊥45︒;⊥平分,理由见解析(2)32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒【分析】(1)⊥先利用角度的和差关系求得COE ∠,再根据90EOF COE ∠=︒-∠,可得EOF∠的度数;⊥先根据角平分线定义EOF FOB ∠=∠,再结合余角定义和对顶角相等可得结论; (2)需要分类讨论,当点E ,F 在直线AB 的同侧,当点E ,F 在直线AB 的异侧;设COE α∠=,再分别表示AOC ∠、∠BOE ,再消去α即可.(1)解:⊥⊥OF CD ⊥于点O ,⊥90COF ∠=︒,⊥15BOD ∠=︒,120BOE ∠=︒,⊥1801801201545COE BOE BOD ∠=︒-∠-∠=︒-︒-︒=︒,⊥904545EOF COF COE ∠=∠-∠=︒-︒=︒,⊥EOF ∠的度数为45︒;⊥平分.理由如下:⊥OF 平分∠BOE , ⊥12EOF FOB EOB ∠=∠=∠, ⊥OF CD ⊥,⊥90COF ∠=︒,⊥90COE EOF FOB BOD ∠+∠=∠+∠=︒,⊥COE BOD ∠=∠,⊥AOC BOD ∠=∠,⊥COE AOC ∠=∠,⊥OC 平分AOE ∠.(2)如图,当点E ,F 在直线AB 的同侧,设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥290AOC AOF COF α∠=∠-∠=-︒⊥,⊥()1801802902703BOE AOC COE ααα∠=︒-∠-∠=︒--︒-=︒-⊥,⊥×3+⊥×2得,32270AOC BOE ∠+∠=︒;如图,当点E ,F 在直线AB 的异侧;设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥902AOC COF AOF α∠=∠-∠=︒-⊥,⊥()180********BOE AOC COE ααα∠=︒-∠-∠=︒-︒--=︒+⊥,⊥+⊥×2得,2270AOC BOE ∠+∠=︒.综上所述,∠BOE 与AOC ∠之间的数量关系:32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒.【点睛】本题考查了角平分线定义,对顶角相等,垂直的定义,平角的定义,等式的恒等变形等知识,主要考查学生的计算能力,并注意数形结合.分类讨论是解题的关键. 23.(1)作图见解析;(2)当汽车从A 向B 行驶时,在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M 越来越远,离村庄N 越来越近.【分析】(1)点与直线的连线中,垂线段最短,所以MP AB ⊥,NQ AB ⊥.(2)观察图形可以得到在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M越来越远,离村庄N越来越近.⊥,垂足为Q,点P、Q 【详解】解:(1)过点M作MP AB⊥,垂足为P,过点N作NQ AB就是要画的两点,如图所示.(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.【点睛】本题主要考查了点与直线距离以及尺规作图相关知识,熟练掌握点与直线的距离和尺规作图是解决本题的关键.<;垂线段最短.24.(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可;(4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CA【点睛】本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.。
人教版七年级数学下册平行线的判定同步练习题(含解析)
人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。
七年级下册数学二元一次方程组习题及答案
七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y的值分别为-4,1,6,11.2、在x+3y=3中,用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。
3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=2或k=-2时,方程为一元一次方程;当k不等于2或-2时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=16;当y=0时,则x=20/3.5、方程2x+y=5的正整数解是(1,3)。
6、若(4x-3)^2+|2y+1|=0,则x+2=-1/2.7、方程组x+y=ax=2的一个解为(2,a-2),那么这个方程组的另一个解是(0,a)。
8、若x=1/2时,关于x、y的二元一次方程组ax-2y=1x-by=2的解互为倒数,则a-2b=-1/2.二、选择题1、方程2x-3y=5,xy=3,二元一次方程的有(B)个。
2、方程2x+y=9在正整数范围内的解有(C)个。
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(C)20x-4y=3.4、若是5x^2 ym与4xn+m+1y^2n-2同类项,则m-2n的值为(B)-1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(B)-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是(A)x-3y=5y=x-32x-y=5x=2y7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(A)y=5x-3.8、已知x=3-k,y=k+2,则y与x的关系是(A)x+y=5.9、下列说法正确的是(B)二元一次方程组有无数个解。
8.1 二元一次方程组一、填空题1.已知二元一次方程 4x-3y=12,当 x=0、1、2、3 时,分别解得 y=-4、1、6、11.2.对方程 x+3y=3,用 x 表示 y,则 y=(3-x)/3;用 y 表示 x,则 x=3-3y。
七年级数学下册平行线习题
七年级数学下册平行线习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以2.下列真命题的个数是()(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个B.2个C.3个D.4个3.下列推理正确的是()A.因为a∥d,b∥c,所以c∥d B.因为a∥c,b∥d,所以c∥dC.因为a∥b,a∥c,所以b∥c D.因为a∥b,d∥c,所以a∥c4.下列语句:其中错误的个数是()∥直线AB与直线BA是同一条直线;∥射线AB与射线BA是同一条射线;∥两点确定一条直线;∥经过一点有且只有一条直线与已知直线平行;∥经过一点有且只有一条直线与已知直线垂直;∥两点之间的线段叫做两点之间的距离.A.3B.4C.5D.65.下列语句中正确的是()A.不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.平面内两条直线被第三条直线所截,如果内错角相等,则同位角也相等D.两条直线被第三条直线所截,同位角相等.6.如图,直线AB与CD相交于点O,∥BOD=40°,OE∥AB,则∥COE的度数为()A.140B.130C.120D.110二、填空题7.在同一平面内,两条不相重合的直线位置关系有两种:_____和_____.8.(1)平行公理是:____________________________________________.a b c,(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b b c,则_________.若//,//9.下列说法:∥对顶角相等;∥两点间线段是两点间距离;∥过一点有且只有一条直线与已知直线平行;∥,则点C是线段AB的中点;∥同角的余角相等正过一点有且只有一条直线与已知直线垂直;∥若AC BC确的有_________.(填序号)10.如图,已知直线AB∥CD,直线AB与EF相交于点P,那么直线EF也与直线CD相交,请在下面的推理过程中填空.∥AB∥CD,AB.EF交于点P;∥点P必在直线CD外.假设直线EF和CD不相交,那么过点P就有两条直线.AB和EF都与CD平行,这与____________公理矛盾.∥直线EF也与直线CD相交.11.四条直线相交,最多有____个交点.12.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题13.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB ,交AC 的延长线于点E ;(3)指出∥E 的同位角和内错角.14.如图,根据要求填空.(1)过A 作AE ∥BC ,交______于点E ;(2)过B 作BF ∥AD ,交______于点F ;(3)过C 作CG ∥AD ,交__________于点G ;(4)过D 作DH ∥BC ,交BA 的__________于点H .15.若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交于一点呢?16.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB 、BC .利用方格纸完成以下操作: (1)过点A 作BC 的平行线;(2)过点C 作AB 的平行线,与(1)中的平行线交于点D ;(3)过点B 作AB 的垂线.17.如图所示,分别延长ABC ∆的中线,BD CE 到点,F G ,使,E DF BD G CE ==.G A F在一条直线上.求证:三点,,18.学习了平行线后,王玲同学想出了过一点画一条直线的平行线的新方法,她是通过折纸完成的,折纸步骤如图所示.b a,要求保留折纸痕迹,画(1)请你仿照以上步骤,在下图中画出一条直线b,使直线b经过点P﹐且//出所用到的直线,无须写画法;(2)在第(2)步中,折纸实际上是在寻找过点P的直线a的_______..参考答案:1.D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.【详解】由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点睛】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.2.B【分析】根据平行公理的推论,平行线的判定定理与性质定理,即可判断命题是真命题还是假命题.【详解】解:(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d,此说法正确,是真命题;(2)两条直线被第三条直线所截,同旁内角不一定互补,所以同旁内角的平分线不一定互相垂直,此说法错误,是假命题;(3)两条直线被第三条直线所截,同位角不一定相等,此说法错误,是假命题;(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行,此说法正确,是真命题;所以真命题有2个.故选:B.【点睛】此题主要考查了命题与定理,正确把握平行线的判定与性质是解题关键.3.C【分析】根据平行公理的推论逐项判断即得答案.【详解】解:A、由a∥d,b∥c,不能推出c∥d,所以本选项推理错误,不符合题意;B、由a∥c,b∥d,不能推出c∥d,所以本选项推理错误,不符合题意;C、由a∥b,a∥c,能推出b∥c,所以本选项推理正确,符合题意;D、由a∥b,d∥c,不能推出a∥c,所以本选项推理错误,不符合题意.故选:C.【点睛】本题考查了平行公理的推论,属于基础题型,熟练掌握基本知识是关键.4.B【分析】∥根据直线的定义进行判断即可;∥根据射线的定义进行判断即可;∥根据两点确定一条直线进行判断即可;∥点是否在该直线上进行判断即可;∥根据是否在平面内这一条件进行判断即可;∥根据两点间距离的定义进行判断即可.【详解】∥直线AB与直线BA是同一条直线,故原题说法正确;∥射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;∥两点确定一条直线,故原题说法正确;∥经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;∥平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;∥两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B.【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.5.C【分析】根据平行线的定义、平行公理、平行线的性质和判定逐一进行判断即可【详解】解:A 错误,在同一平面内,不相交的两条直线叫做平行线;B 错误,必须是过直线外一点有且只有一条直线与已知直线平行;C 正确;平面内两条直线被第三条直线所截,如果内错角相等,则两条直线平行,则同位角也相等D 错误,两条平行直线被第三条直线所截,同位角才会相等;故选C .【点睛】本题考查了平行线的定义、平行公理、平行线的性质和判定,熟练掌握相关知识是解题的关键. 6.B【分析】根据垂直定义可得90AOE ∠=,根据对顶角相等可得40AOC =∠,然后可得答案.【详解】∥OE∥AB ,∥∥AOE=90°,∥∥BOD=40°,∥∥AOC=∥BOD=40°,∥∥EOC=∥AOE +∥AOC =130°.故选:B .【点评】本题主要考查了垂线的定义、对顶角和角的和差,掌握相关定义及性质是解题的关键. 7. 相交, 平行【分析】同一平面内,直线的位置关系通常有两种:平行或相交.【详解】解:平面内的直线有平行或相交两种位置关系.故答案为相交,平行.【点睛】本题主要考查了在同一平面内的两条直线的位置关系,属于基础题,应熟记这一知识点. 8. 过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c .故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c .【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.9.∥∥∥【分析】利用对顶角的性质判断∥,利用两点距离定义判定∥,利用平行公理判定∥,利用垂线公里判定∥,利用线段中点定义判定∥,利用余角的性质判定∥.【详解】∥对顶角相等正确;∥由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;∥由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确; ∥过一点有且只有一条直线与已知直线垂直正确;∥由线段中点的性质,若AC BC =,点C 在AB 上,则点C 是线段AB 的中点,所以若AC BC =,则点C 是线段AB 的中点不正确;∥同角的余角相等正确;正确的有∥∥∥.故答案为:∥∥∥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键. 10.平行【详解】∥AB∥CD ,AB.EF 交于点P ;∥点P 必在直线CD 外.假设直线EF 和CD 不相交,那么过点P 就有两条直线AB 和EF 都与CD 平行,这与平行公理矛盾. ∥直线EF 也与直线CD 相交.点睛:本题考查了利用平行公里和反证法证明命题,反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确. 11.6.【分析】先根据题意,画出图形,数出交点的个数即可.【详解】如图:4条直线相交,最多有6个交点.故答案为6.【点睛】此题考查垂直与平行的特征及性质,组合图形的计数,解题关键在于画出图形.12.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.13.(1)见解析(2)见解析(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【分析】(1)如图,过A点作AD∥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.【详解】(1)(2)如图所示.(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【点睛】本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键. 14.(1)DC;(2)DC;(3)AB;(4)延长线.【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.15.12对,(n2-n)对【详解】试题分析:两条直线相交于一点形成2对对顶角,很明显,三、四、n 条不同的直线相交于一点可看成是三、六、(1)2n n -种两条直线相交于一点的情况,再乘以2,即可得对顶角的对数. 试题解析:两条直线相交于一点形成2对对顶角;三条直线相交于一点可看成是三种两条直线相交于一点的情况,所以形成6对对顶角;四条直线相交于一点可看成是六种两条直线相交于一点的情况,所以形成12对对顶角;n 条直线相交于一点可看成是(1)2n n -种两条直线相交于一点的情况,所以形成n(n−1)对对顶角. 16.(1)见解析(2)见解析(3)见解析【分析】(1)点A 所在的横线就是满足条件的直线;(2)在A 所在的横线上,在A 点的右边取AD=BC ,连结CD 即可.(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 的直线即为所求.【详解】(1)点A 所在的横线就是满足条件的直线,即AE 就是所求;(2)在A 所在的横线中A 点的右边取AD=BC ,连结CD ,则直线CD 即为所求;(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 作直线,即为所求.【点睛】本题主要考查了尺规作图,作图的依据是等腰直角三角形的判定,以及平行四边形的判定. 17.详见解析【分析】易证∥AEG∥∥BEC ,∥ADF∥∥CDB ,根据全等三角形对应角、对应边相等的性质,可得∥F=∥CBD ,∥G=∥BCE ,继而可得AF∥BC ,AG∥BC ,根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行即可得出结论.【详解】证明:在∥AEG 和∥BEC 中,EG=EC AEG=BEC AE=BE ⎧⎪∠∠⎨⎪⎩,∥∥AEG∥∥BEC ,(SAS )∥∥BCE=∥G ,∥AG∥BC ,在∥ADF 和∥CDB 中,DF=DB ADF=CDB AD=CD ⎧⎪∠∠⎨⎪⎩, ∥∥ADF∥∥CDB ,(SAS )∥∥DBC=∥F ,∥AF∥BC ,∥AF ,AG 都经过点A ,∥G 、A 、F 在一条直线上【点睛】本题考查全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证∥AEG∥∥BEC 和∥AEG∥∥BEC 是解题的关键.也考查了平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18.(1)详见解析;(2)垂线【分析】)(1)首先折直线a 的垂线,并且使a 的垂线经过点P ,再折出直线a 的垂线的垂线b ,并且过点P ; (2)根据作图可得折平行线的过程实际就是寻找过点P 的直线a 的垂线;【详解】(1)如图所示.(2)在(1)中的步骤(2)中,折纸实际上是在寻找过点P 的直线a 的垂线;【点睛】此题主要考查了应用与设计作图以及平行线的判定与性质等知识,利用数形结合得出是解题关键.。
人教版七年级下册数学各章知识点及练习题
人教版七年级下册数学各章知识点及练习题1.两条相交的直线所形成的四个角中,有一条公共边,而它们的另一条边则互为反向延长线。
如果两个角具有这种关系,那么它们互为相邻角。
2.两条相交的直线所形成的四个角中,有一个公共顶点,而一个角的两条边则分别是另一个角两条边的反向延长线。
如果两个角具有这种关系,那么它们互为对顶角,且具有相等的角度。
3.如果两条相交的直线中有一条直线与另一条直角,则这两条直线互为垂直线。
垂线的性质:⑴经过一点且垂直于已知直线的直线是唯一的。
⑵连接直线外一点与直线上各点的线段中,与已知直线垂直的线段长度最短。
4.直线外一点到这条直线的垂线段的长度称为该点到直线的距离。
5.如果两条直线被第三条直线所截,构成八个角,在没有公共顶点的角中,⑴如果两个角分别在两条直线的同侧,并且都在第三条直线的同侧,那么它们互为内错角;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,那么它们互为同旁内角;⑶如果两个角都在两直线之间,但它们在第三条直线的同一侧,那么它们互为对顶角。
6.不相交的两条直线在同一平面内互为平行线。
同一平面内的两条直线的位置关系只有平行和相交两种。
7.平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么它们互相平行。
8.平行线的判定:⑴如果两条直线与第三条直线的对应角互为相等角,则这两条直线平行。
⑵如果一条直线与第三条直线平行,另一条直线与这条直线对应的内角为直角,则这两条直线平行。
⑶如果两条直线与第三条直线平行,则这两条直线互相平行。
9.平行线的性质:⑴平行线之间的距离相等。
⑵平行线与第三条直线所构成的内错角互为相等角。
⑶平行线与第三条直线所构成的同旁内角互为补角。
10.把一个图形整体沿某一方向移动,会得到一个新图形,这种移动称为平移。
平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状和大小完全相同。
新图形中的每个点都是原图形中某个点移动后得到的,这两个点是对应点。
七年级下册数学二元一次方程组的实际运用练习题 含答案
再探实际问题与二元一次方程组(一)学习要求:能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力. 一、填空题:1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.已知两数和为25,两数差为15,则这两个数为______.4.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 二、选择题:5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧⋅==+y x y x 34,42(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧==+.43,4234y x y x(D)⎩⎨⎧==+.34,4243y x y x三、列方程组解应用题:7.某单位组织了200人到甲、乙两地旅游,到甲地的人数是到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶,大盒、小盒每盒各装多少瓶?.9.某车间工人举行茶话会,如果每桌12人,还有一桌空着,如果每桌10人,则还差两个桌子,此车间共有工人多少名?(二)综合运用诊断一、填空题:10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17;则k =______,b =______.11.在公式2021at t v s +=中,当t =1时,s =13;当t =2时,s =42.则v 0=______,a =______,并且当t =3时,s =______. 二、选择题:12.出境旅游者问某童:你有几个兄弟、几个姐妹,答:“有几个兄弟就有几个姐妹。
七年级下册数学练习题全集
第六章平面直角坐标系基础训练题一、填空题1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。
4、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a 。
5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。
6、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。
7、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。
9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。
10、A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。
11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。
12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;13、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。
14、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。
线段PQ 的中点的坐标是________________。
人教版七年级下册数学各单元练习题含答案
123(第三题)ABCD 1234(第2题)12345678(第4题)ab c人教版七年级下册数学各单元练习题第一章《相交线与平行线》一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )A B CDE (第10题)ABCD E F G H第13题ABCD(第7题)BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.整式及整式加减法一、填空:1、单项式的系数是,次数是。
2、是次项式,常数项是。
3、的各项是最高次项是,常数项是。
4、把多项式按x的降幂排列为按x的升幂排列为。
5、若多项式,不含x3和x项则a= ,b= 。
6、(1)当a= 时,8-(2a+1)2有最大值,最大值是。
(2)若(a-b)2-10有最小值,则最小值是,且此时a、b之间的关系是。
二、选择题:1、代数式x2,-abc,,x+y,0,中单项式的个数为()A、4B、5C、6D、72、组成多项式8x2-4x-9的各项是()A、8x2,4x,9B、8x2,-4x,-9C、8,-4,-9D、8x2-4x-93、下列说法正确的是()A、x3yz4没有系数,次数是7B、不是单项式,也不是整式C、5-是多项式D、x3+1是三次二项式4、如果一个多项式的次数是9,那么这个多项式任何一个项的次数()A、都小于9B、都等于9C、都不小于9D、都不大于95、二次三项式ax2+bx+c为一次单项式的条件()A、a≠0,b=0,c=0B、a=0,b≠0,c=0C、a=0,b=0,c≠0D、a=0,b=0,c=06、多项式-6y3+4xy2-x2+3x3y是按()排列A、x的升幂B、x的降幂C、y的升幂D、y的降幂7、多项式2x3-x2y2+y3+25的次数是()A、二次B、三次C、四次D、五次8、下列说法正确的是( ) A 、是多项 B 、是四次四项式C 、的项数和次数等于6D 、是整式9、若m ,n 为自然数,则多项式x m -y n -4m+n 的次数应是( ) A 、m B 、m+n C 、n D 、m ,n 中较大的数 10、若是四次三项式,则n 3=A 、-8B 、8C 、±8 D、不能确定 三、已知多项式是六次四项式,单项式与该多项式的次数相同,求m 、n 的值。
四、当a 为何值时,化简式子可得关于x 的二次三项式。
五、已知是关于x 、y 的5次单项式,试求下列代数式的值: (1)(2)由(1)、(2)两小题的结果,你有什么想法?2.整式的乘除一、选择题:(1)=•-n m a a 5)(( )(A )m a +-5 (B )m a +5 (C ) n m a +5 (D )n m a +-5 (2)下列运算正确的是( )(A )954a a a =+ (B )33333a a a a =⨯⨯ (C )954632a a a =⨯ (D )743)(a a =-(3)=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20032003532135( )(A )1- (B )1 (C )0 (D)2003 (4)设A b a b a +-=+22)35()35( ,则=A ( ) (A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 12(5)用科学记数方法表示0000907.0,得( )(A )41007.9-⨯ (B )51007.9-⨯ (C )6107.90-⨯ (D )7107.90-⨯ (6)已知)(3522=+=-=+y x xy y x ,则,(A )25(B )25-(C )19(D )19- (7))(5323===-b a b a x x x ,则,已知(A )2527 (B )109(C )53 (D )52 (8)一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )(A )6cm (B )5cm (C )8cm (D )7cm (9)以下各题中运算正确的是( )(A )2266)23)(32(y x y x y x -=+- (B )46923232))((a a a a a a a +-=--(C ) 2222512531009)2.03.0(y xy x y x ++=-- (D )ca bc ab c b a c b a ---++=--2222)((10)+-=+22)32()32(b a b a ,横线上应填的式子是( )ab D abC abB abA 18)(12)(24)(6)((11))()23)(23(=---b a b a(A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b - (12)=-+1221)()(n n x x ( )(A)n x 4 (B)34+n x (C)14+n x (D)14-n x (13)计算结果是187-+x x 的是( )(A)(x-1)(x+18) (B)(x+2)(x+9) (C)(x-3)(x+6) (D)(x-2)(x+9)(14)===+b a b a 2310953,,( ) (A)50 (B)-5 (C)15 (D)b a +27(15)一个多项式的平方是22124m ab a ++,则=m ( )。
(A)29b (B) 23b - (C)29b - (D)23b 二、 填空题:(1)=-•-3245)()(a a _______。
(2)=-n a )(2_______。
(3)设12142++mx x 是一个完全平方式,则m =_______。
(4)已知51=+x x ,那么=+331xx _______。
*(5)计算:=+3)(b a _______。
(6)方程41)8)(12()52)(3(=-+--+x x x x 的解是_______。
(7)=÷-+++++++1214213124)42012(m m m m m m m m b a b a b a b a +_______。
(8)已知==-=-yxy x y x ,则,21222 。
(9)=++++=-+a c x b x a x x ,则若)1()1(5322 ,=b ,=c 。
三、计算题:)2)(4)(2122y x y x y x +--、( 2)2331(22y x --、)21)(33y x y x --、( )53()10951(423243ax x a x a -÷--、*22)1)2)(2(5xx x x x +-+--(、6、解方程)3)(2()2()5)(3(22+-+-+=+-x x x x x x 四、 先化简,再求值:,)2)(1()1)(2(22a a a a a --+++- 其中18=a 。
(7分) 五、 已知8844224y x y x y x xy y x +++==+,,,求的值。
(7分)(*)六、 计算阴影的面积(6分)正方形的边长是b a +。
小正方形的边长是,b a -空白长方形的宽是,b a -求阴影的面积。
3.第一章测试题一、选择题1.多项式322431x x y xy -+-的项数、次数分别是( ).A .3、4B .4、4C .3、3D .4、32.若0.5a 2b y 与34a xb 的和仍是单项式,则正确的是 ( ) A .x =2,y =0 B .x =-2,y =0 C .x =-2,y =1 D .x =2,y =13.减去-2x 后,等于4x 2-3x -5的代数式是 ( )A .4x 2-5x -5 B .-4x 2+5x +5 C .4x 2-x -5 D .4x 2-5 4.下列计算中正确的是 ( )A .a n ·a 2=a 2nB .(a 3)2=a 5C .x 4·x 3·x =x 7D .a 2n -3÷a 3-n =a 3n -65.x 2m +1可写作( )A .(x 2)m +1B .(x m )2+1C .x ·x 2mD .(x m )m +16.如果x 2-kx -ab =(x -a )(x +b ),则k 应为( )A .a +bB .a -bC .b -aD .-a -b7.()2a b --等于( ).A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+8.若a ≠b ,下列各式中成立的是( )A .(a +b )2=(-a +b )2B .(a +b )(a -b )=(b +a )(b -a )C .(a -b )2n =(b -a )2nD .(a -b )3=(b -a )39.若a +b=-1,则a 2+b 2+2ab 的值为 ( ) A .1 B .-1 C .3 D .-3 10.两个连续奇数的平方差是 ( )A .6的倍数B .8的倍数C .12的倍数D .16的倍数 二、填空题11.一个十位数字是a ,个位数学是b 的两位数表示为10a +b ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,前后两个数的差是 .12. x +y =-3,则5-2x -2y =_____. 13. 已知(9n )2=38,则n =_____.14.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________. 15.(2a -b )( )=b 2-4a 2.16.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________. 17.若m 2+m -1=0,则m 3+2m 2+2008= . 三、计算题18.(3)(2a -3b )2(2a +3b )2;19.(2x +5y )(2x -5y )(-4x 2-25y 2);20.(x -3)(2x +1)-3(2x -1)2.21.4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);22.(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );四、解答题23.已知a 3=5,b 9=10,求b a 23+.24.已知多项式32241x x --除以一个多项式A ,得商式为2x ,余式为1x -。
求这个多项式.25.当3x =-时,代数式538ax bx cx ++-的值为6,试求当3x =时,538ax bx cx ++-的值.26.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.27.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值.28.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .29.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.10.三角形(1)一、请准确填空(每小题3分,共24分)1.如图1所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是__________________.(注:将你认为正确的结论填上)2.如图2所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).1 2ABC DMNEFAB C DOAB CD图1 图2 图33.如图3所示,在△ABC 中,AD ⊥BC ,请你添加一个条件,写出一个正确结论(不在图中添加辅助线).条件是__________,结论为__________.4.在△ABC 和△ADC 中,有下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个正确的因果关系,则条件是__________,结论为__________.5.完成下列分析过程.如图4所示,已知AB ∥DC ,AD ∥BC ,求证:AB =CD .分析:要证AB =CD ,只要证△________≌△________;需先证∠________=∠________,∠________=∠________.由已知“________∥________”,可推出∠________=∠________,________∥________,可推出∠________=∠________,且公共边________=________,因此,可以根据“________”判定△________≌△________.6.如图5所示,已知AB =AC ,∠B =∠C ,BE =CD ,则图中共有全等三角形________对,它们分别是________.7.如图6所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.A BC D ABCDE 12FABCDE ABa2a2a图 4 图 5 图 6图78.如图7所示,已知线段a ,用尺规作出△ABC ,使AB =a ,BC =AC =2a .作法:(1)作一条线段AB =________;(2)分别以_______、_______为圆心,以________为半径画弧,两弧交于C 点;(3)连接_______、_______,则△ABC 就是所求作的三角形. 二、相信你的选择(每小题3分,共24分)9.如图8所示,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是b50 oac58o72 o A B C 丙50o a72oa 50o甲c50o a乙c 图8A.甲和乙B.乙和丙C.只有乙D.只有丙10.以长为13 cm 、10 cm 、5 cm 、7 cm 的四条线段中的三条线段为边可以画出三角形的个数为A.1B.2C.3D.411.图9是人字型金属屋架的示意图,该屋架由BC 、AC 、BA 、AD 四段金属材料焊接而成,其中A 、B 、C 、D 四点均为焊接点,且AB =AC ,D 为BC 的中点,假设焊接所需的四段金属材料已截好,并已标出BC 段的中点D ,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是A.AD 和BC ,点DB.AB 和AC ,点AC.AC 和BC ,点CD.AB 和AD ,点A 12.图10是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.A.A 、FB.B 、EC.C 、AD.E 、F13.如图11所示,已知△ABC 不是等边三角形,P 是△ABC 所在平面上一点,P 不与点A 重合且又不在直线BC 上,要想使△PBC 与△ABC 全等,则这样的P 点有A.1个B.2个C.3个D.4个14.如图12所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为A.9 cmB.5 cmC.6 cmD.不能确定AB CABCD E图9 图10 图11图1215.如图13所示,△ABC 中,AB =BC =AC ,∠B =∠C =60°,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是A.45°B.55°C.75°D.60°16.如图14所示,∠1=∠2,∠3=∠4,若证得BD =CD ,则所用的判定两三角形全等的依据是A.角角角B.角边角C.边角边D.角角边ABCDEP1 23 4A BCD图13 图14三、考查你的基本功(共18分)17.(10分)如图15所示,△ABC ≌△DEF ,AM 、DN 分别是△ABC 和△DEF 的角平分线,AM 、DN 相等吗?写出依据.因为AM 、DN 是两全等△ABC 和△DEF 的对应角∠BAC 和∠EDF 的平分线,所以AM 、DN 也叫两全等三角形的对应角的平分线.BC AMEN FD图15其他两对应角的角平分线也有此结果吗?(只写结论,不写过程)它们有什么规律,请用一句话表示出来.18.(8分)如图16所示,BC =DE ,BE =DC ,求证:(1)BC ∥DE ;(2)∠A =∠ADE . 小明是这样想的,请你给小明的每个想法填上依据.图16连接BD ,在△BCD 和△DEB 中, BC =DE(________) BE =DC (________) BD =DB (________)⇒△BCD ≌△DEB (________)⇒∠CBD =∠EDB (________) ⇒BC ∥DE (_____________)⇒∠A =∠ADE (_____________). 四、生活中的数学(共14分)19.(7分)如图17所示,把两根钢条AA ′、BB ′的中点O 连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳).只要量出A ′B ′的长度,就可以知道工件的内径AB 是否符合标准,你能说出工人这样测量的道理吗?''图1720.(7分)图18是某城市部分街道示意图,AB =CD ,AD =BC ,EF =FC ,DF ⊥EC .公交车甲从A 站出发,按照A 、D 、E 、F 的顺序到达F 站;公交车乙从A 站出发,按着A 、B 、C 、F 的顺序到达F 站.如果甲、乙分别从A 站同时出发,在各自的路径运行中速度及所耽误的时间均相同,猜想哪一辆公交车先到达F 站?为什么?ABCDEF图18五、探究拓展与应用(共20分)21.(10分)将两块形状完全相同的等腰直角三角板摆放成如图19所示的样子,假设图形中所有点、线都在同一平面内,那么图中共有多少对全等三角形?把它们一一写出,找出一对说出理由.(提示:等腰直角三角板两直角边相等,两锐角都是45°)ABCD E FB ''C图1911.三角形(2)一、请准确填空(每小题5分,共20分)1.如图1所示,O 是线段BC 的中点,过O 作直线l ⊥BC ,则直线l 叫做线段BC 的垂直平分线.在l 上任取一点A ,连接AB 、AC ,则AB _______AC (填“>”“=”或“<”).另任取一点A ′,连结A ′B 、A ′C ,则A ′B _______A ′C (填“>”“=”或“<”).总之在l 上任一点到B 、C 的距离都__________(填“相等”或“不相等”),由此,我们可以得到一个规律:__________.ABCl O 'A图1 图22.如图2所示,小明与小华玩跷跷板游戏,如果跷跷板中点O (支点)到地面的距离OD = 50 cm ,当小华从水平位置下降到地面时,小明这时离地面的高度为________cm ,其中的道理是__________(用一句话简述).3.如图3所示,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 和B ′C ′上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充一个条件________(只填一个你认为正确的条件即可).ABC DBC D '''A '图34.如图4所示,AD ⊥BC ,垂足为O ,OA =OD ,AB =CD ,则全等三角形有________和________,理由是________;则AB 与CD 的位置关系是________,理由是________.ABCD O图4二、相信你的选择(每小题4分,共24分)5.如图5所示,∠ADC =∠AEB =90°,那么补充下列一个条件,仍无法判定△ABE ≌ △ACD 的是A.AD =AEB.∠B =∠CC.BE =CDD.AB =ACAB CDEABC D E12HA BCD E图5 图6 图76.如图6所示,△ABC 中,高AD 和BE 相交于点H ,且HA =HC ,则 A.∠1<∠2 B.∠1>∠2 C.∠1=∠2 D.不能确定7.如图7所示,已知∠C =90°,DE ⊥AB ,垂足为E ,BC =BE .若AC =3 cm ,则AD +DE 等于A.2 cmB.3 cmC.5 cmD.6 cm8.如图8所示,已知点C 是∠AOB 平分线上一点,点P 、P ′分别在边OA 、OB 上.如果要得到OP =OP ′,需要添加下列条件中的某一个条件:①∠OCP =∠OCP ′;②∠OPC = ∠OP ′C ;③PC =P ′C ;④PP ′⊥OC .你认为添________中的任意一个条件.A.①②③B.②③④C.①③④D.①②③④ACPP' A B CD EFF A BCEM图8 图9 图109.在新修的花园小区中,有一条“Z ”字形绿色长廊ABCD (如图9所示),其中AB ∥CD ,在AB 、BC 、CD 三段绿色长廊上各修一小亭E 、M 、F ,且BE =CF ,M 是BC 的中点,在凉亭M 与F 之间有一池塘,不能直接到达,要想知道M 与F 的距离,要测出________的长度.A.EMB.BEC.CFD.CM10.如图10所示,有两个长度相同的滑梯(即BC =EF ).左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,你认为下列结论错误的是A.∠ABC =∠DEFB.AB =DEC.CE =CDD.∠ABC +∠DFE =90° 三、考查你的基本功(共22分)11.(6分)如图11所示,在△ABC 中,∠B =∠C ,D 是BC 上一点,DE ⊥AB ,DF ⊥AC ,若要使DE =DF ,D 应该在BC 的什么位置上?试说明理由.AFCDBE图1112.(8分)如图12所示,已知△ABC ,AB =AC ,分别过C 、B 作经过点A 的直线MN 的垂线CE 、BD ,垂足分别为E 、D ,若BD =AE ,猜想△ABC 是什么形状的三角形?说明你的猜想.CBDAE M N图1213.(8分)如图13所示,在△ABC 中,∠BAC =90°,E 是AC 上一点,AD 是高,BE 、AD 相交于点F ,EG ⊥BC ,若AB =BG ,A BCD EFG12图13(1)图中有全等三角形吗?(2)∠1=∠2是否成立?试利用所学知识加以解释. 小刚给出如下解释过程:(1)存在全等三角形△ABE ≌△GBE ; (2)在Rt △ABE 和Rt △GBE 中,你能理解吗?写出每一步的理由.四、生活中的数学(共16分)14.(8分)如图14所示,侦察员为了测量河宽,站在岸边某处,并使擦帽舌而过的视线恰好落在河对岸岸边A 处,然后保持身体姿势不变,转过身体,这时擦帽舌而过的视线落在河岸这边的B 处,只要量出他站立的地方到点B 处的距离,就知道河的宽度了,试说明其中的 道理.AB五、探究拓展与应用(共18分)15.(10分)有一个直角三角形,它的一个内角为30°.(1)怎样把这个三角形分成两个等腰三角形?请画出图形;(2)再观察你所画出的两个三角形,你能否发现直角三角形中,30°的内角所对的边与斜边之间有怎样的相等关系?请你用文字语言表达这种关系,然后说明理由.ACB图1612.第五章单元测试题一、填空题1.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=_________,A′B′=__________.2.如图1,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形________对.图1图2图3 3.已知△ABC≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为________ cm2,若△A′B′C′的周长为16 cm,则△ABC的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC ≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图48.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______.9.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______. 10.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______. 二、选择题11.下列条件能判断两个三角形全等的是( )①两角及一边对应相等 ②两边及其夹角对应相等 ③两边及一边所对的角对应相等 ④两角及其夹边对应相等A .①③B .②④C .①②④D .②③④ 12.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm13.如图6,AE =AF ,AB =AC ,EC 与BF 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、8502题图 OFEC BA图6 图714.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F 15.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=•BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC•≌△ABC ,•得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A D CB图5E图8 图9A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理16.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:417.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和.( )A .小于B .大于C .等于D .不能确定图1018.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等19.现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒20.如图3,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( ) A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值三、解答题21.已知如图12,△ABC 中,∠ACB=90°,延长BC 至B ',使C B '=BC ,连结A B '.求证:△AB B '是等腰三角形.图12AMBB CD Eαβ γ 图1122.已知如图13,AC 交BD 于点O ,AB =DC ,∠A =∠D .(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.23.如图14,画一个两条直角边相等的Rt △ABC ,并过斜边BC 上一点D 作射线AD ,再分别过B 、C 作射线AD 的垂线BE 和CF ,垂足分别为E 、F ,量出BE 、CF 、EF 的长,•改变D 的位置,再重复上面的操作,你是否发现BE 、CF 、EF 的长度之间有某种关系?能说清其中的奥妙吗?DA B C图13OCA24、如图15,已知∠MON 的边OM 上有两点A 、B ,边ON 上有两点C 、D ,且AB =CD ,P 为∠MON 的平分线上一点.问:(1)△ABP 与△PCD 是否全等?请说明理由.(2)△ABP 与△PCD 的面积是否相等?请说明理由.4题图DPN MOCBA图15。