二次函数的图像专项练习题集(最新整理)
二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版
二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。
二次函数的图像与性质经典练习题(11套)附带详细答案
练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。
二次函数的图像和性质专项练习题(最新整理)
《二次函数的图像和性质》周末练习题一、选择题1、下列函数是二次函数的有( ).;)3(;2;12222c bx ax y D x x x y C xy B x y A ++=--==-=::::2. y=(x -1)2+2的对称轴是直线( ) A .x=-1B .x=1C .y=-1D .y=13. 抛物线的顶点坐标是( )()12212++=x y A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)5、二次函数 )c bx ax y ++=2A a>0 b<0 c>0 b 2-4ac<0B a<0 b<0 c>0 b 2-4ac>0C a<0 b>0 c<0 b 2-4ac>0D a<0 b>0 c>0 b 2-4ac>0 6.已知二次函数 ( ))2(2-++=m m x mx y A . 0或2 B . 0 C . 2 D .无法确定7.正比例函数y =kx 的图象经过二、四象限,则抛物线y =kx 2-2x +k 2的大致图象是( )8、若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 23(1)2y x =-- B 23(1)2y x =+- C 23(1)2y x =++ D23(1)2y x =-+10.二次函数的图像如图所示,则,,,这c bx ax y ++=2abc ac b 42-b a +2c b a ++四个式子中,值为正数的有( )(A )4个 (B )3个 (C )2个 (D )1个11.在同一坐标系中,函数和(是常数,且)的图y mx m =+222y mx x =-++m 0m ≠象可能是( )12.若二次函数,当x 取,(≠)时,函数值相等,则当x 取+时,函数值为( )(A )a+c (B )a-c (C )-c (D )c13.抛物线的部分图象如图所示,若,则的取c bx x y ++-=20>y 值范围是( ) A.B. 14<<-x 13<<-xC. 或D.或4-<x 1>x 3-<x 1>x 14.已知关于x 的方程的一个根为=2,且二次函数32=++c bx ax 1x 的对称轴直线是x =2,则抛物线的顶点坐标是( )c bx ax y ++=2A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2)15.已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( )A.1B.2C.3D.4二、填空题:1、抛物线可以通过将抛物线y =向左平移_ _ 个单位、再向 21(2)43y x =++231x 平移 个单位得到。
专题01 二次函数的图像与性质(30题)(解析版)
专题第01讲二次函数的图像与性质(30题)1.(2023•怀集县一模)已知抛物线y=ax2﹣4ax+c,点A(﹣2,y1),B(4,y2)是抛物线上两点,若a<0,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法比较【分析】先求出抛物线的对称轴为直线x=2,得出a<0,得出抛物线开口向下,则抛物线上的点距离对称轴越近,对应的函数值越大,最后求出结果即可.【解答】解:∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴为直线x=2,∵a<0,∴抛物线开口向下,抛物线上的点距离对称轴越近,对应的函数值越大,∵点A(﹣2,y1)到对称轴的距离为2﹣(﹣2)=4,点B(4,y2)到对称轴的距离为4﹣2=2,又∵2<4,∴点B(4,y2)到对称轴的距离近.∴y1<y2,故选:B.2.(2023•南湖区校级开学)若点A(﹣3,y1),B(,y2),C(2,y3)在二次函数y=x2+2x+1的图象上,则y1,y2,y3的大小关系是( )A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1【分析】根据抛物线的对称轴和开口方向,再由A,B,C三个点离对称轴的远近,即可解决问题.【解答】解:由题知,抛物线y=x2+2x+1的开口向上,且对称轴是直线x=﹣1,所以函数图象上的点,离对称轴越近,函数值越小.又,所以y2<y1<y3.故选:A.3.(2022秋•华容区期末)若点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y1【分析】利用二次函数图象上点的坐标特征可求出y1,y2,y3的值,比较后即可得出结论(利用二次函数的性质解决问题亦可(离对称轴越远,y值越大)).【解答】解:∵点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,∴y1=﹣4﹣m,y2=﹣3﹣m,y3=5﹣m.∵5﹣m>﹣3﹣m>﹣4﹣m,∴y3>y2>y1.故选:D.4.(2023•宝鸡一模)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】首先求出抛物线开口方向和对称轴,然后根据二次函数的增减性即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:B.5.(2022秋•法库县期末)已知抛物线y=ax2(a>0)过A(2,y1)、B(﹣1,y2)两点,则下列关系式一定正确的是( )A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>0【分析】依据抛物线的对称性可知:(﹣2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(2,y1)关于y轴对称点的坐标为(﹣2,y1),∵a>0,∴x<0时,y随x的增大而减小,∵﹣2<﹣1<0,∴y1>y2>0;故选:C.6.(2023•温州模拟)若点A(﹣3,y1),B(1,y2),C(2,y1)是抛物线y=﹣x2+2x上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y2>y1>y3【分析】根据二次函数的性质得到抛物线y=﹣x2+2x的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:∵抛物线y=﹣x2+2x,∴抛物线开口向下,对称轴为直线x=﹣=1,而A(﹣3,y1)离直线x=1的距离最远,B(1,y2)在直线x=1上,∴y1<y3<y2.故选:B.7.(2023•西安二模)已知二次函数y=ax2﹣4ax+3(a为常数,且a>0)的图象上有三点A(﹣2,y1),B (2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1【分析】先求得抛物线的开口方向和对称轴,然后利用二次函数的对称性和增减性解答即可.【解答】解:∵二次函数y=ax2﹣4ax+3(a为常数,且a>0),∴开口向上,对称轴为直线x=﹣=2,当x>2时,y随x的增大而增大,∴当x=﹣2与x=6的函数值相同,即抛物线经过(6,y1),∵2<3<6,∴y2<y3<y1.故选:D.8.(2023•上城区模拟)已知抛物线y=(x﹣2)2﹣1上的两点P(x1,y1),Q(x2,y2)满足x2﹣x1=3,则下列结论正确的是( )A.若x1<,则y1>y2>0B.若<x1<2,则y2>y1>0C.若x1<,则y1>0>y2D.若<x1<2,则y2>0>y1【分析】由二次函数解析式可得抛物线的开口方向及对称轴,将x=代入解析式可得y的值,通过抛物线的对称性及x2﹣x1=3求解.【解答】解:∵y=(x﹣2)2﹣1,∴抛物线开口向上,对称轴为直线x=2,当x1=时,x2=3+=,∴=2,即点P,Q关于对称轴对称,此时y1=y2,将x=代入y=(x﹣2)2﹣1得y=0,当x1<时,当x2>时,y1>0>y2,当x2<时,y1>y2>0,故选项A,C不符合题意,∵x2﹣x1=3,∴x2=x1+3,∵y=(x﹣2)2﹣1,∴y1=(x1﹣2)2﹣1,y2=(x1+1)2﹣1,当<x1<2时,﹣<x1﹣2<0,<x1+1<3,∴﹣1<(x1﹣2)2﹣1<0,0<(x1+1)2﹣1<3,∴y2>0>y1.故选:D.9.(2023春•灌云县期中)已知y=x2+(m﹣1)x+1,当0≤x≤5且x为整数时,y随x的增大而减小,则m 的取值范围是( )A.m<﹣8B.m≤﹣8C.m<﹣9D.m≤﹣9【分析】可先求得抛物线的对称轴,再由条件可求得关于m的不等式,可求得答案.【解答】解:∵y=x2+(m﹣1)x+1,∴对称轴为x=﹣,∵a=1>0,∴抛物线开口向上,∴在对称轴左侧y随x的增大而减小,∵当0≤x≤5且x为整数时,y随x的增大而减小,∴﹣≥5,解得m≤﹣9,故选:D.10.(2023•西湖区校级二模)已知二次函数y=ax2+bx+c,当y>n时,x的取值范围是m﹣3<x<1﹣m,且该二次函数的图象经过点P(3,t2+5),Q(d,4t)两点,则d的值可能是( )A.0B.﹣1C.﹣4D.﹣6【分析】由题意可知该抛物线的对称轴和开口方向,并通过比较两点的纵坐标可知两点离对称轴的远近关系,由此可列不等式,求出d范围,进而选出符合条件的选项.【解答】解:如图,根据题意可知,该二次函数开口向下.对称轴为x==﹣1,∵t2+5﹣4t=(t﹣2)2+1>0,∴与点Q相比,点P更靠近对称轴,即3﹣(﹣1)<|d﹣(﹣1)|,整理得|d+1|>4.∴当d+1≥0时,有d+1>4,解得d>3;当d+1<0时,有﹣(d+1)>4,解得d<﹣5.综上,d>3或d<﹣5.故选:D.11.(2023春•鼓楼区校级期末)已知抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),C(4,2),D(6,4),那么a﹣b+c的值是( )A.2B.3C.4D.t【分析】根据抛物线的对称性求得抛物线的对称轴,即可得到D(6,4)关于对称轴对称的点为(﹣1,4),故当x=﹣1时可求得y值为4,即可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),∴抛物线的对称轴为直线x==,∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,∴D(6,4)对称点坐标为(﹣1,4),∴当x=﹣1时,y=4,即a﹣b+c=4,故选:C.12.(2023•全椒县一模)如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)与一次函数y=acx+b的图象可能是( )A.B.C.D.【分析】先由二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,b<0,c<0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意;B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项符合题意;C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意.故选:B.13.(2023春•青秀区校级期末)在同一坐标系中,一次函数y=﹣mx+1与二次函数y=x2+m的图象可能是( )A.B.C.D.【分析】根据一次函数的b=1和二次函数的a=1即可判断出二次函数的开口方向和一次函数经过y轴正半轴,从而排除A和C,分情况探讨m的情况,即可求出答案.【解答】解:∵二次函数为y=x2+m,∴a=1>0,∴二次函数的开口方向向上,∴排除C选项.∵一次函数y=﹣mx+1,∴b=1>0,∵一次函数经过y轴正半轴,∴排除A选项.当m>0时,则﹣m<0,一次函数经过一、二、四象限,二次函数y=x2+m经过y轴正半轴,∴排除B选项.当m<0时,则﹣m>0一次函数经过一、二、三象限,二次函数y=x2+m经过y轴负半轴,∴D选项符合题意.故选:D.14.(2022秋•滨城区校级期末)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.【分析】可先由一次函数y=ax﹣b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,a>0,矛盾,不合题意;B、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b>0,一致,符合题意;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,矛盾,不合题意;D、由y=ax2+bx可知,抛物线经过原点,不合题意;故选:B.15.(2023•濉溪县模拟)已知二次函数y=ax2+(b+1)x+c的图象如图所示,则二次函数y=ax2+bx+c与正比例函数y=﹣x的图象大致为( )A.B.C.D.【分析】根据二次函数y=ax2+(b+1)x+c图象得出a>0,c<0,二次函数y=ax2+(b+1)x+c与x轴的交点坐标为(﹣1,0)和(3,0),从而判断出二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,即可得出答案.【解答】解:由二次函数y=ax2+(b+1)x+c的图象可知,a>0,c<0,二次函数y=ax2+(b+1)x+c 与x轴的交点坐标为(﹣1,0)和(3,0),∴二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,故B正确.故选:B.16.(2023春•鼓楼区校级期末)一次函数y=ax﹣1(a≠0)与二次函数y=ax2﹣x(a≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .【分析】可先由一次函数y =ax +c 图象得到字母系数的正负,再与二次函数y =ax 2+bx +c 的图象相比较看是否一致.【解答】解:由,解得或,∴一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)的交点为(1,a ﹣1),(,0),A 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误,不符合题意;B 、由抛物线可知,a >0,由直线可知,a >0,由一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)可知,两图象交于点(1,a ﹣1),则交点在y 轴的右侧,故本选项错误,不符合题意;C 、由抛物线可知,a <0,由直线可知,a <0,两图象的一个交点在x 轴上,另一个交点在第四选项,故本选项正确,符合题意;D 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误,不合题意;故选:C .17.(2023春•惠民县期末)如图所示,二次函数y =ax 2+bx +c 和一次函数y =ax +b 在同一坐标系中图象大致为( )A .B .C .D .【分析】分别根据两个函数的图象得出系数的取值范围,一致的就是符合题意,否则就是不符合题意的.【解答】解:A:根据一次函数的图象得:a>0,b<0,根据二次函数的图象得:a>0,b<0,故A符合题意;B:根据一次函数的图象得:a<0,b>0,根据二次函数的图象得:a>0,b>0,故B不符合题意;C:根据一次函数的图象得:a<0,b<0,根据二次函数的图象得:a<0,b>0,故C不符合题意;D:根据一次函数的图象得:a>0,b>0,根据二次函数的图象得:a<0,b<0,故D不符合题意;故选:A.18.(2023•盘龙区校级开学)已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc<0;②4a﹣2b+c>0;③a﹣b>m(am+b)(m为任意实数);④4ac﹣b2<0;其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象,可得出a,b,c的正负,再结合抛物线的对称轴为直线x=﹣1和开口向下,即可解决问题.【解答】解:由图象可知,a<0,b<0,c>0,所以abc>0.故①错误.因为抛物线的对称轴是直线x=﹣1,所以x=﹣2时与x=0时的函数值相等.又由图象可知,x=0时,函数值大于0.所以x=﹣2时,函数值也大于0.即4a﹣2b+c>0.故②正确.因为抛物线开口向下,且对称轴为直线x=﹣1,所以当x=﹣1时,函数有最大值a﹣b+c.则当x=m(m为任意实数)时,总有a﹣b+c≥am2+bm+c,即a﹣b≥m(am+b).故③错误.因为抛物线与x轴有两个交点,所以b2﹣4ac>0,即4ac﹣b2<0.故④正确.故选:B.19.(2022秋•玉泉区校级期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点、点在该函数图象上,则y1<y2<y3;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )A.5个B.4个C.3个D.2个【分析】根据抛物线的对称轴方程和开口方向以及与y轴的交点,可得a<0,b>0,c>0,由对称轴为直线x=2,可得b=﹣4a,当x=2时,函数有最大值4a+2b+c;由经过点(﹣1,0),可得a﹣b+c=0,c=﹣5a;再由a<0,可知图象上的点离对称轴越近对应的函数值越大;再结合所给选项进行判断即可.【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,所以(1)正确;∵对称轴为直线x=2,∴﹣=2,∴b=﹣4a,∴b+4a=0,∴b=﹣4a,∵经过点(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣4a﹣a=﹣5a,∴4a+c﹣2b=4a﹣5a+8a=7a,∵a<0,∴4a+c﹣2b<0,∴4a+c<2b,故(2)不正确;∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,∴y1<y2<y3,故(4)正确;当x=2时,函数有最大值4a+2b+c,∴4a+2b+c≥am2+bm+c,4a+2b≥m(am+b)(m为常数),故(5)正确;综上所述:正确的结论有(1)(3)(4)(5),共4个,故选:B.20.(2023春•青秀区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc<0;②a﹣b+c<0;③m为任意实数,则a+b>am2+bm;④3a+c<0;⑤若且x1≠x2,则x1+x2=4.其中正确结论的个数有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,∴a<0,c>0,,∴b>0,∴abc<0,故①正确;②∵对称轴是直线x=1,与x轴交点在(3,0)左边,∴二次函数与x轴的另一个交点在(﹣1,0)与(0,0)之间,∴a﹣b+c<0,故②正确;③∵对称轴是直线x=1,图象开口向下,∴x=1时,函数最大值是a+b+c;∴m为任意实数,则a+b+c≥am2+bm+c,∴a+b≥am2+bm,故③错误;④∵,∴b=﹣2a由②得a﹣b+c<0,∴3a+c<0,故④正确;⑤∵,∴,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,∵x1≠x2,∴a(x1+x2)+b=0,∵,b=﹣2a,∴x1+x2=2,故⑤错误;故正确的有3个,故选:C.21.(2022秋•丰都县期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②2a+b=0;③m为任意实数时,a+b≤m(am+b);④a﹣b+c>0;⑤若ax+bx1=+bx2,且x1≠x2,则x1+x2=2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向上,则a>0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于y轴负半轴,则c<0,所以abc<0.故①错误;②∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最小值为:a+b+c,∴m为任意实数时,a+b≤m(am+b);即a+b+c<am2+bm+c,故③正确;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;⑤∵+bx1=+bx2,∴+bx1﹣﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②③④⑤.故选:D.22.(2022秋•建昌县期末)已知二次函数y=ax2+bx+c(a≠0)的图象大致如图所示.下列说法正确的是( )A.2a﹣b=0B.当﹣1<x<3时,y<0C.a+b+c>0D.若(x1,y1),(x2,y2)在函数图象上,当x1<x2时,y1<y2【分析】根据二次函数的系数与图象的关系解答即可.【解答】解:根据对称轴为直线x=1可得:,故2a+b=0,故A错误;根据函数图象可得当﹣1<x<3时,y<0,故B正确;当x=1时,y=a+b+c<0,故C错误;若(x1,y1),(x2,y2)在函数图象上,只有当1<x1<x2时,y1<y2,故D错误;故选:B.23.(2022秋•新抚区期末)如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1.下列结论:①abc<0;③4a﹣2b+c>0;④3a+c>0;⑤b2﹣4a2>2ac.其中正确结论的个数是( )A.2B.3C.4D.5【分析】观察图象得:抛物线开口向上,与y轴交于负半轴,可得a>0,c<0,再由对称轴是直线x=﹣1,可得abc<0,故①正确;再根据抛物线与x轴有2个交点,可得b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,可得4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,再由b=2a,可得a+b+c>0,故④正确;再由b2﹣4a2=(b+2a)(b﹣2a)=0,可得⑤正确,即可求解.【解答】解:观察图象得:抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∵对称轴是直线x=﹣1,∴,即b=2a>0,∴abc<0,故①正确;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,即4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,∵b=2a,∴a+b+c=3a+c>0,故④正确;∵b=2a,∴b﹣2a=0,∴b2﹣4a2=(b+2a)(b﹣2a)=0,∴2ac<0,∴b2﹣4a2>2ac,故⑤正确;故选:C.24.(2022秋•莲池区校级期末)已知二次函数y=ax2+bx+c,其函数y与自变量x之间的部分对应值如表所示.下列结论:①abc>0;②当﹣3<x<1时,y>0;③4a+2b+c>0;④关于x的一元二次方程的解是x1=﹣4,x2=2.其中正确的有( )x…﹣41…y…0…A.1个B.2个C.3个D.4个【分析】观察图表可知,开口向下,a<0,二次函数y=ax2+bx+c在与时,y值相等,得出对称轴为直线x=﹣1,即可得出b<0,在根据图象经过点(1,0),得出c>0由此判断①;根据二次函数的对称性求得抛物线与x轴的交点,即可判断②;根据x=2,y<0即可判断③;根据抛物线的对称性求得点关于直线x=﹣1的对称点是,即可判断④.【解答】解:①由于二次函数y=ax2+bx+c有最大值,∴a<0,开口向下,∵对称轴为直线,∴b<0,∵图象经过点(1,0),∴c>0,∴abc>0,故①说法正确;②∵对称轴为直线x=﹣1,∴点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∵a<0,开口向下,∴当﹣3<x<1时,y>0,故②说法正确;③当x=2时,y<0,∴4a+2b+c<0,故③说法错误;④∵点关于直线x=﹣1的对称点是,∴关于x的一元二次方程的解是x1=﹣4,x2=2,故④说法正确.故选:C.25.(2023•扎兰屯市一模)如图,函数y=ax2+bx+2(a≠0)的图象的顶点为,下列判断正确个数为( )①ab<0;②b﹣3a=0;③ax2+bx≥m﹣2;④点(﹣4.5,y1)和点(1.5,y2)都在此函数图象上,则y1=y2;⑤9a=8﹣4m.A.5个B.4个C.3个D.2个【分析】根据抛物线的开口方向得a<0,由顶点坐标可得b=3a<0,b﹣3a=0,以此可判断①②;再根据二次函数的性质可得当x=时,y取得最大值为m,以此可判断③;根据离抛物线对称轴距离相等点的函数值相等可判断④;将顶点坐标代入函数解析式中,化简即可判断⑤.【解答】解:∵抛物线开口向下,∴a<0,∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴抛物线的对称轴为直线x=,∴b=3a<0,∴ab>0,故①错误;由上述可知,b=3a,∴b﹣3a=0,故②正确;∵抛物线开口向下,∴当x=时,y取得最大值为m,∴无论x取何值都有ax2+bx+2≤m,∴ax2+bx≤m﹣2,故③错误;∵抛物线的对称轴为直线x==﹣1.5,﹣1.5﹣(﹣4.5)=1.5﹣(﹣1.5),∴y1=y2,故④正确;∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴,整理得:9a﹣6b+8=4m,∵b=3a,∴9a﹣18a+8=4m,∴9a=8﹣4m,故⑤正确.综上,正确的结论有②④⑤,共3个.故选:C.26.(2023•深圳模拟)二次函数y=ax2+bx+c的图象如图所示,以下结论正确的个数为( )①abc<0;②c+2a<0;③9a﹣3b+c=0;④am2﹣a+bm+b>0(m为任意实数)A.1个B.2个C.3个D.4个【分析】根据二次函数图象的开口方向,对称轴,顶点坐标以及最大(小)值,对称性进行判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=﹣=﹣1<0,∴a、b同号,而a>0,∴b>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc<0,因此①正确;由于抛物线过点(1,0)点,∴a+b+c=0,又∵对称轴为x=﹣1,即﹣=﹣1,∴b=2a,∴a+2a+c=0,即3a+c=0,而a>0,∴2a+c<0,因此②正确;由图象可知,抛物线与x轴的一个交点坐标为(1,0),而对称轴为x=﹣1,由对称性可知,抛物线与x轴的另一个交点坐标为(﹣3,0),∴9a﹣3b+c=0,因此③正确;由二次函数的最小值可知,当x=﹣1时,y=a﹣b+c,最小值当x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即am2+bm﹣a+b≥0,因此④不正确;综上所述,正确的结论有①②③,共3个,故选:C.27.(2023•镜湖区校级二模)如图所示,点A,B,C是抛物线y=ax2+bx+c(a≠0)(x为任意实数)上三点,则下列结论:①﹣=2 ②函数y=ax2+bx+c最大值大于4 ③a+b+c>2,其中正确的有( )A.①B.②③C.①③D.①②【分析】抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,0<t<1,.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>2,即a+b+c>2.因此③正确.【解答】解:抛物线y=ax2+bx+c(a≠0)的大致图象如图.抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,∵0<t<1,∴.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>3,即a+b+c>3>2.因此③正确.故选:B.28.(2023•丰顺县一模)如图是二次函数y=ax2+bx+c(a≠0)的图象,有如下结论:①abc>0:②a+b+c<0:③4a+b<0;④4a>c.其中正确的结论有( )个.A.1B.2C.3D.4【分析】根据二次函数图象与系数的关系分别判断即可.【解答】解:∵抛物线开口向上,与y轴交于正半轴,∴a>0,c>0,∵抛物线对称轴为x=﹣>0,∴b<0,∴abc<0,∴①错误;∵当x=1时,y<0,∴a+b+c<0,∴②正确;∵抛物线对称轴为x=﹣<2,a>0,∵b>﹣4a,∴4a+b>0,∴③错误;∵抛物线对称轴为x=﹣<2,a>0,∴b>﹣4a,∵a+b+c<0,∴a﹣4a+c<0,∴﹣3a+c<0,∴3a>c,∵a>0,∴4a>c,∴④正确.故选:B.29.(2022秋•合川区期末)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,下列结论:①abc>0;②a+2b=0;③a﹣b+c>0;④;⑤若P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.正确结论的个数是( )A.2B.3C.4D.5【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及对称性逐个进行判断即可.【解答】解:抛物线开口向上得a>0,对称轴在y轴的右侧,a、b异号,因此b<0,抛物线与y轴的交点在y轴的负半轴,因此c<0,所以abc>0,因此①符合题意;由﹣=2,可知b=﹣4a,所以a+2b=﹣7a<0,因此②不符合题意;由对称轴和抛物线的对称性,可得当x=﹣1时,y>0,即a﹣b+c>0,故③符合题意;由图象可知x=3时,y<0,故9a+3b+c<0,即3a+b<﹣,因此④不符合题意;由对称轴和抛物线的对称性,可得P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.因此⑤符合题意;综上所述,正确的结论有3个,故选:B.30.(2023春•惠民县期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有如下6个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);⑥b2>4ac;其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵该抛物线开口方向向下,∴a<0.∵抛物线对称轴方程x=﹣>0,∴a、b异号,∴b>0;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0;故①错误;②∵当x=﹣1时,y<0,∴a﹣b+c<0,∴b>a+c,故②错误;③根据抛物线的对称性知,当x=2时,y>0,即4a+2b+c>0;故③正确;∵对称轴方程x=﹣=1,∴b=﹣2a,∴=﹣a,根据抛物线的对称性知,当x=3时,y<0,即9a+3b+c<0,∴9a+3b+c=﹣b+c<0,∴2c<3b.故④正确;⑤∵x=1时函数取得最大值,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),故⑤正确;⑥∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,即b2>4ac.故⑥正确.综上所述,正确的有4个.故选:C.。
二次函数的图象和性质——增减性和最值 专题训练卷(含答案详解)
1.2.7二次函数的图象和性质——增减性和最值1.函数f(x)=(x-3)(x+5)的单调递减区间是().A.(-∞,-1] B.[-1,+∞)C.(-∞,1] D.[1,+∞)2.二次函数y=-2(x+1)2+8的最值情况是().A.最小值是8,无最大值B.最大值是-2,无最小值C.最大值是8,无最小值D.最小值是-2,无最大值3.若抛物线y=x2+6x+c的顶点恰好在x轴上,则c的值为().A.0 B.3 C.6 D.94.函数f(x)=x2+4ax+2在(-∞,6)内是递减函数,则实数a的取值范围是().A.[3,+∞) B.(-∞,3]C.[-3,+∞) D.(-∞,-3]5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的售价x(元)满足一次函数:m=162-3x.若要每天获得最大的销售利润,每件商品的售价应定为().A.30元B.42元C.54元D.越高越好6.已知f(x)=ax2+2x-6,且f(1)=-5,则f(x)的递增区间是__________.7.若函数f(x)=x2+mx+3的最小值是-1,则f(m)的值为__________.8.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+20x和L2=2x,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为__________.9.已知二次函数y=-4x2+8x-3.(1)画出它的图象,并指出图象的开口方向、对称轴方程、顶点坐标;(2)求函数的最大值;(3)写出函数的单调区间.10.某汽车租赁公司拥有汽车100辆,当每辆汽车的月租金为3 000元时,可全部租出;当每辆汽车的月租金每增加50元时,未租出的汽车将会增加一辆.租出的汽车每辆每月需要维护费150元,未租出的汽车每辆每月需要维护费50元.(1)当每辆汽车的月租金定为3 600元时,能租出多少辆汽车?(2)当每辆汽车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案1. 答案:A解析:f (x )=(x -3)(x +5)=x 2+2x -15,12b a -=-,所以f (x )的递减区间是(-∞,-1],选A .2. 答案:C3. 答案:D解析:∵y =x 2+6x +c =(x +3)2+c -9,∴c -9=0,c =9.4. 答案:D解析:f (x )=x 2+4ax +2=(x +2a )2+2-4a 2,∵f (x )在(-∞,6)内是递减函数,∴-2a ≥6,∴a ≤-3.5. 答案:B解析:设日销售利润为y 元,则y =(x -30)(162-3x ),30≤x ≤54,将上式配方后得y =-3(x -42)2+432,当x =42时,y 取得最大值.故每件商品的售价定为42元时,每天才能获得最大的销售利润.6. 答案:(-∞,1]解析:由f (1)=-5得a +2-6=-5,所以a =-1.这时f (x )=-x 2+2x -6. 又212(1)-=⨯-, 所以f (x )的递增区间是(-∞,1].7. 答案:35解析:由已知得2413141m ⨯⨯-=-⨯, 所以m 2=16,m =±4.当m =4时,f (m )=f (4)=35;当m =-4时,f (m )=f (-4)=35.8. 答案:111万元解析:设在甲地销售x 辆,则在乙地销售(15-x )辆.在甲、乙两地的销售利润分别为L 1=-x 2+20x 和L 2=2(15-x )=30-2x .于是销售总利润y =L 1+L 2=-x 2+20x +30-2x =-x 2+18x +30.因此当1892(1)x=-=⨯-时,y取最大值f(9)=-92+18×9+30=111(万元).9.解:(1)图象如图所示,该图象开口向下;对称轴为x=1;顶点坐标为(1,1).(2)∵f(x)=-4(x-1)2+1,∴x=1时,f(x)max=1.(3)函数在(-∞,1]上是递增函数,在[1,+∞)上是递减函数.10.解:(1)当每辆汽车月租金为3 600元时,未租出的汽车辆数为360030001250-=,所以这时租出了88辆汽车.(2)设每辆汽车的月租金定为x元,则公司月收益为f(x)=300010050x-⎛⎫-⎪⎝⎭(x-150)-300050x-×50,整理得f(x)=150-x2+162x-21 000=150-(x-4 050)2+307 050(x>150).∴当x=4 050时,f(x)最大,最大值为307 050.即每辆汽车的月租金定为4 050元时,汽车租赁公司的月收益最大,最大月收益是307 050元.。
专题5.2二次函数的图象与性质大题专练一般式重难点培优九年级数学下册培优题典原卷版苏科版
2021-2022学年九年级数学下册尖子生培优题典【苏科版】专题5.2二次函数的图象与性质大题专练(一般式重难点培优)姓名:__________________ 班级:______________ 得分:_________________一、解答题(共24题)1.(2021·江苏·九年级专题练习)已知二次函数y=x2―2x―3.(1)将二次函数化成y=a(x―ℎ)2+k的形式;(2)在平面直角坐标系中画出y=x2―2x―3的图象;2.(2021·江苏·九年级专题练习)已知二次函数y=x2﹣4x+3.(Ⅰ)将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式: ;(Ⅱ)抛物线与x轴交点坐标为 ;(Ⅲ)在平面直角坐标系中,画出这个二次函数的图象;(Ⅳ)当y<0时,x的取值范围是 ;(Ⅴ)当0<x<3时,y的取值范围是 .3.(2021·江苏·九年级专题练习)已知二次函数y=x2―2x+1,(1)画出它的图象,并求出它的顶点坐标和对称轴;(2)当函数值y>0时,观察图象,直接写出自变量x的取值范围.4.(2021·江苏·滨海县第一初级中学九年级阶段练习)用描点法画出y=x2+2x―3的图像(1)根据对称性列表:x…-3-2-101…y=x2+2x―3……(2)在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线:(3)观察图像:①抛物线与y轴交点坐标是;②抛物线与x轴交点坐标是;③当x满足时,y<0;④它的对称轴是;⑤当x时,y随x的增大而减小5.(2022·江苏连云港·九年级期末)已知二次函数y=x2﹣2x﹣3(1)直接写出函数图像顶点坐标,并在直角坐标系中画出该二次函数的大致图象;(2)当函数值y为正数时,自变量x的取值范围;(3)将该函数图像向右平移一个单位,再向上平移四个单位后,所得图象的函数表达式是_____.6.(2022·江苏盐城·九年级期末)在平面直角坐标系xOy中,抛物线y=ax2+bx―5恰好经过A(2,―9),B (4,―5),C(4,―13)三点中的两点,(1)求该抛物线表达式;(2)在给出的平面直角坐标系中画出这个抛物线的图像;(3)如果直线y=k与该抛物线有交点,那么k的取值范围是___________.7.(2022·江苏·九年级专题练习)已知抛物线y=ax2-2ax-3+2a2 (a<0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求抛物线的函数解析式;8.(2022·江苏南京·二模)已知二次函数y=x2―2mx+3(m是常数).(1)若m=1,①该二次函数图像的顶点坐标为______;②当0≤x≤4时,该二次函数的最小值为______;③当2≤x≤5时,该二次函数的最小值为______.(2)当―1≤x≤3时,该二次函数的最小值为1,求常数m的值.9.(2022·江苏·射阳县实验初级中学九年级阶段练习)若函数y=x|m―1|+3x―2是二次函数,且m>0;(1)求m的值(2)如图,已知二次函数y=(m―1)x2+ax+3的图象经过点P(―2,3),①求a的值和图象的顶点坐标.②点Q(2,n)在该二次函数图象上,求n的值;10.(2022·江苏扬州·九年级期末)已知二次函数y=2x2―4x+3的图像为抛物线C.(1)抛物线C顶点坐标为______;(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线C1,请判断抛物线C1是否经过点P(2,3),并说明理由;(3)当―2≤x≤3时,求该二次函数的函数值y的取值范围.11.(2022·江苏·苏州中学二模)已知二次函数y=x2+4x-1(1)将解析式化为y=(a+h)2+k的形式,并写出它的顶点坐标和对称轴;(2)若y随着x的增大而增大,则x的取值范围是___________.12.(2021·江苏·九年级专题练习)已知二次函数y=-2x2+4x.(1)用配方法求这个二次函数图象的顶点坐标和对称轴;(2)画出这个函数的大致图象(草图),指出函数值不小于0时,x的取值范围.13.(2021·江苏·九年级专题练习)已知二次函数y=―x2+4x+1.(1)求二次函数的顶点坐标;(2)画出该二次函数的图象.14.(2021·江苏·九年级专题练习)已知二次函数y=―x2+4x.(1)用配方法求出该函数图象的顶点坐标和对称轴.(2)选取适当的数据填入下表,并在下图的直角坐标系内描点画出该抛物线的图象.x……y……15.(2020·江苏省江阴市第一中学九年级阶段练习)如图,已知抛物线y=x2+bx+c经过A(―1,0)、B(3,0)两点,与y轴相交于点C.(1)求抛物线的解析式;(2)点P是对称轴上的一个动点,当△PAC的周长最小时,直接写出点P的坐标和周长最小值;(3)点Q为抛物线上一点,若S△QAB=8,求出此时点Q的坐标.16.(2019·江苏徐州·九年级期中)已知二次函数y=x2―4x+3(1)求此二次函数图象与x轴的交点坐标______;(2)把这个二次函数化成y=a(x―ℎ)2+k的形式,并写出顶点坐标;(3)画出这个二次函数的图象;(4)设此二次函数图象与x轴交点分别为A、B(A在B左侧)与y轴交点为C,求△ABC的面积.17.(2015·江苏南京·一模)已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.18.(2017·江苏苏州·九年级期末)二次函数y=ax2+bx+c的图象与x轴交于A(1, 0), B两点,与y轴交于点C,其顶点D的坐标为(-3, 2).(1)求这二次函数的关系式;(2)求ΔBCD的面积.19.(2022·江苏·九年级专题练习)已知抛物线的顶点C的坐标为(1,﹣2),且经过原点.(1)求该抛物线的解析式.(2)若将该抛物线平移,设平移后的抛物线的顶点为D,满足直线CD与直线y=x﹣2平行,且平移后的抛物线经过点(2,9),求平移后的抛物线的解析式.20.(2021·江苏·九年级专题练习)已知二次函数y=x2―4x+3的图像为抛物线C.(1)抛物线C顶点坐标为_______;(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线C1,请判断点P(2,3)是否在抛物线C1上,并说明理由;(3)当―2≤x≤3时,求该二次函数的函数值y的取值范围.21.(2021·江苏苏州·九年级期中)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,―6)能否在拋物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.22.(2020·江苏·南通市启秀中学九年级期中)在平面直角坐标系xOy中,抛物线y=ax2―2ax―3a(a≠0).(1)抛物线与x轴交于A、B两点(点A在点B的左侧)求点A和点B的坐标;(2)若点P(m,n)是抛物线上的一点,在a>0的条件下,当m≥―2时,n的取值范围是n≥―4,求抛物线的解析式;(3)当a=1时,把抛物线y=ax2―2ax―3a向上平移m(m>0)个单位长度得到新抛物线G,设新抛物线G与x轴的一个交点的横坐标t,且t满足―12<t<32,请直接写出m的取值范围.23.(2020·江苏无锡·九年级阶段练习)一次函数y=―43x的图像如图所示,它与二次函数y=ax2+2ax+c 的图像交于A、B两点(其中点A在对称轴左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.若点D与点C关于x轴对称,且△ACD的面积等于16,求此二次函数的3关系式.24.(2021·江苏·九年级专题练习)如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。
二次函数的图像和性质练习题
二次函数的图像和性质练习题1. 画出二次函数 \(y = 2x^2 - 4x + 3\) 的图像,并标出顶点坐标。
2. 给定二次函数 \(y = -3x^2 + 6x - 2\),求出它的顶点坐标和对称轴。
3. 判断下列函数是否为二次函数,并说明理由:- \(y = x^2 + 2x + 1\)- \(y = x^3 - 4x\)- \(y = 5\)4. 已知二次函数 \(y = ax^2 + bx + c\) 的图像经过点 (1, 2) 和(2, 5),求 a、b、c 的值。
5. 给定二次函数 \(y = 4x^2 - 12x + 9\),求出它的开口方向、顶点坐标、对称轴以及与x轴的交点坐标。
6. 已知二次函数 \(y = 2x^2 - 4x + 1\) 的图像与x轴相交于点 A和 B,求 A 和 B 的坐标。
7. 判断二次函数 \(y = -x^2 + 4x - 3\) 的图像是否在x轴上方,解释原因。
8. 给定二次函数 \(y = 3x^2 - 6x + 2\),求出它在x轴下方的区间。
9. 已知二次函数 \(y = x^2 - 6x + 8\) 的图像与y轴相交于点 C,求 C 的坐标。
10. 给定二次函数 \(y = -2x^2 + 4x + 1\),求出它的顶点坐标和对称轴,并判断其开口方向。
11. 判断二次函数 \(y = x^2 - 2x - 3\) 的图像是否经过原点,说明理由。
12. 给定二次函数 \(y = 5x^2 - 10x + 1\),求出它的图像与x轴的交点坐标。
13. 已知二次函数 \(y = -3x^2 + 12x - 8\) 的图像与x轴相交于点D 和 E,求 D 和E 的坐标。
14. 给定二次函数 \(y = 2x^2 + 4x + 1\),求出它的图像与y轴的交点坐标。
15. 判断二次函数 \(y = -x^2 + 6x - 8\) 的图像是否经过第一象限,解释原因。
二次函数的图形与性质大题专练
2022-2023学年九年级数学上学期复习备考高分秘籍【苏科版】专题2.11二次函数的图形与性质大题专练(培优强化30题)一、解答题1.(2022·江苏·九年级阶段练习)已知二次函数y=−1x2−2x+3.2(1)将该二次函数化成y=a(x−ℎ)2+k的形式;(2)指出该二次函数的图像的顶点坐标;(3)当−3<x<0时,直接写出y的取值范围2.(2022·江苏·西安交大苏州附中九年级阶段练习)如图,抛物线y=x2+x−2与x轴交于A、B两点,与y 轴交于点C.(1)结合函数图像,当−2<x<4时,直接写出y的取值范围______.(2)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.3.(2022·江苏泰州·九年级期末)已知抛物线y=x2−2mx+m2−m+1,其中m是常数,点P是抛物线的顶点.(1)求点P的坐标(用含m的代数式表示);(2)若抛物线上有且只有两个点到x轴的距离为1,直接写出m的取值范围.2(3)当抛物线的顶点在第一象限时,在抛物线上有两点E(a,y1),F(a+3,y2),且y1< y2,求a的取值范围.4.(2022·江苏南京·模拟预测)已知二次函数y1=ax2+bx+c.(1)若二次函数y1的图象经过A(﹣1,0),B(3,0),C(0,2),判定点D(2,2)是否在二次函数y1的图象上;(2)一次函数y2=ax+b+c经过二次函数y1的顶点.①求二次函数y1的对称轴;②当b<0,1<x<2时,比较y1与y2的大小.5.(2022·江苏南通·九年级阶段练习)已知抛物线y=ax2+bx(a≠0)经过点A(3,3).点M(x1,y1),N (x2,y2)为抛物线上两个不同的点,且满足x1<x2,x1+x2=2.(1)用含a的代数式表示b;(2)当y1=y2时,求抛物线的对称轴及a的值;(3)当y1<y2时,求a的取值范围.6.(2022·江苏南京·九年级期末)如图,已知二次函数y=ax2+bx+3的图像经过点A(1,0),B(-2,3).(1)求该二次函数的表达式;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图像,直接写出当y>3时,x的取值范围是.7.(2022·江苏南通·九年级阶段练习)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梦想点”.(1)若点P(2,p)是二次函数y=x2+mx+n的图象上唯一的“梦想点”,求这个二次函数的解析式;(2)设函数y=3(x>0),y=﹣x+b的图象的“梦想点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当x△ABC的面积为3时,求b的值;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦想点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2−2b,直接写出t的取值范围.8.(2020·江苏徐州·九年级期中)在平面直角坐标系中,一次函数y=x−2的图像与x轴交于点A,与y轴交于点B,二次函数的图像y=a x2+bx+c(a>0)经过点A、B.(1)求a、b满足的关系式及c的值;(2)如果a=1,点P是直线AB下方抛物线上的一点,过点P作PD垂直于x轴,垂足为点D,交直线AB于点E,使DE=PE.①求点P的坐标;②若直线PD上是否存在点Q,使△ABQ为直角三角形?若存在,求出符合条件的所有点Q的坐标;若不存在,请说明理由.9.(2022·江苏南通·九年级期末)定义:A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=a x2+bx+c(m≤x≤n)图象上任意三个不重合的点,若满足y1,y2,y3中任意两数之和大于第三个数,任意两数之差小于第三个数,且y1,y2,y3都大于0,则称函数y=a x2+bx+c是m≤x≤n上的“仿三角形函数”.(1)①函数y=x2(1≤x≤2)的最小值是m,最大值是n,则2m______n(填写“>”,“<”或“=”);②函数y=x2______1≤x≤2上的“仿三角形函数”;(填写“是”或者“不是”)(2)若二次函数y=a x2−2ax+3是1≤x≤2上的“仿三角形函数”,求a的取值范围;(3)若函数y=x2−2mx在1≤x≤3上是“仿三角形函数”,求m的取值范围.210.(2022·江苏扬州·九年级期末)已知二次函数y=2x2−4x+3的图像为抛物线C.(1)抛物线C顶点坐标为______;(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线C1,请判断抛物线C1是否经过点P(2,3),并说明理由;(3)当−2≤x≤3时,求该二次函数的函数值y的取值范围.11.(2022·江苏·苏州工业园区金鸡湖学校九年级阶段练习)已知二次函数y=x2+2x−3.(1)用配方法把这个二次函数化成y=a(x−ℎ)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当−4≤x≤0时,结合图象直接写出y的取值范围.12.(2021·江苏省南京市浦口区第三中学九年级阶段练习)已知二次函数y=x2-2mx+2m2-1(m为常数).(1)若该函数图像与x轴只有一个公共点,求m的值;(2)将该函数图像沿过其顶点且平行于x轴的直线翻折,得到新函数图像.①新函数的表达式为________________________,并证明新函数图像始终经过一个定点;②已知点A(-2,-1)、B(2,-1),若新函数图像与线段AB只有一个公共点,请直接写出m的取值范围.13.(2021·江苏·涟水县红日中学九年级阶段练习)如图所示,抛物线y=2x2−4x−6与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.14.(2021·江苏·九年级)已知二次函数y=x2+bx−c图象通过两点P(1,a),Q(2,10a).(1)如果a,b,c是整数,且c<b<8a,求a,b,c值.(2)设二次函数y=x2+bx−c图象和x轴交点为A、B,和y轴交点为C.如果有关x方程x2+bx−c=0两个根都是整数,求△ABC面积.15.(2021·江苏·九年级)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1与C2关联.(1)已知抛物线①y=x2+2x−1,判断下列抛物线②y=−x2+2x+1;③y=x2+2x+1与已知抛物线①是否关联,并说明理由.(2)抛物线C1:y=1(x+1)2−2,动点P的坐标为(t,2),将抛物线绕点P(t,2)旋转180°得到抛物线C2,若抛8物线C1与C2关联,求抛物线C2的解析式.(3)点A为抛物线C1:y=1(x+1)2−2的顶点,点B为与抛物线C1关联的抛物线顶点,是否存在以AB为斜8边的等腰直角△ABC,使其直角顶点C在y轴上,若存在,求出C点的坐标;若不存在,请说明理由.16.(2021·江苏·南京郑和外国语学校九年级期中)已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC的面积为1时,求a的值.17.(2021·江苏扬州·九年级期中)阅读下面的材料,回答问题:爱动脑筋的小明发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1≥1;因此x2﹣2x+2有最小值是1(1)尝试:﹣2x2﹣4x+3=﹣2(x2+2x+1﹣1)+3=﹣2(x+1)2+5,因此﹣2x2﹣4x+3有最大值是 ;(2)拓展:已知实数x,y满足x2+3x+y﹣3=0,则y﹣x的最大值为 ;(3)应用:有长为28米的篱笆,一面利用墙(墙的最大可用长度为16米),围成一个长方形的花圃.能围成面积最大的花圃吗?如果能,请求出最大面积.18.(2021·江苏·景山中学九年级期中)若两个二次函数图像的顶点、开口方向都相同,则称这两个二次函数为“和谐二次函数”.(1)请写出两个为“和谐二次函数”的函数;(2)已知关于x的二次函数y1=2x2−4mx+2m2+1和y2=a x2+bx+1,其中y1的图像经过点A(1,1),若y1+y2与y1为“和谐二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的取值范围.19.(2022·北京市第三中学九年级期中)在平面直角坐标系xOy中,已知抛物线y=x2−2mx+m2−1.(1)求抛物线的对称轴(用含m的式子表示);(2)若当1≤x≤2时,y的最小值是0,请直接写出m的值;(3)直线y=x+b与x轴交于点A(−3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2−2mx+m2−1有两个交点,在抛物线对称轴左侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.20.(2022·福建·上杭县教师进修学校九年级期中)已知:抛物线y=a x2−bx(1)若此抛物线与直线y=x只有一个公共点且经过点(2,0).①求此抛物线的解析式;②以y轴上的点C(0,−2)为中心,作该抛物线关于点C对称的抛物线y′,若这两条抛物线交于A,B(点A在点B的右侧),求线段AB的长;(2)设定a>0,将此抛物线向上平移c个单位(c>0),此时与x轴交于点(c,0),若当0<x<c时,y>0,求证:ac≤1.21.(2022·浙江·杭州启正中学九年级期中)已知二次函数y=1(x−2m)2+3−4m(m是实数).4(1)小明说:当m的值变化时,二次函数图象的顶点始终在一条直线上运动,你认为他的说法对吗?为什么?(2)已知点P(a−5,t),Q(4m+3+a,t)都在该二次函数图象上,求证:t≥7.22.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“青一函数”,该点称为“青一点”,例如:“青一函数”y =x +1,其“青一点”为(1,2).(1)①判断:函数y =2x +3 “青一函数”(填“是”或“不是”);②函数y =8x 的图像上的青一点是 ;(2)若抛物线y =(m−1)x 2+mx +14m 上有两个“青一点”,求m 的取值范围;(3)若函数y =x 2+(m−k +2)x +n 4−k 2的图像上存在唯一的一个“青一点”,且当−1≤m ≤3时,n 的最小值为k ,求k 的值.23.(2022·北京市西城外国语学校九年级期中)在平面直角坐标系xOy 中,抛物线y =a x 2−2ax +2(a <0)与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当0≤x ≤3时,y 的最大值是3,求当0≤x ≤3时,y 的最小值;(3)抛物线上的两点P (x 1,y 1),Q (x 2,y 2),若对于t <x 1<t +1,t +2<x 2<t +3,都有y 1≠y 2,直接写出t 的取值的范围.24.(2022·浙江·信达外国语学校九年级阶段练习)在直角坐标系中,设函数y =(x−m )(x−n )(m 、n 是实数).(1)当m =1时,若该函数的图象经过点(2,6),求函数表达式.(2)若n =m−1,且当x⩽−2时,y 随x 的增大而减小,求m 的取值范围.(3)若该函数图象经过(0,a ),(3,b )两点(a 、b 是实数)当2⩽m <n⩽3时,求ab 的取值范围.25.(2022·全国·九年级专题练习)在平面直角坐标系xOy 中,函数F 1和F 2的图象关于原点对称.(1)函数F 1为y =x +1,F 2的解析式为________;(2)函数F 1为y =a x 2+bx +c (a ≠0),F 2的解析式为_______;(3)函数F1为y=m x2−4mx−5.①已知A(0,3)、B(−3,3),F2与线段AB有一个交点,求m的取值范围;②若m>0,当m−4≤x≤m−3时,设函数F2的最大值与最小值的差为ℎ,求ℎ关于m的函数解析式;并直接写出自变量m的取值范围.26.(2022·湖南·长沙市开福区青竹湖湘一外国语学校八年级阶段练习)在y关于x的函数中,对于实数m,n(m>n),当n≤x≤m时,函数y有最小值y min,满足y min=12(m−n),则称函数为“青一函数”.(1)当n=2,m=4时,下列函数____(填序号)为“青一函数”.①y=x;②y=2x−3;③y=−12x+3.(2)当m=3n时,二次函数y=x2−2nx+2为“青一函数”,求实数n的值;(3)已知二次函数y=x2−mx+n2−n−3是“青一函数”,且y有最小值1,求实数n的值.27.(2022·吉林长春·九年级期末)已知二次函数y=x2+ax+2a(a为常数).(1)若a=1,①求此二次函数图象的对称轴和顶点坐标;②当x≤n+2时,函数值y随x的增大而减小时,直接写出n的取值范围;③当-3≤x≤1时,设此二次函数的最大值为m与最小值为n,求m-n.(2)若点A(-5,2)、点B(1,2),当此二次函数的图象与线段AB有两个交点时,直接写出a的取值范围.28.(2022·吉林省第二实验学校九年级阶段练习)已知二次函数解析式为y=1a x2−a2ax−1(a≠0),该抛物线与y轴交于点A,其顶点记为B,点A关于抛物线对称轴的对称点记为C.已知点D在抛物线上,且点D 的横坐标为2,DE⊥y轴交抛物线于点E.(1)求点D的纵坐标.(2)当△ABC是等腰直角三角形时,求出a的值.(3)当0≤x≤2时,函数的最大值与最小值的差为2时,求a的取值范围.(4)设点R(a−3,−1),点A、R关于直线DE的对称点分别为N、M,当抛物线在以A、R、M、N为顶点的四边形内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.x+1与x,y轴分别交于点A,B,抛物线的解29.(2022·广东·珠海市紫荆中学桃园校区三模)直线y=−12析式为y=2x2−4ax+2a2+a.(1)求出点A,B的坐标,用a表示抛物线的对称轴;(2)若函数y=2x2−4ax+2a2+a在3≤x≤4时有最大值为a+2,求a的值;(3)取a=−1,将线段AB平移得到线段A′B′,若抛物线y=2x2−4ax+2a2+a与线段A′B′有两个交点,求直线A′B′与y轴交点的纵坐标的取值范围.30.(2022·吉林·长春市第五十二中学九年级阶段练习)在平面直角坐标系中,抛物线y=x2−ax+a(a为常数)的顶点为A,与y轴交于点B.(1)点A的坐标是,点B的坐标是.(均用含a的式子表示)(2)若点A在第三象限,且此抛物线对应的函数值y的最小值为-3时,求此抛物线所对应的二次函数的表达式,并直接写出函数值y随x的增大而减小时x的取值范围.(3)点C在抛物线y=x2−ax+a(a为常数)上,且点C的横坐标为a−1,此抛物线在B、C之间的部分(包括B、C两点)记为图象G.①当a=4时,若直线y=m与图象G有且只有一个公共点时,求m的取值范围.②当a<0时,以点B为对称中心作边长为4的正方形PQMN,该正方形的边均与某坐标轴垂直.当图象G时,直接写出a的值.在正方形内部(包括边界)部分对应的函数值的最大值与最小值的差为32。
二次函数图像性质经典练习题(11套)附带详细答案
练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同3.两条抛物线与在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值4.在抛物线上,当y <0时,x 的取值范围应为( )A .x >0B .x <0C .x ≠0D .x ≥05.对于抛物线与下列命题中错误的是( )A .两条抛物线关于轴对称B .两条抛物线关于原点对称C .两条抛物线各自关于轴对称D .两条抛物线没有公共点6.抛物线y=-b +3的对称轴是___,顶点是___。
7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
8.抛物线的顶点坐标是( ) 2y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )A .y=3-2B .y=3+2C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -311.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )------2(1)x -2(1)x +2(1)x +2(1)x +2y ax =2(2)x -2(2)x -2(2)x +2(2)x +244y x x =--22(2)x -22(2)x -2x14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。
专题1 与二次函数有关的图象信息题(解析版)
专题1 与二次函数有关的图象信息题(解析版)类型一二次函数图象与其他函数图象共存1.(2022秋•仪陇县校级月考)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )A.B.C.D.【思路引领】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a<0,b>0,c>0,由此即可得出:二次函数y=a2x+bx+c的图象开口向下,对称轴x=−b2a>0,与y轴的交点在y轴正半轴,再对照四个选项中的图象即可得出结论.解:观察函数图象可知:a<0,b>0,c>0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=−b2a>0,与y轴的交点在y轴正半轴.故选:D.【总结提升】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出a<0、b>0、c>0是解题的关键.2.(2023•青岛二模)二次函数y=4ax2+4bx+1与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是( )A.B.C.D.【思路引领】求得抛物线的对称轴和直线与x轴的交点即可判断A、B、C不合题意,然后根据D中二次函数图象的开口以及对称轴与y轴的关系即可得出a>0,b<0,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.解:∵二次函数y=4ax2+4bx+1,∴对称轴为直线x=−4b2×4a=−b2a,∵一次函数y=2ax+b,∴当y=0,则x=−b2a,∴直线y=2ax+b与二次函数y=4ax2+4bx+1的对称轴交于x轴上同一点,故A、B、C不合题意,D、由抛物线可知,a>0,x=−b2a>0,得b<0,由直线可知,a>0,b<0,故本选项正确;故选:D.【总结提升】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据抛物线的对称轴、直线与x轴的交点以及函数图象经过的象限判断是解题的关键.类型二二次函数图象与字母系数之间的关系3.(2023•滕州市校级模拟)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.其中正确的有( )A .1个B .2个C .3个D .4个【思路引领】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线对称性进行推理,进而对所得结论进行判断.解:∵图象开口向下,∴a <0,∵对称轴为直线x =−b 2a=1,∴b =﹣2a >0,∵图象与y 轴的交点在x 轴的上方,∴c >0,∴abc <0,∴①说法错误,∵−b 2a =1,∴2a =﹣b ,∴a ﹣b =3a <0,∴②说法错误,由图象可知点(﹣1,0)的对称点为(3,0),∵当x =﹣1时,y <0,∴当x =3时,y <0,∴9a +3b +c <0,∴③说法错误,∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,∴b 2>4ac ,∴④说法正确;当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴⑤说法正确,∴正确的为④⑤,故选:B.【总结提升】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,能从图象中获取信息是解题的关键.4.(2023•未央区校级三模)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>13;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(12,y2),(2,y3),在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论是 ①② .【思路引领】①正确,判断出a,b,c的正负,可得结论;②正确.利用对称轴公式可得,b=﹣2a,当x=﹣1时,y>0,解不等式可得结论;③错误.当m=1时,m(am+b)=a+b;④错误.应该是y2<y3<y1;⑤错误.当有四个交点时,方程|ax2+bx+c|=k的所有根的和为4.当有3个交点时,方程|ax2+bx+c|=k 的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k的所有根的和为2即可.解:观察图象得:抛物线开口向上,∴a>0,∵与y轴交于(0,﹣1),对称轴为直线x=1.∴c=﹣1,−b2a=1,∴b=﹣2a<0,∴abc>0,故①正确;∵y=ax2+bx+c,与y轴交于(0,﹣1),b=﹣2a,∴c=﹣1,∴抛物线解析式为y=ax2﹣2ax﹣1,当x=﹣1时,y>0,即a+2a﹣1>0,∴a>13,故②正确;当m=1时,m(am+b)=a+b,故③错误;∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(12,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误;∵方程|ax2+bx+c|=k的解是函数y=|ax2+bx+c|与直线y=k的交点的横坐标,∵b=﹣2a,c=﹣1,∴ax2﹣2ax﹣1﹣k=0或ax2﹣2ax﹣1+k=0,当有4个交点时,设函数y=|ax2+bx+c|与直线y=k的交点的横坐标为x1,x2,x3,x4,∴x1+x2=−−2aa=2,x3+x4=−−2aa=2,∴x1+x2+x3+x4=4,即此时方程|ax2+bx+c|=k的所有根的和为4.当有3个交点时,设函数y=|ax2+bx+c|与直线y=k的交点的横坐标为x1,x2,x3,x4,∴x1+x2=−−2aa=2,x3=x4=1,此时方程|ax2+bx+c|=k的所有根的和为3.当有2个交点时,设函数y=|ax2+bx+c|与直线y=k的交点的横坐标为x1,x2,∴x1+x2=−−2aa=2,此时方程|ax2+bx+c|=k的所有根的和为2.故⑤错误;故答案为:①②.【总结提升】本题考查二次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5.(2023•秦皇岛一模)如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①2a +b =0;②2c <3b ;③当△ABC 是等腰三角形时,a 的值有2个;④当△BCD 是直角三角形时,a 的值有4个;其中正确的有( )A .1个B .2个C .3个D .4个【思路引领】由图象可得对称轴为直线x =−b 2a=1,可得b =﹣2a ,可判断①;将点A 坐标代入解析式可得c =﹣3a ,可判断②;由等腰三角形的性质和两点距离公式,可求a 的值,可判断③;由直角三角形的性质和两点距离可求a =﹣1或④,即可求解.解:∵二次函数y =ax 2+bx +c 的图象与x 轴交于A (﹣1,0),B (3,0)两点,∴对称轴为直线x =−b 2a=1,∴b =﹣2a ,∴2a +b =0,故①正确,当x =﹣1时,0=a ﹣b +c ,∴a +2a +c =0,∴c =﹣3a ,∴2c =3b ,故②错误;∵二次函数y =ax 2﹣2ax ﹣3a (a <0),∴点C (0,﹣3a ),当BC =AB 时,4=∴a=当AC=BA时,4=∴a=∴当△ABC是等腰三角形时,a的值有2个,故③正确;∵二次函数y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴顶点D(1,﹣4a),∴BD2=4+16a2,BC2=9+9a2,CD2=a2+1,若∠BDC=90°,可得BC2=BD2+CD2,∴9+9a2=4+16a2+a2+1,∴a=若∠DCB=90°,可得BD2=CD2+BC2,∴4+16a2=9+9a2+a2+1,∴a=﹣1,∴当△BCD是直角三角形时,a=﹣1或∴a的值有2个,故④错误,故选:B.【总结提升】本题考查了二次函数图象与系数关系,掌握抛物线与x轴的交点,二次函数图象与系数关系,等腰三角形的性质,直角三角形的性质等知识,灵活运用这些性质进行推理是解题的关键.类型三根据情境判断二次函数图象6.(2022•南通)如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为( )A .B .C .D .【思路引领】过O 点作OM ⊥AB 于M ,由含30°角的直角三角形的性质及勾股定理可求解AB ,AC 的长,结合平行四边形的性质可得AO 的长,进而求得OM ,AM 的长,设BE =x ,则EM =5﹣x ,利用勾股定理可求得y 与x 的关系式,根据自变量的取值范围可求得函数值的取值,即可判断函数的图象求解.解:过O 点作OM ⊥AB 于M ,∵AC ⊥BC ,∠ABC =60°,∴∠BAC =30°,∵BC =4,∴AB =8,AC =∵四边形ABCD 为平行四边形,∴AO =12AC =∴OM =12AO =∴AM =3,设BE=x,OE2=y,则EM=AB﹣AM﹣BE=8﹣3﹣x=5﹣x,∵OE2=OM2+EM2,∴y=(x﹣5)2+3,∴抛物线开口方向向上,顶点坐标为(5,3),与y轴的交点为(0,28),∵0≤x≤8,∴当x=8时y=12,故符合解析式的图象为:故选:C.【总结提升】本题主要考查平行四边形的性质,勾股定理,含30°角的直角三角形的性质,二次函数的图象,求解函数解析式及函数值的范围是解题的关键.7.(2023•菏泽二模)如图,△ABC为等边三角形,边长为8cm,矩形DEFG的长和宽分别为8cm和cm,点C和点E重合,点B,C(E),F在同一条直线上,令矩形DEFG不动,△ABC以每秒1cm的速度向右移动,当点C与点F重合时停止移动,设移动x秒后,△ABC与矩形DEFG重叠部分的面积为y,则y关于x的函数图象大致是( )A.B .C .D .【思路引领】先根据AC 经过点D 和AB 经过点D 时计算出x =1和x =3,再分0≤x ≤1,1<x ≤3和3<x ≤4三种情况讨论,画出图形,利用面积公式解答即可.解:当AC 经过点D 时,如图所示:∵△ABC 为等边三角形,∴∠DCE =60°,∵DE =DEC =90°,∴EC =DE tan60°=2;∵∠B =60°,DE =∴BE =2,∴EC =BC ﹣BE =8﹣2=6;①当0≤x ≤2时,如图所示:此时EC =x ,∠HCE =60°,∴HE =tan60°•EC =,∴y =12EC •HE =12x =2;②当2<x ≤6时,如图所示:过M 作MN ⊥BC 于N ,此时,MN =MCN =60°,∴CN =2,∵EC =x ,∴EN =EC ﹣NC =x ﹣2,∵四边形DENM 是矩形,∴DM =EN =x ﹣2,∴y =12(DM +EC )•DE =12(x ﹣2+x )×﹣此时IR =ICR =60°,∴CR =2,∵EC =x ,∴ER =DI =x ﹣2,BE =BC ﹣EC =8﹣x ,∵∠B =60°,∴TE =BE •tan60°=8﹣x ),∵DE =∴DT =DE ﹣TE =8﹣x )=x ﹣6),∵DG ∥BC ,∴∠DKT =60°,∴DK =DT tan60°==x ﹣6,∴y =S 四边形DERI +S △IRC ﹣S △DTK=x ﹣2)+12×2×−12×x ﹣6)2=2﹣=x ﹣8)2故选:A .【总结提升】本题考查了动点问题的函数图象,等边三角形的性质,矩形的性质等知识,关键是画出图形,利用数形结合和分类讨论的思想进行运算.类型四 根据函数图象获取信息8.(2023•莱山区一模)如图1,在菱形ABCD 中,∠C =120°,M 是AB 的中点,N 是对角线BD 上一动点,设DN 长为x ,线段MN 与AN 长度的和为y ,图2是y 关于x 的函数图象,图象右端点F 的坐标为(9),则图象最低点E 的坐标为( )A.(3)B.C.D.3)【思路引领】根据点F的坐标可得BD=BM=3,AB=6,连接AC,连接CM交BD于点N′,连接AN′,由两点之间线段最短可知,当点N在点N′时,MN+AN取得最小值为CM,根据菱形的性质易得三角形ABC为等边三角形,再利用等边三角形的性质即可求出CM,由平行线和菱形的性质易得∠DCM=∠AMC=90°,∠BDC=30°,进而求出DN′,以此即可求解.解:∵图象右端点F的坐标为(9),M是AB的中点,∴BD=MN+AN=3BM=9,∴BM=3,AB=6,如图,连接AC,连接CM交BD于点N′,连接AN′,∴当点N在点N′时,MN+AN取得最小值,最小值为MN′+CN′=CM,∵四边形ABCD为菱形,∠BCD=120°,∴三角形ABC为等边三角形,AC=AB=6,∴CM⊥AB,∠ACM=30°,在Rt△ACM中,CM=AC•cos∠ACM=6=∵AB∥CD,∴∠DCM=∠AMC=90°,∵∠ABC=∠ADC=60°,∴∠BDC=30°,在Rt △CDN ′中,DN ′=CDcos∠CDN′=∴点E 的坐标为.故选:C .【总结提升】本题主要考查动点问题的函数图象、菱形的性质、等边三角形的判定与性质、解直角三角形,解题关键是理解函数图象中最低点坐标所表示的实际意义,并利用数形结合思想解决问题.9.如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm /s .若P ,Q 同时开始运动,设运动时间为t(s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则CD BE 的值为( )A B C D 【思路引领】从图2可以看出,0≤t ≤8时,△BPQ 的面积的表达式为二次函数,8<t <10时,函数值不变,故BC =BE ,即可求解.解:从图2可以看出,0≤t ≤8时,△BPQ 的面积的表达式为二次函数,8<t <10时,函数值不变,故BC =BE ,当10≤t 后函数表达式为直线表达式;①0≤t ≤8时,BC =BE =2t =2×8=16;②当10≤t 时,y =12×BC ×CD =12×16×CD =即CD =故CD BE =故选:D .【总结提升】本题考查的是动点图象问题,涉及到二次函数、一次函数等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.10.(2021秋•文峰区期中)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O ﹣A ﹣D ﹣O ,点Q 的运动路线为O ﹣C ﹣B ﹣O .设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A ﹣D 段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为( )厘米.A .B .C .+3D .4【思路引领】当点P 运动到D 点,Q 运动到B 点,结合图象,易知此时,y =BD =2cm ,当P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC ,进而求解.解:由图分析易知:当点P 从O →A 运动时,点Q 从O →C 运动时,y 不断增大,当点P 运动到A 点,点Q 运动到C 点时,由图象知此时y =PQ =,∴AC =,∵四边形ABCD 为菱形,∴AC ⊥BD ,OA =OC =12=,当点P 运动到D 点,Q 运动到B 点,结合图象,易知此时,y =BD =2cm ,∴OD =OB =12BD =1cm ,在Rt △ADO 中,AD =2(cm ),∴AD =AB =BC =DC =2cm ,P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和S =2(OC +CQ ),∵CQ =OC ⋅cos∠ACB =32(厘米),∴S =32)=(厘米), 故选:C .【总结提升】本题考查动点问题的函数图象以及菱形的基本性质和特征,能结合动点的函数图象分析出菱形的两条对角线长,结合图象找到当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q的位置关系是解题的关键.。
二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。
其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。
二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。
当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。
y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。
二次函数的图像训练题
二次函数的图像训练题一.选择题(共16小题)1.已知二次函数y=kx2+k(k≠0)与反比例函数y=﹣,它们在同一平面直角坐标系中的图象大致是()A.B.C.D.2.方程﹣x2+5x﹣2=的正根的个数为()A.3B.2C.1D.03.函数y=与y=﹣kx2+k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.4.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.45.如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对6.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 7.已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为()A.0B.﹣1C.﹣D.﹣8.如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<0 9.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.10.若二次函数y=(x﹣m)2﹣1,当x≤1时,y随x的增大而减小,则m的取值范围是()A.m=1B.m>1C.m≥1D.m≤111.已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0;②2c﹣3b<0;③5a+b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有()A.1B.2C.3D.412.已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 13.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣15.二次函数y=﹣x2﹣2x+1配方后,结果正确的是()A.y=﹣(x+1)2+2B.y=﹣(x﹣1)2+2C.y=﹣(x+1)2﹣2D.y=﹣(x﹣1)2﹣216.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为()A.﹣1B.﹣2C.D.二.填空题(共4小题)17.已知方程ax2+bx+cy=0(a≠0、b、c为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为,成立的条件是,是函数.18.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解为.19.抛物线y=ax2+bx+c过点A(1,0),B(3,0),则此抛物线的对称轴是直线x=.20.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.三.解答题(共5小题)21.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.22.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,请你在下图中画出直线y=ax+b 与双曲线y=在同一坐标系中的大致图象.23.已知二次函数y=ax2图象上有两点A、B,横坐标分别为﹣2、1,若△ABO为直角三角形,求a的值.24.(1)请在坐标系中画出二次函数y=﹣x2+2x的大致图象;(2)在同一个坐标系中画出y=﹣x2+2x的图象向上平移两个单位后的图象;(3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.25.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在﹣2<x<﹣1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.。
二次函数图像练习题
二次函数图像练习题一. 图像的基本性质二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
1. 请画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = x^22) y = -x^23) y = (x - 1)^24) y = -(x - 1)^25) y = 2x^26) y = -2x^27) y = x^2 + 1二. 图像的平移、反转、缩放1. 请在第一题的基础上,画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = (x + 2)^22) y = -(x + 2)^23) y = (x - 3)^24) y = -(x - 3)^25) y = 2(x - 1)^26) y = -2(x - 1)^27) y = (x + 1)^2 + 2三. 二次函数的最值1. 求出以下二次函数的最值,并说明最值点坐标:1) y = x^2 - 4x + 32) y = -2x^2 + 4x - 13) y = 2x^2 + 4x + 14) y = -x^2 - 2x + 3四. 二次函数的开口方向和对称轴1. 判断以下二次函数的开口方向,并写出其对称轴方程:1) y = -x^2 + 4x - 32) y = x^2 + 4x + 43) y = -2x^2 - 5x - 24) y = 3x^2 - 6x五. 解方程1. 解以下方程,其中a、b、c为常数:1) x^2 - 5x + 6 = 02) 3x^2 + 2x - 1 = 03) 2x^2 + 5x + 3 = 04) 4x^2 - 4x + 1 = 0六. 给定二次函数y = -2x^2 + 4x - 1,回答以下问题:1. 该函数的开口方向是向上还是向下?2. 该函数的最值点坐标是多少?3. 该函数的对称轴方程是什么?4. 画出该函数的图像。
5. 求出此函数的零点,并用图像验证。
(完整版)(823)二次函数与图像解答题专项练习30题(有答案)ok
二次函数与图像解答题专项练习30 题(有答案)1.二次函数 y=ax 2+bx+c ( a , b , c 是常数, a ≠0)图象的对称轴是直线 x=1,其图象的一部分以以下图.关于下列说法:① abc < 0;② a ﹣ b+c < 0; ③ 3a+c < 0;④ 当﹣ 1<x < 3 时, y > 0. 此中正确的选项是_________(把正确的序号都填上).2_________ .2.若抛物线 y=ax +bx+c 的极点是 A (2, 1),且经过点 B ( 1,0),则抛物线的函数关系式为 3.二次函数 y=x 2﹣ 2x+6 的最小值是_________ .4.已知以下函数 ① y=x 2; ② y= ﹣ x 2; ③ y= (x ﹣ 1) 2+2.此中,图象经过平移可以获得函数y=x 2+2x ﹣ 3 的图象的有 _________ (填写全部正确选项的序号) .5.二次函数 y=x 2+bx+c 的图象经过点( 4, 3),( 3, 0).( 1)求 b 、 c 的值; ( 2)求出该二次函数图象的极点坐标和对称轴;( 3)在所给坐标系中画出二次函数 y=x 2+bx+c 的图象.6.如图,抛物线 y=x 2+bx+c 经过坐标原点,并与 x 轴交于点 A (2, 0).( 1)求此抛物线的分析式; ( 2)写出极点坐标及对称轴;( 3)若抛物线上有一点 B ,且 S △OAB =3 ,求点 B 的坐标.7.如图,抛物线 y=﹣ x 2+bx+c 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 OA=2 , OC=3 .( 1)求抛物线的分析式.( 2)若点 D ( 2, 2)是抛物线上一点,那么在抛物线的对称轴上,能否存在一点 P ,使得 △ BDP 的周长最小?若存在,央求出点 P 的坐标;若不存在,请说明原由.注:二次函数 y=ax 2+bx+c ( a ≠0)的对称轴是直线 x=﹣.8.如图,抛物线 y=﹣ x 2+bx+c 经过坐标原点,并与 x 轴交于点 A ( 2, 0).( 1)求此抛物线的分析式; ( 2)写出极点坐标及对称轴;( 3)若抛物线上有一点 B ,且 S △OAB =8 ,求点 B 的坐标.9.( 1)任选以下三个条件中的一个,求二次函数 y=ax 2+bx+c 的分析式;① y 随 x 变化的部分数值规律以下表:x ﹣ 1 0 1 2 3 y343② 有序数对(﹣ 1, 0)、( 1, 4)、( 3, 0)满足 y=ax 2+bx+c ;2③ 已知函数 y=ax +bx+c 的图象的一部分(如图).2( 2)直接写出二次函数 y=ax +bx+c 的三个性质.10.已知 A ( 1,0)、B (0,﹣ 1)、C (﹣ 1, 2)、 D (2,﹣ 1)、 E ( 4,2)五个点,抛物线 2y=a ( x ﹣ 1) +k (a > 0) 经过此中的三个点.( 1)求证: C 、 E 两点不行能同时在抛物线 y=a ( x ﹣1) 2+k ( a >0)上;( 2)点 A 在抛物线 y=a ( x ﹣ 1) 2+k ( a > 0)上吗?为何? ( 3)求 a 和 k 的值.11.如图,已知二次函数 y=ax 2+bx+c 的图象经过 A (﹣ 1,﹣ 1)、 B ( 0, 2)、C ( 1, 3);( 1)求二次函数的分析式;( 2)画出二次函数的图象.12.如图, A (﹣ 1, 0)、B ( 2,﹣ 3)两点在一次函数 1 =﹣x+m 与二次函数2 2的图象上.y y =ax +bx ﹣ 3( 1)求 m 的值和二次函数的分析式. ( 2)请直接写出使y 1> y 2 时自变量 x 的取值范围.13.如图,二次函数 y= ﹣ x 2+bx+c 的图象经过坐标原点,与 x 轴交于点 A (﹣ 2, 0).( 1)求此二次函数的分析式及点 B 的坐标;( 2)在抛物线上有一点 P ,满足 S △AOP =3,请直接写出点P 的坐标.214.已知反比率函数 y= 的图象与二次函数y=ax +x ﹣ 1 的图象订交于点( 2, 2)( 1)求 a 和 k 的值;15.已知二次函数 2B (﹣ 2,0). y=x +bx+c 的图象与 y 轴交于点 A (0,﹣ 6),与 x 轴的一个交点坐标是 ( 1)求二次函数的关系式,并写出极点坐标;( 2)将二次函数图象沿 x 轴向左平移 个单位长度,求所得图象对应的函数关系式.16.已知二次函数 y=ax 2+bx+c 中的 x , y 满足下表:x﹣ 2 ﹣ 1 0 1 2 y 4 0﹣ 2 ﹣ 2 0求这个二次函数关系式.17.如图, 曲线 C 是函数 y= 在第一象限内的图象, 抛物线是函数 y= ﹣ x 2﹣2x+4 的图象. 点 P n ( x ,y )( n=1 ,2, )在曲线 C 上,且 x , y 都是整数.( 1)求出全部的点 P n ( x , y );( 2)在 P n 中任取两点作直线,求全部不一样直线的条数;( 3)从( 2)的全部直线中任取一条直线,求所取直线与抛物线有公共点的概率.18.如图,直线 y=﹣ x ﹣ 2 交 x 轴于点 A ,交 y 轴于点 B ,抛物线 y=ax 2+bx+c 的极点为 A ,且经过点 B .( 1)求该抛物线的分析式;( 2)若点 C ( m ,)在抛物线上,求 m 的值.19.推理运算:二次函数的图象经过点 A ( 0,﹣ 3),B ( 2,﹣ 3), C (﹣ 1,0).( 1)求此二次函数的关系式;( 2)求此二次函数图象的极点坐标;( 3)填空:把二次函数的图象沿坐标轴方向最少平移 _________ 个单位,使得该图象的极点在原点.20.已知,在同向来角坐标系中,反比率函数y= 与二次函数 y=﹣ x 2+2x+c 的图象交于点 A (﹣ 1,m ).( 1)求 m 、 c 的值;( 2)求二次函数图象的对称轴和极点坐标.21.已知点 A (﹣ 2,﹣ c )向右平移 8 个单位获得点 A ′, A 与 A ′两点均在抛物线 y=ax 2+bx+c 上,且这条抛物线与y 轴的交点的纵坐标为﹣ 6,求这条抛物线的极点坐标.22.在平面直角坐标系中,有 A ( 2, 3)、 B ( 3, 2)两点.( 1)请再增添一点 C ,求出图象经过 A 、B 、C 三点的函数关系式.( 2)反思第( 1)小问,考虑有没有更简捷的解题策略?请说出你的原由.22, 0)、(﹣ 1,6)23.已知二次函数 y=ax +bx 的图象经过点( ( 1)求二次函数的分析式;( 2)不用列表,在以下图中画出函数图象,观察图象写出 y > 0 时, x 的取值范围.24.已知张口向上的抛物线y=ax 2﹣ 2x+|a|﹣ 4 经过点( 0,﹣ 3).( 1)确立此抛物线的分析式;( 2)当 x 取何值时, y 有最小值,并求出这个最小值.25.已知一抛物线与x 轴的交点是 A (﹣ 2,0)、 B( 1, 0),且经过点C( 2, 8).(1)求该抛物线的分析式;(2)求该抛物线的极点坐标.26.二次函数图象过 A 、 C、 B 三点,点 A 的坐标为(﹣ 1,0),点 B 的坐标为( 4, 0),点 C 在 y 轴正半轴上,且AB=OC .(1)求 C 的坐标;(2)求二次函数的分析式,并求出函数最大值.227.已知抛物线y=4x ﹣ 11x﹣ 3.(Ⅱ)求它与x 轴、 y 轴的交点坐标.28.已知二次函数图象经过(2,﹣ 3),对称轴 x=1,抛物线与x 轴两交点距离为4,求这个二次函数的分析式.29.已知抛物线 y=x 2﹣ 2x﹣ 3,将 y=x2﹣ 2x﹣ 3 用配方法化为 y=a( x﹣ h)2+k 的形式,并指出对称轴、极点坐标及图象与 x 轴、 y 轴的交点坐标.30.已知一个二次函数的图象经过点(0, 0),( 1,﹣ 3),( 2,﹣ 8).(1)求这个二次函数的分析式;(2)写出它的对称轴和极点坐标.二次函数与图像选择题30 题参照答案:1.解:依据图象可得:a< 0, c>0,对称轴: x=﹣=1,=﹣1,b=﹣2a,∵ a< 0,∴b> 0,∴abc< 0,故①正确;把 x=﹣ 1 代入函数关系式y=ax2+bx+c 中得: y=a﹣ b+c,由图象可以看出当x=﹣1 时,y< 0,∴a﹣ b+c <0,故②正确;∵ b=﹣ 2a,∴ a﹣(﹣ 2a)+c<0,即: 3a+c<0,故③正确;由图形可以直接看出④ 错误.故答案为:①②③ .2.解:设抛物线的分析式为 y=a( x﹣ 2)2+1 ,将 B( 1,0)代入 y=a(x﹣ 2)2+1 得, a=﹣1,函数分析式为y=﹣( x﹣ 2)2+1,睁开得y=﹣ x2+4x ﹣3.故答案为y=﹣ x2+4x﹣ 3.3.解:原式 =x2﹣ 2x+1+5= ( x﹣1)2+5,可见,二次函数的最小值为5.故答案为5.4.解:原式可化为: y=(x+1 )2﹣ 4,由函数图象平移的法规可知,将函数y=x 2的图象先向左平移 1 个单位,再向下平移4 个单位即可获得函数y=( x+1)2﹣4,的图象,故①正确;函数y=( x+1 )2﹣ 4 的图象张口向上,函数 y=﹣x2;的图象张口向下,故不可以经过平移获得,故②错误;将 y=( x﹣ 1)2+2的图象向左平移2 个单位,再向下平移 6 个单位即可获得函数y=(x+1)2﹣4的图象,故③ 正确.故答案为:①③ .5.解:( 1)∵二次函数 y=x 2+bx+c的图象经过点(4, 3),( 3, 0),∴,解得;(2)∵该二次函数为 y=x 2﹣ 4x+3=( x ﹣2)2﹣1.∴该二次函数图象的极点坐标为(2,﹣ 1),对称轴为直线x=2;(3)列表以下:x01234 y30﹣ 1036.解:(1)把( 0, 0),( 2, 0)代入 y=x 2+bx+c得,解得,(1 分)∴分析式为y=x2﹣2x ( 1 分)(2)∵ y=x 2﹣ 2x= (x﹣1)2﹣ 1,∴极点为( 1,﹣ 1)对称轴为:直线x=1(3)设点 B 的坐标为( a,b),则×2|b|=3,解得 b=3 或 b=﹣3,∵极点纵坐标为﹣1,﹣3<﹣1(或x2﹣ 2x=﹣3 中, x 无解)∴ b=3∴ x2﹣2x=3解得x1=3,x2=﹣1∴点B的坐标为(3,3)或(﹣1,3)7.解:(1)∵OA=2 ,OC=3 ,∴ A(﹣ 2, 0), C(0,3),∴ c=3,将 A(﹣ 2, 0)代入 y= ﹣x2+bx+3 得,﹣×(﹣2)2﹣ 2b+3=0,解得 b=,可得函数分析式为y=﹣ x2+x+3;(2)如图:连接AD ,与对称轴订交于P,因为点 A 和点 B 关于对称轴对称,则即BP+DP=AP+DP ,当 A 、 P、D 共线时 BP+DP=AP+DP 最小.设 AD 的分析式为 y=kx+b ,将 A (﹣ 2, 0), D( 2,2)分别代入分析式得,,解得,,故直线分析式为 y= x+1 ,(﹣ 2<x <2),因为二次函数的对称轴为 x= ﹣ = ,则当 x= 时, y= × +1= ,故 P ( ,).8.解:(1)把( 0, 0),( 2, 0)代入 y=﹣x 2+bx+c ,得 ,解得 b=2, c=0,因此分析式为 y=﹣ x 2+2x ;(2)∵ a=﹣1,b=2,c=0, ∴﹣= ﹣ =1, = =1,∴极点为( 1,1),对称轴为直线 x=1;(3)设点 B 的坐标为( a ,b ),则×2|b|=8,∴ b=8 或 b=﹣8,∵极点纵坐标为 1, 8>1(或﹣ x 2+2x=8 中, x 无解),∴ b=﹣ 8,∴ ﹣x 2+2x= ﹣8,解得 x 1=4, x 2=﹣ 2,因此点 B 的坐标为(﹣ 2,﹣ 8)或( 4,﹣ 8 ).9.解:(1 )若选择 ① :依据表格可知,抛物线极点坐标为(1,4),设抛物线分析式为 y=a (x ﹣1) 2+4, 将点(0,3)代入,得 a ( 0﹣1)2+4=3 ,解得 a=﹣1,因此,抛物线分析式为 y=﹣( x ﹣1) 2+4,即 y=﹣x 2+2x+3 ; 若选择 ② ,设抛物线分析式为 y=ax2+bx+c ,将(﹣ 1,0)、(1,4)、(3,0)代入得:,解得: ,∴抛物线分析式为 y=﹣ x 2+2x+3 ;若选择 ③ ,由图象获得抛物线极点坐标为(1,4),且过( 0,3), 设抛物线分析式为y=a ( x ﹣ 1)2 +4,将( 0, 3)代入得: a=﹣1,则抛物线分析式为 y=﹣( x ﹣1) 2+4=﹣x 2+2x+3 ;(2)抛物线 y=﹣ x 2+2x+3 的性质: ① 对称轴为直线 x=1,② 当 x=1 时,函数有最大值为 4,③ 当 x <1 时, y 随 x 的增大而增大. 10.解:(1) ∵抛物线 y=a ( x ﹣ 1)2+k 的对称轴为 x=1 ,而 C (﹣ 1,2),E (4,2)两点纵坐标相等,由抛物线的对称性可知, C 、 E 关于直线 x=1 对称,又 ∵C (﹣ 1,2)与对称轴相距 2,E (4,2)与对称轴相距 3,∴ C 、E 两点不行能同时在抛物线上;2得出 a 的值分别为 a=﹣1, a= ,a=﹣1,a= ,因此抛物线经过的点是B , D ,又因为 a >0,与 a=﹣ 1 矛盾,因此假设不成立.因此 A 不在抛物线上;而 k 为任意数,这与抛物线是确立的矛盾,故点A 不在抛物线 y=a (x ﹣ 1)2+k ( a >0)上. ∴ A 点不在抛物线上;(3)将 D ( 2,﹣ 1)、C (﹣ 1, 2)两点坐标代入 y=a ( x ﹣1)2+k 中,得,解得,或将 E 、 D 两点坐标代入 y=a (x ﹣1)2+k 中,得,解得,综上所述,或 .11.解:(1)依据题意,得,解得,,∴ 所求的分析式是 y=﹣x 2+2x+2 ;(2)二次函数的图象以以下图:12.解:(1)因为 A(﹣1,0)在一次函数y1=﹣x+m 的图象上,得:﹣(﹣ 1) +m=0,即 m= ﹣1;已知 A (﹣ 1,0)、 B (2,﹣ 3)在二次函数 y 2=ax 2+bx ﹣ 3 的图象上,则有:,解得; ∴二次函数的分析式为 y 2=x 2﹣ 2x ﹣ 3;(2)由两个函数的图象知:当 y 1> y 2 时,﹣ 1<x <2.13.解:(1)将 A 、 O 两点坐标代入分析式 y=﹣ x 2+bx+c ,有:,解得:,∴此二次函数的分析式为:y=﹣ x 2﹣ 2x ,变化形式得: y=﹣( x+1)2+1 ,极点坐标 B (﹣ 1,1).(2)P 1(﹣ 3,﹣ 3), P 2(1,﹣ 3).14.解:(1)因为二次函数 y=ax 2+x ﹣1 与反比率函数 y= 交于点( 2, 2)因此 2=4a+2﹣ 1,解之得 a =2= ,因此 k=4 ;(2)反比率函数的图象经过二次函数图象的极点;由(1)知,二次函数和反比率函数的关系式分别是y= x 2+x ﹣1 和 y= ;因为 y= x2+x ﹣ 1=y=( x2+4x ﹣4)= ( x 2+4x+4 ﹣ 8)=y= [ ( x+2 )2﹣ 8]= ( x+2 )2﹣2,因此二次函数图象的极点坐标是(﹣2,﹣ 2);因为 x=﹣ 2 时, y= =﹣2,因此反比率函数图象经过二次函数图象的极点.解:(1)依题意,有:,解得;∴y=x2﹣x﹣6=x2﹣x+﹣=( x ﹣)2﹣;∴抛物线的极点坐标为(,﹣).( 2)由( 1)知:抛物线的分析式为y=( x﹣)2﹣;将其沿 x 轴向左平移个单位长度,得: y=(x﹣+ )2﹣=( x+2)2﹣.16.解:把点( 0,﹣ 2)代入 y=ax2 +bx+c,得 c=﹣ 2.再把点(﹣ 1,0),( 2, 0)分别代入 y=ax 2 +bx﹣2中,得,解得,∴这个二次函数的关系式为: y=x2﹣x﹣2.17.解:(1)∵x,y 都是正整数,且y=,∴x=1,2,3,6.∴ P1(1,6),P2(2,3),P3(3,2),P4(6,1);(2)从 P1,P2, P3,P4中任取两点作直线为: P1P2,P1P3, P1P4, P2P3, P2P4, P3P4,∴不一样的直线共有 6 条;(3)∵只有直线 P2P4,P3P4与抛物线有公共点,而( 2)中共有 6 条直线,∴从( 2)的全部直线中任取一条直线与抛物线有公共点的概率是.18.解:(1)由直线 y= ﹣x﹣2,令 x=0 ,则 y=﹣ 2,∴点 B 坐标为( 0,﹣2),令 y=0,则 x= ﹣2,∴点 A 坐标为(﹣2,0),设抛物线分析式为 y=a(x﹣ h)2+k,∵抛物线极点为 A ,且经过点 B ,∴y=a(x+2 )2,∴﹣2=4a,解得a=﹣,∴抛物线分析式为y=﹣(x+2)2,即 y=﹣ x2﹣2x ﹣2;(2)方法 1:∵点 C(m,)在抛物线 y= ﹣(x+2 )2上,∴﹣(m+2 )2=,(m+2 )2=9,解得 m1=1,m2=﹣ 5;方法 2:∵点 C( m,)在抛物线 y=﹣ x2﹣ 2x﹣ 2 上,∴﹣ m2﹣2m﹣ 2=,∴ m2+4m﹣5=0,解得m1=1,m2=﹣5.19. 解:( 1)设 y=ax2+bx ﹣ 3,( 1 分)把点( 2,﹣ 3),(﹣ 1, 0)代入得,(2 分)解方程组得∴y=x2﹣ 2x﹣ 3;( 3 分)(也可设 y=a( x﹣ 1)2+k)(2)y=x 2﹣ 2x﹣ 3=( x﹣1)2﹣4,(4 分)∴函数的极点坐标为(1,﹣ 4);( 5 分)(3) |1﹣0|+|﹣4﹣ 0|=5.20.解:(1)∵点 A 在函数 y=的图象上,∴ m== ﹣5,∴ 点 A 坐标为(﹣ 1,﹣ 5),∵点 A 在二次函数图象上,∴﹣1﹣2+c=﹣5,c=﹣2.第10页共12页点 A ′( 6,6).∵ A 与 A ′两点均在抛物线上,∴ ,解这个方程组,得 ,故抛物线的分析式是 y=x 2﹣ 4x ﹣ 6=(x ﹣2) 2﹣10,∴ 抛物线极点坐标为( 2,﹣ 10).22.解:(1)没关系令 C (0,3),设该二次函数的分析式是 y=ax 2+bx+3 ,则有 ,解得 ,即该二次函数的分析式是 y=﹣ x 2﹣x+3.(2)观察 A 、 B 两个点的坐标,发现:两个点的坐标乘积相等,即在双曲线 y= 上,因此只需从该双曲线外任意取一点 C 即可.23.解:(1) ∵y=ax 2+bx 的图象经过点( 2, 0)、(﹣ 1,6);∴ ,解得 ;∴ 二次函数的分析式为 y=2x 2﹣4x .(2)如图;由图可知:当 y > 0 时, x >2 或 x <0.24. ( 1)由抛物线过( 0,﹣ 3),得:﹣ 3=|a|﹣4, |a|=1,即 a=±1.∵ 抛物线张口向上, ∴ a=1,故抛物线的分析式为 y=x 2﹣2x ﹣3;(2)∵ y=x 2﹣2x ﹣3=(x ﹣ 1) 2﹣ 4,∴ 当 x=1 时, y 有最小值﹣ 4.25.解:(1)设这个抛物线的分析式为 y=ax 2+bx+c ;由已知,抛物线过 A (﹣ 2, 0), B (1, 0), C (2, 8)三点,得 ;解这个方程组,得 a=2, b=2,c=﹣4; ∴ 所求抛物线的分析式为 y=2x 2+2x ﹣4.(2)y=2x 2+2x ﹣ 4=2( x 2 +x ﹣2) =2( x+ )2﹣ , ∴该抛物线的极点坐标为(﹣ ,﹣ ).26.解:(1) ∵A (﹣ 1,0),B ( 4, 0)∴ AO=1 ,OB=4 , AB=AO+OB=1+4=5 ,∴ OC=5 ,即点 C 的坐标为( 0, 5);(2)解法 1:设图象经过 A 、C 、 B 三点的二次函数的分析式为 y=ax 2+bx+c因为这个函数图象过点( 0,5),可以获得 C=5,又因为该图象过点(﹣ 1,0),( 4,0),则:,解方程组,得 ∴所求的函数分析式为 y=﹣ x 2+ x+5∵ a=﹣< 0∴当 x=﹣= 时, y 有最大值 = = ;解法 2:设图象经过 A 、 C 、B 二点的二次函数的分析式为 y=a ( x ﹣ 4)(x+1 ) ∵点 C ( 0,5)在图象上,∴把 C 坐标代入得: 5=a (0﹣4)(0+1),解得: a=﹣,∴ 所求的二次函数分析式为 y=﹣ (x ﹣ 4)( x+1 )∵点 A ,B 的坐标分别是点 A (﹣ 1,0),B (4,0),∴ 线段 AB 的中点坐标为 ( ,0),即抛物线的对称轴为直线 x= ∵ a=﹣ < 0∴当 x= 时, y 有最大值 y=﹣ = .27. 解:(I )由已知, a=4,b=﹣11,得 ,∴ 该抛物线的对称轴是 x= ;1(II )令 y=0 ,得 4x 2﹣11x ﹣3=0, 解得 x 1=3,x 2=-428. 解: ∵抛物线与 x 轴两交点距离为 4,且以 x=1 为对称轴 ∴抛物线与 x 轴两交点的坐标为(﹣ 1,0),( 3,0) 设抛物线的分析式 y=a ( x+1)(x ﹣3)又 ∵ 抛物线过( 2,﹣ 3) ∴﹣ 3=a (2+1)( 2﹣3) 解得 a=1∴ 二次函数的分析式为 y=( x+1)( x ﹣3)=x 2﹣2x ﹣ 3. 29.解: y=x 2﹣2x ﹣3=x 2﹣2x+1 ﹣ 1﹣3=( x ﹣1)2﹣4,对称轴是 x=1,极点坐标是( 1,﹣ 4),当 x=0 时, y=﹣ 3,因此 y 轴的交点坐标为( 0,﹣ 3), 当 y=0 时, x=3 或 x= ﹣1 即与 x 轴的交点坐标为( 3,0),(﹣ 1, 0).30.解:(1)设这个二次函数的分析式为: y=ax 2+bx+c ,∵二次函数图象经过三点( 0,0),( 1,﹣ 3),(2,﹣ 8),∴ .∴ 这个二次函数的分析式为: y=﹣x 2﹣ 2x ;(2)∵ y=﹣x 2﹣2x= ﹣(x+1)2+1,∴ 这个二次函数的对称轴为 x=﹣1,极点坐标为(﹣1, 1).。