如何构造等腰三角形

合集下载

如何构造一个等腰三角形

如何构造一个等腰三角形

如何构造一个等腰三角形
在数学几何学中,等腰三角形是指具有两条边相等的三角形。

构造一个等腰三角形的方法有很多种,下面将介绍几种常用的构造方法。

方法一:使用直尺和画圆工具
1. 在纸上画一条基线,作为等腰三角形的底边。

2. 在基线的中点上方或下方用直尺画一条垂直线,作为等腰三角形的高。

3. 使用画圆工具,在基线的两个端点上分别画弧,使其与垂直线相交于同一点。

4. 连接两个交点和基线两端点,得到一个等腰三角形。

方法二:使用直尺和角分度器
1. 在纸上画一条基线,作为等腰三角形的底边。

2. 使用直尺连接基线两端点,找到底角的平分线。

3. 使用角分度器或者直尺和指南针,将底角平分线上的两点与基线两端点分别连接,得到等腰三角形的两条边和高。

方法三:使用直尺和指南针
1. 在纸上画一条基线,作为等腰三角形的底边。

2. 使用直尺连接基线两端点,确定底边的中点。

3. 调整指南针的间距为底边长度的一半,以底边中点为圆心,画出一个等腰三角形的顶点。

4. 连接顶点和基线两端点,得到一个等腰三角形。

无论选择哪种构造方法,都需要仔细测量边长和角度,保证构造出的三角形满足等腰性质。

总结:
构造一个等腰三角形的方法有多种,可以根据个人的偏好和使用的工具选择其中一种。

这些方法基于数学几何原理,通过使用直尺和画圆工具、角分度器或者指南针等工具,可以准确地构造出一个等腰三角形。

在构造过程中,需要注意准确测量边长和角度,以保证构造出的三角形符合等腰性质。

构造等腰三角形解题的五种途径

构造等腰三角形解题的五种途径

构造等腰三⾓形解题的五种途径2019-09-19等腰三⾓形是⼀类特殊的三⾓形,它的性质和判定在⼏何证明和计算中有着⼴泛的应⽤.有些⼏何图形中不存在等腰三⾓形,可根据已知条件和图形特征,通过添加适当的辅助线,巧妙构造等腰三⾓形,然后利⽤等腰三⾓形的性质使问题获解.⼀、利⽤⾓平分线+平⾏线,构造等腰三⾓形当⼀个三⾓形中出现⾓平分线,我们可以通过作平⾏线构造等腰三⾓形.如图1,AD是ABC的⾓平分线.①如图2,过点D作DE∥AC交AB于点E,则ADE是等腰三⾓形;②如图3,过点B作BE∥AC交AD的延长线于点E,则ABE是等腰三⾓形;③如图5,点E是AB边上⼀点,过点E作EF∥AC分别交AD、BC于点F、G,则AEF是等腰三⾓形;④如图4,点E是AB边上⼀点,过点E作EF∥AC,交AD的延长线于点F,交BC于点G,则AEF是等腰三⾓形;⑤如图6,过点C作CE∥AD交AB的反向延长线于点E,则ACE是等腰三⾓形;⑥如图7,点E是AC边上⼀点,过点E作EF∥AD,交AB的反向延长线于点F,交BC于点G,则AEF是等腰三⾓形.我们知道,等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合,简称“三线合⼀”.现在的问题是:如果三⾓形⼀边上的中线与它的对⾓的⾓平分线重合,那么这个三⾓形是否是等腰三⾓形呢?答案是肯定的,现在就来证明这个定理.例1 如图8,ABC中,中线AD平分∠BAC.求证:AB=AC.分析:AD既是AC的中线,同时⼜是ABC的⾓平分线.联想到与⾓平分线和中线有关的辅助线,可过点B(或点C)作AC(或AB)的平⾏线.证明:如图9,延长AD⾄点E,使DE=AD.BD=CD,∠BDE=∠ADC,DE=AD,BDE≌CDA.BE=AC,∠E=∠CAD.⼜∠BAD=∠CAD,∠BAD=∠E.AB=BE.AB=AC.说明:本例也可过点D作DEAB,DFAC,垂⾜分别为E、F,如图10所⽰,从⾯积⼊⼿证明.⼆、利⽤⾓平分线+垂线,构造等腰三⾓形当⼀个三⾓形中出现⾓平分线时,我们也可以通过作垂线的⽅法构造等腰三⾓形.如图11,点E是∠ABC的⾓平分线AD上的⼀点,过点E作AD的垂线分别交AB、AC于点M、N,则AMN是等腰三⾓形.例2 如图12,在ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D, CEBD,交BD的延长线于点E.求证:CE=BD.分析:由⾓平分线和垂线可以构造以BC为腰、∠ABC为顶⾓的等腰三⾓形.证明:如图12,延长CE交AB的反向延长线于点F.BD平分∠ABC,CEBD,由⾓平分线的对称性知CE=EF=CF.∠1+∠F =90°,∠2+∠F =90°,∠1=∠2.⼜AB=AC,∠BAD=∠CAF=90°,BAD≌CAF.BD=CF.CE=BD.三、利⽤中垂线,构造等腰三⾓形当⼀个三⾓形中出现⾼时,可以在⾼所在的边(或其延长线)上取⼀点,使⾼是该点与该边上三⾓形的⼀顶点组成的线段的中垂线,从⽽构造等腰三⾓形.如图13,AD是ABC的⾼.①如图14,在线段BC上取⼀点E使ED=DE,连结AE,则AEC是等腰三⾓形;②如图15,在线段BC的延长线上取⼀点E,使BD=DE连结AE,则ABE是等腰三⾓形.例3 如图16,在ABC中,ADBC于点D,∠B=2∠C.求证:AB+BD=CD.分析:由待证结论AB+BD=CD并结合已知条件“ADBC”,可构造以AB为腰、AD为底边上的⾼的等腰三⾓形.证明:在BC上取⼀点E,使BD=DE,连结AE,则ABE是等腰三⾓形.AB=AE,∠B=∠AED.⽽∠AED=∠C+∠CAE,且∠B=2∠C,∠C+∠CAE=2∠C.∠CAE=∠C.AE=CE.AB=CE.AB+BD=CE+DE=CD.四、利⽤平⾏线,构造等腰三⾓形过等腰三⾓形⼀腰上的点作底边或另⼀腰的平⾏线,都可以得到等腰三⾓形. 如图17,在ABC中,AB=AC.过线段AB上⼀点D 作DE∥BC,DF∥AC,分别交AC、BC于点E、F,则ADE和BDF都是等腰三⾓形.例4 如图18,ABC中,AB=AC,D是AB上⼀点,E是AC延长线上⼀点,且BD=CE,DE交BC于点F.求证:DF=EF.分析:由待证结论知点F是线段DE的中点,再结合已知条件“AB=AC”,可过点D作DM∥AC构造等腰三⾓形.证明:过点D作DM∥AC交BC于点M,则∠DMB=∠ACB,∠FDM=∠E.AB=AC,∠B=∠ACB.∠B=∠DMB.BD=DM.⼜BD=CE,DM=CE.在DMF和ECF中,DM=CE,∠FDM=∠E,∠DFM=∠EFC,DMF≌ECF.DF=EF.说明:本例也可过点E作EN∥AB交BC的延长线于点N,证明过程留给同学们完成.五、转化倍⾓,构造等腰三⾓形当⼀个三⾓形中出现⼀个⾓是另⼀个⾓的2倍时,我们就可以通过转化倍⾓寻找到等腰三⾓形.如图19,ABC中,∠B=2∠C.①如图20,作BD平分∠ABC,则DBC是等腰三⾓形;②如图21,延长CB到点D,使BD=BA,连结AD,则ADC是等腰三⾓形;③如图22,以C为⾓的顶点,CA为⼀边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则DBC是等腰三⾓形.例5 如图23,在ABC中,∠ABC=2∠C,BC=2AB.求证:∠A=90°.分析:结合已知条件“∠ABC=2∠DBA”和“BC=2AB”,可作∠ABC的平分线BD交AC于点D,并取BC的中点E,连结DE,借助等腰三⾓形的“三线合⼀”和三⾓形全等证明.证明:作∠ABC的平分线BD交AC于点D,则∠DBE=∠C.BD=CD.取BC的中点E,连结DE,则BE=AB,且DEBC.在ABD和EBD中,BE=AB,∠DBE=∠DBA,BD=BD,ABD≌EBD.∠BED=∠A=90°.(作者单位:湖北省襄阳市襄州区黄集镇初级中学)注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。

例析如何添加辅助线构造等腰三角形

例析如何添加辅助线构造等腰三角形

解法探究2023年3月下半月㊀㊀㊀例析如何添加辅助线构造等腰三角形◉甘肃省平凉市崆峒区广成学校㊀周义武㊀㊀摘要:等腰三角形作为初中数学几何部分的重要知识点,不仅对解决几何问题具有重要作用,而且也是历年中考数学命题的热点,特别是如何添加辅助线构造等腰三角形,是对初中生数学思维能力的考查.基于此,本文在介绍等腰三角形性质的基础上,借助两道例题分析如何添加辅助线构造等腰三角形.关键词:等腰三角形;辅助线;构造;角平分线;倍角1引言等腰三角形的性质和判定是历年数学中考的必考点,然而学生在遇到几何题时难以发现或构造等腰三角形,继而无法利用其性质和判定解决问题[1].基于这种情况,同时又考虑到构造等腰三角形是解决初中数学几何问题的重要方法,本文中就如何添加辅助线构造等腰三角形进行研究和分析,以供参考.2理论基础通过对那些需要构造等腰三角形才能解决的初中几何题进行分析后不难看出,添加辅助线构造等腰三角形的理论基础主要来自两个方面:首先,等腰三角形的性质.构造等腰三角形主要是构造出两条相等的边或两个相等的角,这是因为等腰三角形具有 等边对等角 的性质[2].另外, 三线合一 也是突破该类问题思维瓶颈的一个知识点.其次,等腰三角形的判定.要构造等腰三角形,需要根据等腰三角形的判定方法判断构造出的三角形是否为等腰三角形,只有这样才能进一步使用等腰三角形的性质解决问题.当然,在解决这类问题时,还需要结合其它几何知识.例如,证明或求解的过程中可能会利用全等三角形等,那么全等三角形等知识点也是添加辅助线的重要启发.3例题分析笔者结合相关研究内容以及一线教学经验,认为添加辅助线构造等腰三角形可从以下两个方面出发.3.1根据倍角关系作辅助线在几何题中,如果出现了倍角关系,那么极有可能需要构造出等腰三角形进行分析解答.因为等腰三角形具有 等边对等角 的性质,所以顶角的邻补角等于底角的两倍.如例题1.图1例1㊀如图1所示,在әA B C 中,øA B C =2øC ,A D 是øB AC 的平分线.求证:A C =A B +B D .分析:本题已知条件中出现了倍角关系,抓住这一关系延长C B 构造出等腰三角形A B E ,然后利用三角形的外角性质和øA B C =2øC 得到øE =øC ,进而得到等腰三角形A E C .最后,通过等腰三角形的性质实现了A B 与E B ,A E 与A C 的转换.当然也可延长A B 构造等腰三角形,借助全等三角形实现边的转换.所以,本题有两种不同的解题方法.证法一:如图2所示,延长C B ,使得B E =A B ,连接A E .图2ȵB E =A B ,ʑøE =øE A B .ʑøA B C =øE +øE A B =2øE .又ȵøA B C =2øC ,ʑøE =øC .ʑA E =A C .ȵA D 平分øB A C ,ʑøB A D =øC A D .ʑøE A D =øB A E +øB A D=øC +øC A D =øB D A .ʑE A =E D .又E D =E B +B D ,E B =A B ,A C =A E ,ʑA C =A B +B D .证法二:如图3所示,延长A B ,使得B M =B D ,连接MD .68Copyright ©博看网. All Rights Reserved.2023年3月下半月㊀解法探究㊀㊀㊀㊀图3ȵB M =B D ,ʑøM =øB DM .ʑøA B C =øM +øB DM =2øM .又ȵøA B C =2øC ,ʑøM =øC .ȵA D 平分øB A C ,ʑøB A D =øC A D .又A D =A D ,ʑәAMD ɸәA C D (A A S ).ʑA C =AM =A B +B M =A B +B D .总结与反思:当一个三角形中出现了一个角是另一个角的两倍时,往往可以借助构造等腰三角形转化倍角关系.3.2延长边利用三线合一 作辅助线 三线合一 作为等腰三角形的重要性质,在解题时大有用处,在作辅助线构造等腰三角形时亦是如此.如例题2.图4例2㊀如图4所示,在әA B C中,A B =A C ,øB A C =90ʎ,B D 平分øA B C ,C D ʅB D ,B D 与A C 相交于点F .求证:B F =2C D .分析:本题中的已知条件比较多,分析后发现在不作辅助线的情况下解出此题非常困难.所以,可根据 B D 平分øA B C 延长B A ,C D ,结合 三线合一 得到等腰三角形.最后,借助三角形全等实现边的转换,达到求证目的.图5证明:延长B A ,C D 交于点E ,如图5所示.ȵB D 平分øA B C ,C D ʅB D ,ʑB C =B E ,C D =E D .ʑC E =2C D .ȵøB A C =90ʎ,øB F A =øC F D ,ʑøA B F =øA C E .又ȵA B =A C ,ʑәA B F ɸәA C E (A S A ).ʑB F =C E .ʑB F =2C D .总结与反思:如果遇到了与角平分线垂直的线段,那么将这条线段延长与角的另一边相交就可以构造出等腰三角形.值得一提的是,这种方法通常会运用全等三角形,一是为了实现边的转换,二是与 三线合一 搭配使用.4要点说明很多初中几何问题解题时都需要作出相应的辅助线,而有技巧地作出所需的辅助线,是高效㊁巧妙解决数学问题的前提.本文中通过两道例题介绍了两种利用辅助线构造等腰三角形的方法,也是平时训练中常见的方法.在使用这两种方法构造等腰三角形时,需注意以下几个要点:首先,注重化归思想的培养和利用.在本文两道例题中,均使用了化归思想.由此可见,这类问题对化归思想的依赖程度非常高,对尚未有化归思想或不会运用化归思想的学生形成了巨大考验.因此,教师在日常教学过程中,要注重学生化归思想的培养[3].笔者认为,教师可从边转化㊁角度转化方面开始简单的训练,在充分理解 三线合一 角平分线 垂直平分线 内容的前提下发挥其作用,为作辅助线构造等腰三角形奠定丰富的理论基础.其次,注重发散思维的培养.在例1中,采用了两种不同的方法,且两种方法之间存在一定联系.对于әA B D 而言,可以延长的边有三条,但是分析后发现有利于解题的线段延长共有两种情况,即延长D B 或A B .如此一来,就形成了两种不同的解题方法.那么如何由延长D B 联想到延长A B ,这就是学生发散思维的体现.笔者建议,教师在教学过程中,引导学生延长某一线段时,可从延长方向上激发学生的思维.5结语总之,利用作辅助线的方法构造出等腰三角形是解决几何类问题常用的方法[4].无论是学生平时训练,还是教师日常教学,可以将该内容形成专题,进行更充分的探讨与学习.这对教师的深入研究和学生的深入学习都非常有意义.参考文献:[1]陈霄剑.学生为什么这么快就知道添加辅助线由等腰三角形性质定理证明的教学片断而引发的思考[J ].中小学数学(初中版),2014(10):51G52.[2]王键.深入等腰三角形,探究辅助线添加 对等腰三角形辅助线添加技巧的探讨[J ].数学教学通讯,2020(29):70G71,80.[3]胡宁.纵有千条妙计必有一定之规 构造等腰直角三角形解题例谈[J ].学生之友(中考月刊),2012(Z 1):7G8.[4]张文国.例说等腰三角形的辅助线的几种作法[J ].科教导刊:电子版,2018(17):1.Z78Copyright ©博看网. All Rights Reserved.。

小专题构造等腰三角形的常用技巧人教版八年级数学上册作业课件PPT

小专题构造等腰三角形的常用技巧人教版八年级数学上册作业课件PPT
小专题(五) 构造等腰三角形的常用技巧
技巧一:作平行线构造等腰三角形 【模型构建】 ①利用“角平分线+平行线”构造等腰三角形.若∠1=∠2,AC∥ OB,则△OAC 为等腰三角形.
②作腰的平行线构造等腰三角形.若 AB=AC,DE∥AC形.若 AB=AC,DE∥BC,则△ADE 为等腰三角形.
小专题(5) 构造等腰三角形的常用技巧-2020秋人 教版八 年级数 学上册 作业课 件(共20 张PPT)
小专题(5) 构造等腰三角形的常用技巧-2020秋人 教版八 年级数 学上册 作业课 件(共20 张PPT)
5.如图,在△ABC 中,AD 为中线,E 为 AB 上一点,AD,CE 交 于点 F,且 AE=EF,求证:AB=CF.
证明:在边 AC 上截取 AP=AB,连接 PD. ∵AD 是∠BAC 的平分线,∴∠BAD=∠PAD. ∴△ABD≌△APD(SAS). ∴∠APD=∠B,PD=BD. ∵∠B=2∠C,∠APD=∠PDC+∠C, ∴∠PDC=∠C. ∴PD=PC.∴BD=PC. ∴AB+BD=AP+PC=AC.
小专题(5) 构造等腰三角形的常用技巧-2020秋人 教版八 年级数 学上册 作业课 件(共20 张PPT)
小专题(5) 构造等腰三角形的常用技巧-2020秋人 教版八 年级数 学上册 作业课 件(共20 张PPT)
1.如图,AE,BC 交于点 D,且 AB=CE,∠B+∠DCE=180°, 求证:AD=DE.
小专题(5) 构造等腰三角形的常用技巧-2020秋人 教版八 年级数 学上册 作业课 件(共20 张PPT)
∴∠G=∠EAF. ∵AE=EF, ∴∠EAF=∠EFA=∠GFC. ∴∠G=∠GFC,∴CG=CF.∴AB=CF. 方法二:延长 AD 至 M,使 DM=DF,连接 BM, 同理可证 CF=BM=AB. 方法三:作 BM⊥AD 于 M,CN⊥AD 于 N, 先证△BMD≌△CND,BM=CN, 再证△ABM≌△FCN 即可.

关于等腰三角形构造技巧的探究

关于等腰三角形构造技巧的探究

关于等腰三角形构造技巧的探究
胡燕;张恩荣
【期刊名称】《数学教学通讯》
【年(卷),期】2024()11
【摘要】通过构造等腰三角形来解题在中考中经常遇到.而等腰三角形的构造技巧有很多,常见的三种包括“平行线+角平分线”构造、过腰或底作平行线构造、倍角关系构造.文章开展引例探究,并结合实例探究等腰三角形的三大构造技巧,还提出几点教学建议.
【总页数】3页(P80-82)
【作者】胡燕;张恩荣
【作者单位】甘肃省古浪县西靖阳光初级中学;甘肃省古浪县城关第一小学
【正文语种】中文
【中图分类】G63
【相关文献】
1.走进等腰三角形,探讨存在性问题--等腰三角形存在性问题的策略探究与反思
2.走进等腰三角形,探讨存在性问题——等腰三角形存在性问题的策略探究与反思
3.深入等腰三角形,探究辅助线添加——对等腰三角形辅助线添加技巧的探讨
4.基于“问题情境活动”下的“问题链式”课堂教学设计与反思——以八年级“利用角平分线和垂线构造等腰三角形”一课为例
因版权原因,仅展示原文概要,查看原文内容请购买。

等腰三角形面积最大值

等腰三角形面积最大值

等腰三角形面积最大值以等腰三角形面积最大值为题,我们来探讨一下如何构造一个面积最大的等腰三角形。

我们需要了解等腰三角形的性质。

等腰三角形是指两边长度相等的三角形。

根据等腰三角形的性质,我们知道等腰三角形的底角和顶角是相等的,而底边上的中线也是等腰三角形的高。

现在,我们来考虑如何构造一个面积最大的等腰三角形。

根据等腰三角形的性质,我们可以知道,等腰三角形的面积等于底边乘以高再除以2。

要使面积最大,我们需要尽量增大底边和高。

我们来考虑底边的长度。

假设底边的长度为x,那么根据等腰三角形的性质,两个等边的边长也为x。

由于我们要尽量增大底边和高,我们可以假设底边的长度为无穷大。

这样一来,等边的边长也会趋近无穷大。

但是,在实际情况中,我们无法构造出无穷大长度的线段,所以我们需要在实际范围内选择一个较大的底边长度。

接下来,我们来考虑高的长度。

由于底边长度已经确定,我们可以通过调整顶角的大小来改变高的长度。

根据三角函数的性质,我们知道正弦函数的取值范围在-1到1之间。

所以,我们可以通过改变顶角的大小,使得正弦函数的值尽量接近1,从而使得高的长度尽量大。

要构造一个面积最大的等腰三角形,我们需要选择一个较大的底边长度,并通过调整顶角的大小使得高的长度尽量大。

当底边长度趋近无穷大时,等腰三角形的面积也会趋近无穷大。

在实际应用中,等腰三角形的面积最大值有着重要的意义。

例如,在建筑设计中,我们希望减少材料的使用量,同时又要满足结构的稳定性和美观性。

此时,我们可以考虑采用等腰三角形的结构,以达到最大化利用材料的效果。

等腰三角形面积的最大值取决于底边的长度和顶角的大小。

通过选择较大的底边长度和调整顶角的大小,我们可以构造出一个面积最大的等腰三角形。

这对于解决一些实际问题具有重要的意义。

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。

人教版八年级数学上等腰等边三角形及其性质

人教版八年级数学上等腰等边三角形及其性质

第1讲 等腰三角形(一)1.等边△ABC 中,D 为AC 的中点,CE =CD .求证:BD =DE .2.如图,AC =AD ,BC =BE ,∠DCE =045,求证:AC ⊥BC .3.如图,已知AC =CD , EF =DF ,AF =AG ,求∠A.一、全等中的几何画图(一)动态画图,周密思考4.如图,AC ⊥BC ,AC =BC ,过G 点任画直线l ,过A 点、B 点分别作l 的垂线AE 、BF ,垂足为E 、F ,试画图探究AE 、BF 与EF 的大小关系.5.如图,1l ∥2l ,∠1=∠2,∠3=∠4,过C 点任画直线交1l 、2l 于E 、F ,试探究AE 、BF 、AB 三线段的数量关系,并证明.6.在ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小.(二)动态画图,由此及彼7.如图∠B=2∠C,AD为∠A的平分线交BC于D点(1) 求证:AB+BD=AC(2) 如图,若AD为∠A的外角平分线,问上结论是否成立,画图证明45.8.如图AC=BC,点O为AB的中点,AC⊥BC,∠MON=0(1) 求证CN+MN=AM(2) 若点M在AC上,点N在BC的延长线上,上结论是否成立,画图证明9.已知Rt △ABC ,∠A =090,AB =AC ,过点B 的直线BF 交直线AC 于D ,CE ⊥BE 于E(1) 当BE 平分∠ABC ,求证:AB +AD =BC ;(2) BE 转到△ABC 外,平分∠ABC 的一个外角,请画出图形,上述结果是否还成立,若成立请说明理由.(一)直角三角形全等问题10.如图,等腰△ABC ,∠ACB =090,D 为CB 延长线上一点,AF =AD ,且AE ⊥AD ,BE 交AC 的延长线于点P .(1) 求证:BP =PE ;(2) 若32 BC BD ,求PCAC 的值.(二)延长、截取法运用11.已知:CA =CB ,AD 平分∠CAB ,且AB =AC +CD ,求证:AC ⊥BC12.如图在平面直角坐标系中,A (0,4),B (4,0),E 点与A 点关于x 轴对称,B 点与F 点 关于y 轴对称,∠GEP =045,交直线AB 于G 点,交直线AF 于P 点,求证:EG 平分 ∠PGB .13.如图1,点A 、B 分别为x 轴、y 轴正半轴上一点,P 为第二象限一点,P A ⊥PB ,P A 交y 轴于点C ,且C 为P A 的中点.(1) 求证:∠PBO =∠P AO ;(2) 已知A (a ,0)、C (0,b ),若()02322=-+-b a ,求P 点的坐标; (3) 如图2,若P A =PB ,求BCOC 的值.第2讲 等腰三角形(二)1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定:(1)等腰三角形定义;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) 基础回顾例1 如图,△ABC 中,AB >AC ,AD 平分∠BAC ,EF ⊥AD 交BC 延长线于M .(1) 求证:∠BME =21(∠ACB -∠B ); (2) 若EM 平分AD ,求证:∠CAM =∠B .分析:(1)由AD 平分∠BAC ,设∠1=∠2=α,根据内角和定理及外角与内角关系定理,建立∠BME 、∠B 、∠ACB 与α之间的关系式,消去参数α“即得;(2)由EM 垂直平分AD ,得MA =MD ,∠MAD =∠MDA ,于是∠2+∠CAM =∠1+∠B ,得证.证明:点评:(1)问是“设参法”,先建立含有“参数”和相关量的关系式,再消去参数,便得所求证的关系式(2)问则是运用“等边对等角”的性质证明角相等,这种方法是证明角相等的又一方法,例2等腰△ABC 中,过其中一个顶点的直线把这个等腰三角形分成两个等腰三角形,求三内角的度数.分析:按直角、锐角、钝角三角形来分类讨论.解:点评:(1) 当面对的问题情形较多时,应注意分类讨论;(2) 当难以直接计算求角时,可考虑通过建立方程求解.1.若等腰三角形一腰上的高,等于腰长的一半,求这个等腰三角形的顶角.2.如图,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C的内角平分线交于P点.(1) 直接回答:当∠B与∠C满足什么条件时,点P在△ABC内,在△ABC外,在△ABC 的边上?(2) 若P在△ABC内,过P作PQ∥BC交AB、AC于Q、R.求证:QR=AQ+CR例3如图,△ABC中,AB=7,AC=11,点M是BC中点,AD平分∠BAC,MF∥AD 交AC于F.求FC的长.分析:“角平分线+平行线”易构造等腰三角形,对于中点的条件,类比“倍长中线”的方法,移动CF,构造等腰三角形,寻找CF、AB、AC之间的关系。

模型34 两圆中垂构造等腰三角形(解析版)

模型34 两圆中垂构造等腰三角形(解析版)

模型介绍【模型】已知点A,B是平面内两点,再找一点C,使得△ABC为等腰三角形.【结论】分类讨论:若AB=AC,则点C在以点A为圆心,线段AB的长为半径的圆上;若BA=BC,则点C在以点B为圆心,线段AB的长为半径的圆上;若CA=CB,则点C在线段AB的垂直平分线PQ上.以上简称“两圆一中垂”.“两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点M,N以及线段AB中点E(共除去5个点),需要注意细节.例题精讲【例1】.如图,平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,你能否将点C的坐标表示出来?解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即C1(0,0)、(4,0)(舍去);②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点(A点除外):(4﹣2,0)(4+2,0),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴,y轴各有一个有1个交点,分别为(2,0),(0,﹣2);将点C的坐标表示出来,如图:综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有5个.变式训练【变式1-1】.直线y=﹣x+2与x轴、y轴的正半轴分别交A、B两点,点P是直线y=﹣x+2上的一点,当△AOP为等腰三角形时,则点P的坐标为(0,2),(1,1),(2﹣,),(2+,﹣).解:依题意得A(2,0),B(0,2),△AOP为等腰三角形,有三种情况:当点O为顶点,OA为腰时;以OA为半径画弧交直线AB于点P,P(0,2)符合题意;当点A为顶点,OA为腰时,以点A为圆心,OA为半径画弧交直线AB于两点,过P点作x轴的垂线,由解直角三角形得点P坐标是(2﹣,),(2+,﹣);当OA为底时,作线段OA的中垂线交直线AB于P点,则P(1,1).故答案为:(0,2),(1,1),(2﹣,),(2+,﹣).【变式1-2】.如图,在矩形ABCD中,AB=5,BC=3,点P为边AB上一动点,连接CP,DP.当△CDP为等腰三角形时,AP的值为1或2.5或4.解:在矩形ABCD中,CD=AB=5,①当CD=CP=5时,过点P作PQ⊥CD于点Q,∴PQ=AD=3,CQ==4,∴BP=4,∴AP=1;②当CD=DP=5时,同①可得AP=4,③当DP=CP时,可知P为AB的中点,AP=2.5.故答案为:1或2.5或4.【例2】.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).变式训练【变式2-1】.直线y=﹣x+4与x轴、y轴的正半轴分别交A、B两点,点P是直线y=﹣x+4上的一点,当△AOP为等腰三角形时,则点P的坐标为(2,2),(0,4),(4﹣2,2),(4+2,﹣2)..解:依题意得A(4,0),B(0,4),∴OA=OB=4,∴△AOB为等腰直角三角形,有三种情况:(1)当点O为顶点,OA为腰时;以OA为半径画弧交直线AB于点B,B(2,2)符合题意;(2)当点A为顶点,OA为腰时,以点A为圆心,OA为半径画弧交直线AB于两点,过P点作x轴的垂线,由解直角三角形得点P坐标是(4﹣2,2),(4+2,﹣2);(2)当OA为底时,作线段OA的中垂线交直线AB于P点,则P(2,2).故本题答案为:(2,2),(0,4),(4﹣2,2),(4+2,﹣2).【变式2-2】.如图,平面直角坐标系中,直线y=﹣x+与直线y=x+交于点B,与x轴交于点A.(1)求点B的坐标.(2)若点C在x轴上,且△ABC是以AB为腰的等腰三角形,求点C的坐标.解:(1)∵直线y=﹣x+与直线y=x+交于点B,∴解得∴B(﹣1,3);(2)∵直线y=﹣x+与直线y=x+交于点B,与x轴交于点A.∴A(3,0),B(﹣1,3),∴AB==5,设点C(m,0),AC2=(3﹣m)2=m2﹣6m+9,BC2=(m+1)2+32=m2+2m+10,当AC=AB时,m2﹣6m+9=52,解得:m=8或﹣2;当AB=BC时,m2+2m+10=52,解得:m=﹣5或3(与点A重合,舍去);故点C的坐标为(﹣5,0),(﹣2,0),(8,0).1.如图,在平面直角坐标系中,已知点A(3,3),B(0,5),若在坐标轴上找一点C,使得△ABC是等腰三角形,则这样的点C有()A.4个B.5个C.6个D.7个解:由题意可知:以AC、AB为腰的三角形有3个;以AC、BC为腰的三角形有2个;以BC、AB为腰的三角形有2个.故选:D.2.如图,已知函数y=x+的图象与x轴交于点A,与y轴交于点B,点P是x轴上一点,若△PAB为等腰三角形,则点P的坐标不可能是()A.(﹣3﹣2,0)B.(3,0)C.(﹣1,0)D.(2,0)解:如下图所示:∵函数y=x+的图象与x轴交于点A,与y轴交于点B,在y=x+中,令y=0可得x=﹣3,令x=0可得y=,∴A(﹣3,0),B(0,),∴AB==2,(1)当AB=BP时,点P与P1重合,则P1(3,0);(2)当AP=BP时,点P与点P2重合,如图②所示:过AB的中点C作x轴的垂线,垂足为D,由题意知:CD2=AD•PD,∵点C的坐标为(﹣,),设点P的坐标为(a,0)∴()2=(﹣+3)(a+)解之得:a=﹣1即:点P的坐标为(﹣1,0)(3)当AB=AP时,点P3重合,则P3(﹣3﹣2,0)或(﹣3+2,0)综上所述:若△PAB为等腰三角形,则点P的坐标可能是(3,0)、(﹣1,0)、(﹣3﹣2,0),(﹣3+2,0)故选:D.3.在平面直角坐标系xOy中,点A的坐标为(0,2),点B的坐标为(,0),点C在x轴上.若△ABC为等腰三角形时,∠ABC=30°,则点C的坐标为()A.(﹣2,0),(,0),(﹣4,0)B.(﹣2,0),(,0),(4+,0)C.(﹣2,0),(,0),(,0)D.(﹣2,0),(1,0),(4﹣,0)解:∵点A的坐标为(0,2),点B的坐标为(,0),∴OA=2,OB=2,∴AB===4,tan∠ABO===,∴∠ABO=30°,∵∠ABC=30°,∴点C在点B的左边.①若AB=AC=4,又∵OA⊥BC,∴OC=OB=2,∴点C1坐标为(﹣,0);②若BC=AB=4,又∵点B的坐标为(,0),∴点C2坐标为(2﹣4,0);③若CA=CB,则C在线段AB的垂直平分线上.设OC=x,则AC=BC=OB﹣OC=2﹣x.在直角△OAC中,∵∠AOC=90°,∴OA2+OC2=AC2,即22+x2=(2﹣x)2,解得x=.∴点C3坐标为(,0).综上所述:点C坐标为(﹣2,0)或(2﹣4,0)或(,0).故选:A.4.已知平面直角坐标系中有A(2,2)、B(4,0)两点,若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5个B.6个C.7个D.8个解:如图:当AB=AC时,以点A为圆心,AB长为半径画弧,交y轴于点C1,C2,当BA=BC时,以点B为圆心,AB长为半径画弧,交x轴于点C3,C4,当CA=CB时,作AB的垂直平分线,交x轴于点C5,交y轴于点C6,∵点A,B,C2三个点在同一条直线上,∴满足条件的点C的个数是5,故选:A.5.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1D.1﹣或1+解:令x=0,则y=﹣3,所以,点C的坐标为(0,﹣3),∵点D的坐标为(0,﹣1),∴线段CD中点的纵坐标为×(﹣1﹣3)=﹣2,∵△PCD是以CD为底边的等腰三角形,∴点P的纵坐标为﹣2,∴x2﹣2x﹣3=﹣2,解得x1=1﹣,x2=1+,∵点P在第四象限,∴点P的横坐标为1+.故选:A.6.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.7.如图,已知点A,B的坐标分别为(2,0)和(0,3),在坐标轴上找一点C,使△ABC 是等腰三角形,则符合条件的C点共有8个.解:如图,当AB=AC时,以点A为圆心,AB为半径画圆,与坐标轴有三个交点(B点除外),当BA=BC时,以点B为圆心,AB为半径画圆,与坐标轴有三个交点(A点除外),当CA=CB时,画AB的垂直平分线与坐标轴有2个交点,综上所述:符合条件的点C的个数有8个,故答案为:8.8.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有3个.解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点M的坐标为(﹣,0),点N的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故答案为:3.9.在平面直角坐标系中,已知A(5,0),B(0,12),且AB=13,在x轴上取一点P,使得△PAB是以AB为腰的等腰三角形,请写出所有符合条件的点P的坐标(﹣5,0),(﹣8,0),(18,0).解:如图,①若AB=BP,则OA=OP=5,则点P1(﹣5,0);②若AB=AP,则点P2(﹣8,0);点P3(18,0);∴符合条件的点P的坐标分别为:(﹣5,0),(﹣8,0),(18,0).故答案为:(﹣5,0),(﹣8,0),(18,0).10.如图,在平面直角坐标系xOy中,点A在第一象限内,∠AOB=50°,AB⊥x轴于B,点C在y轴正半轴上运动,当△OAC为等腰三角形时,顶角的度数是40°或100°.解:分三种情况:当OA=OC时,∠AOC=90°﹣∠AOB=40°,当AO=AC时,∠CAO=180°﹣2×40°=100°,当CO=CA时,∠ACO=180°﹣2×40°=100°,综上所述,当△OAC为等腰三角形时,顶角的度数为40°或100°,故答案为:40°或100°.11.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣7x+12=0的两根.(1)求直线AB的函数表达式;(2)若在y轴上取一点P,使△ABP是等腰三角形,则请直接写出满足条件的所有点P 的坐标.解:(1)由x2﹣7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(3,0)B(0,4)设直线AB的函数表达式y=kx+b,则∴∴(2)满足条件的P的坐标:(0,9)(0,)(0,﹣1)(0,﹣4)因为OA=3,OB=4所以AB=5,以B为圆心,以AB为半径作弧,交y轴与两点,这两点的坐标分别是(0,9)、,﹣1)这两点与A、B都构成的△ABP是等腰三角形.根据轴对称的意义,当P(0,﹣4)时,△ABP是等腰三角形.当点P在AB的垂直平分线与y轴的交点上时,设P(0,m)则(4﹣m)2=m2+32解得,m=所以点P的坐标为:(0,9)(0,)(0,﹣1)(0,﹣4)12.如图1,在平面直角坐标系中,点A、点B的坐标分别为(4,0)、(0,3).(1)求AB的长度.(2)如图2,若以AB为边在第一象限内作正方形ABCD,求点C的坐标.(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5,(2)如图,过点C作CE⊥OB于E,∴∠CBE+∠BCE=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠CBE+∠ABO=90°,∴∠ABO=∠BCE,在△AOB和△BEC中,,∴△AOB≌△BEC,∴BE=OA=4,CE=OB=3,∴OE=OB+BE=7,∴C(3,7);(3)设P(a,0),∵A(4,0),B(0,3),∴PA=|a﹣4|,PB2=a2+9,AB=5,∵△ABP是等腰三角形,∴①当PA=AB时,∴|a﹣4|=5,∴a=﹣1或9,∴P(﹣1,0)或(9,0),②当PA=PB时,∴(a﹣4)2=a2+9,∴a=,∴P(,0),③当PB=AB时,∴a2+9=25,∴a=4(舍)或a=﹣4,∴P(﹣4,0).即:满足条件的点P的坐标为(﹣1,0)、(﹣4,0)、(9,0)、(,0).13.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P 的坐标.解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)14.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3.(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,M(1,4)设直线MB的解析式为y=kx+n,则有解得∴直线MB的解析式为y=﹣2+6∵PQ⊥x轴,OQ=m,∴点P的坐标为(m,﹣2m+6)S四边形ACPQ=S△AOC+S梯形PQOC=AO•CO+(PQ+CO)•OQ=×1×3+(﹣2m+6+3)•m=﹣m2+m+(1≤m≤3).(3)CM=,CN=,MN=①当CM=NC时,,解得x1=,x2=1(舍去)此时N(,)②当CM=MN时,,解得x1=1+,x2=1﹣(舍去),此时N(1+,4﹣)③当CN=MN时,=解得x=2,此时N(2,2)综上所述:线段BM上存在点N(,),(2,2),(1+,4﹣)使△NMC 为等腰三角形.15.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.(1)求点B的坐标和k的值;(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵直线y=kx﹣4与x轴、y轴分别交于B、C两点,∴点C(0,﹣4),∴OC=4,∵=,∴OB=3,∴点B(3,0),∴3k﹣4=0,解得:k=;(2)设A的纵坐标为h,=OB•h=6,且OB=3,∵S△AOB∴h=4,∵直线BC的解析式为:y=x﹣4,∴当y=4时,4=x﹣4,解得:x=6,∴点A(6,4),∴当点A运动到(6,4)时,△AOB的面积是6;(3)存在.∵A(6,4),∴OA==2,①若OP=OA=2,则点P1(2,0),P2(﹣2,0);②若OA=AP,过点A作AM⊥x轴于点M,则PM=OM=6,∴P3(12,0);③若OP=AP,过点P作PN⊥OA于点N,则ON=AN=OA=,∵∠ONP=∠OMA,∠PON=∠AOM,∴△OPN∽△OAM,∴,∴,解得:OP=,∴P4(,0);综上所述:点P1(2,0),P2(﹣2,0),P3(12,0),P4(,0).16.抛物线y=ax2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C (0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,则=,解得y=﹣,当DA=DP时,则=,解得y=﹣4±2,当AD=AP时,则=,解得,y=±4(舍去﹣4),由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+2)或(1,4).。

专题复习6 在坐标系中构造等腰三角形

专题复习6  在坐标系中构造等腰三角形

在坐标系中构造等腰三角形一、 知识复习:1._____________________的三角形是等腰三角形。

2.等腰三角形的性质:①_____________________________________②_____________________________________③_____________________________________二、 基础准备(一)平面内构造等腰三角形1. 如图1,在射线AC 上寻找一点P ,使得△ABP 是等腰三角形,你能找到几个P 点?2. 如图2,在直线AC 上寻找一点P ,使得△ABP 是等腰三角形,你能找到几个P 点?3. 如图3,已知线段AB ,在平面内找出一点P ,使得△PAB 是等腰直角三角形,找出所有点P.(二)平面直角坐标系中构造等腰三角形1.已知O (0,0)和A(1,2),在坐标轴上求点B,使△OAB 为等腰三角形。

2.O (0,2)和A(2,0): 在坐标轴上求点B,使△OAB 为等腰三角形3. A(-1,1)和B(3,4): 在坐标轴上求点C,使△ABC 为等腰三角形三、例题1. 如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:_____ ___; 结论二:______ ___; 结论三: ________.(2)若∠B=45°,BC=2,当点D 在BC 上运动时(点D 不与B 、C 重合),若△ADE 是等腰三角形,求此时BD 的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)图1 C B A 图2 C B A 图3 B A2.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)当t为何值时,△MNA是一个等腰三角形?3. 如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.四、练习1.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.7个 B.8个 C.9个 D.10个2. 如图,⊙O的半径为4cm,AB是⊙O的直径,BC切⊙O于点B,且BC=4cm,当点P在⊙O上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.C B A 4.已知等边三角形ABC ,如图,请在平面上找一点P ,使△PAB 、△PBC 、△PAC 、同时为等腰三角形,有多少个不同的结果?5. 已知正比例函数图象(记为直线l 1)经过(1,-1)点,现将它沿着y 轴的正方向向上平移1个单位得到直线l 2,(1)求直线l 2的表达式;(2)若直线l 2与x 轴、y 轴的交点分别为A 点、B 点,问:在x 轴上是否存在点P ,使得以P 、A 、B 为顶点的三角形为等腰三角形?若存在,请写出它的坐标;若不存在,说明理由。

解题技巧专题:构造等腰三角形的技巧压轴题三种模型全攻略(学生版)

解题技巧专题:构造等腰三角形的技巧压轴题三种模型全攻略(学生版)

解题技巧专题:构造等腰三角形的技巧压轴题三种模型全攻略【考点导航】目录【典型例题】1【类型一利用平行线+角平分线构造新等腰三角形】1【类型二过腰或底作平行线构造新等腰(边)三角形】13【类型三利用倍角关系构造新等腰三角形】22【典型例题】【类型一利用平行线+角平分线构造新等腰三角形】1已知,如图△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.(1)如图1若AB=AC,图中有个等腰三角形,且EF与BE、CF的数量关系是.(2)如图2若AB≠AC,其他条件不变,(1)问中EF与BE、CF间的关系还成立吗?请说明理由.(3)如图3在△ABC中,若AB≠AC,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.请直接写出EF与BE、CF间的数量关系是.【变式训练】1在△ABC中,AD是∠BAC的角平分线,E是BC的中点,过E作EF∥AD交CA延长线于P,交AB于F,求证:(1)△APF是等腰三角形;(2)BF=CP(3)若AB=12,AC=8,试求出PA的长.2已知:如图1,ΔABC中,∠ABC与∠ACB的角平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.(1)求证:BE+CF=EF;(2)若将已知条件中的“∠ACB的角平分线”改为“∠ACB的外角平分线”,其他条件不变(如图2)(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请写出BE,CF,EF之间的关系.(不需证明)3(2023春·江西吉安·八年级统考期末)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.已知△ABC.(1)观察发现如图①,若点D是∠ABC和∠ACB的角平分线的交点,过点D作EF∥BC分别交AB,AC于E,F.填空:EF与BE、CF的数量关系是.请说明理由(2)猜想论证如图②,若点D是外角∠CBE和∠BCF的角平分线的交点,其他条件不变,填:EF与BE、CF的数量关系是.请说明理由(3)类比探究如图③,若点D是∠ABC和外角∠ACG的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.4解答(1)问题背景如图(1),已知AB∥CD,AD平分∠BAC,求证:AC=CD.(2)尝试应用:如图(2),在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的数量关系,并证明你的结论.(3)拓展创新:如图(3),在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,请直接写出你的结论.5【问题背景】在学习了等腰三角形等有关知识后,数学活动小组发现:当角平分线遇上平行线时一般可得等腰三角形.如图1,P为∠AOB的角平分线OC上一点,常过点P作PD∥OB交OA于点D,易得△POD为等腰三角形.(1)【基本运用】如图2,把长方形纸片ABCD沿对角线AC折叠,使点B落在点B 处,则重合部分△ACE是等腰三角形.请将以下过程或理由补充完整:∵在长方形ABCD中,DC∥AB,∴∠ACD=∠BAC,由折叠性质可得:,∴∠ACD=∠B AC,∴AE=CE,(依据是:)∴△ACE是等腰三角形;(2)【类比探究】如图3,△ABC中,内角∠ABC与外角∠ACG的角平分线交于点O,过点O作DE∥BC分别交AB、AC于点D、E,试探究线段BD、DE、CE之间的数量关系并说明理由;(3)【拓展提升】如图4,四边形ABCD中,AD∥BC,E为CD边的中点,AE平分∠BAD,连接BE,求证:AE⊥BE.【类型二过腰或底作平行线构造新等腰(边)三角形】方法点拨:在等腰三角形内部或外部作任意一边的平行线均可构造出新的等腰三角形。

第十二讲 等腰三角形的判定(含答案)-

第十二讲 等腰三角形的判定(含答案)-

第十二讲 等腰三角形的判定由于等腰三角形有丰富的性质,这些性质为我们解几何题提供了新的理论依据,所以寻找发现等腰三角形是解一些几何题的关键,判定一个三角形为等腰三角形的基本方法是:从定义入手,证明一个三角形的两条边相等;从角入手,证明一个三角形的两个角相等, 实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有: 1.“角平分线+平行线”构造等腰三角形; 2.“角平分线+垂线”构造等腰三角形; 3.用“垂直平分线”构造等腰三角形;4.用“三角形中角的2倍关系”构造等腰三角形.例题求解【例1】 如图,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5,那么这个六边形的周长是 cm .(“祖冲之杯”邀请赛试题)思路点拨 设法将六边形的问题转化为三角形或四边形的问题加以解决,六边形的外角都为60°,利用60°构造等边三角形是解本例的关键.5991注 证明线段相等是最基本的几何问题,目前常用证法有: (1)若两线段属于两个三角形,则考虑证对应的三角形全等; (2)若两线段是同一个三角形两边,则考虑用等角对等边证明; (3)寻找中间线段,通过等量代换证明.类似的,我们可以对证明角相等、等边三角形的判定作归纳总结.不同形状的几何图形之间可互相转化,向外补形与对内分割是基本的两种转化方式. 【例2】 如图,已知Rt △ABC 中,∠C=90°,∠A=30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个。

(第11届江苏省竞赛题)思路点拨 AB 既可作等腰三角形PAB 的腰,也可作为等腰三角形PAB 的底,故要思考全面,才能正确地得出符合条件的P 点的个数.BCA【例3】 如图,△ABC 中,AD ⊥BC 于D ,∠B=2∠C ,求证:AB 十BD =CD .(天津市竞赛题)BCD A思路点拨 如何利用条件∠B=2∠C?又怎样得到AB+BD?不同的思考方向,会找到解题的不同方法.【例4】 如图甲,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F .(2003年荆门市中考题) (1)求证:AN=BM ;(2)求证:△CEF 是等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图乙中补出符合要求的图形,并判断第(1)、(2)两小属结论是否仍然成立(不要求证明).BC A甲NM FE BCA乙NM思路点拨 图甲中有多对全等三角形,这是解(1)、(2)问的基础. 注 若仅将题中的条件∠A =30°改为∠A=45°,则符合条件的点有几个?若将题中的条件∠A=30°,改为∠A ≠30°,∠A ≠45°,则符合条件的P 点有几个?请读者思考. 分折法(执果溯因),综合法(由因导果)是两种最基本的分析方法. 处理题设条件中的“两倍角”的基本途径是:(1) 向外构造等腰三角形; (2)对内作角平分线.【例5】 如图,在五边形ABCDE 中,∠B =∠E ,∠C=∠D ,BC=DE ,M 为CD 中点,求证:AM ⊥CD . (武汉市选拔赛试题)思路点拨 证明∠AMC=90°或应用等腰三角形“三线合一”的性质,通过作辅助线将五边形问题恰当地转化为三角形问题是解本例的关键.BC DAME学历训练1.如图,在△ABC 中,∠B 、∠C 的平分线相交于O 点.作MN ∥BC ,EF ∥AB ,GH ∥AC ,BC =a ,AC=b ,AB =c ,则△GMO 周长+△ENO 的周长-△FHO 的周长 . 2.如图,△ABC 中,AB=AC ,∠B=36°,D 、E 是BC 上两点,使∠ADE=∠AED=2∠BAD ,则图中等腰三角形共有 个.BCA G HN M FOE B C D AE B CD A(第1题) (第2题) (第3题)3.如图,△ABC 中,AD 平分∠BAC ,AB+BD=AC ,则∠D :∠C 的值= . (“五羊杯”竞赛题) 4.如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论: ①AC ⊥BD ;②BC=DE ;③∠DBC=21∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号 .(把你认为正确结论的序号都填上) (2002午天津市中考题)5.如图,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的中垂线,E 、M 在BC 上,则∠EAM 等于( )A .58°B .32°C .36°D .34°B C DAEB CA NMFEB A(第4题) (第5题) (第6题) 6.如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )A .AC>2AB B .AC =2AB C .AC ≤2ABD .AC<2AB. (山东省竞赛题) 7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150°C . 120°或150° D .30°或120°或150° (“希望杯”邀请赛试题)8.在锐角△ABC 中,三个内角的度数都是质数,则这样的三角形( ) A .只有一个且为等腰三角形; B .至少有两个且都为等腰三角形C .只有一个但不是等腰三角形;D .至少有两个,其中有非等腰三角形 9.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点. (1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△OMN 的形状,并证明你的结论. (2003年广东省中考题)BC A NMO10.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF =EF .BCD A FE11.如图,已知等边三角形ABC ,在AB 上取点D ,在AC 上取点E ,使得AD=AE ,作等边三角形PCD ,QAE 和RAB ,求证:P 、Q 、R 是等边三角形的三个顶点.BCD ARQPE12.在△ABC 中,AB=AC ,高线AD=21BC ,AE 为∠BAC 的平分线,则∠CAD 的度数为 . (2003年北京市竞赛题)13.如图,△ABC 中,AB=AC ,BC=BD=ED=EA ,则∠A= .BCDAEBCDAFEBC DAE(第13题) (第14题) (第17题) 14.如图,四边形ABCD 中,AE 、AF 分别是BC ,CD 的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC= ,∠ADC= . (天津市竞赛题)15.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为 度. (第15届江苏省竞赛题)16.在等边△ABC 所在的平面内求一点P ,使△PAB 、△PBC 、△PAC 都是等腰三角形,具有这样性质的点P 有( )A .1个B .4个C .7个D .10个17.如图,在五边形ABCDE 中,∠A=∠B=120°,EA=AB=BC=21DC=21DE ,则∠D =( ) A .30° B .450° C . 60° D .67.5°18.如图,在△ABC 中,∠BAC=120°,P 是△ABC 内一点,则( ) A .PA+PB+PC<AB+AC B . PA+PB+PC>AB+ACC .PA+PB+PC=AB+ACD .PA+PB+PC 与AB+AC 的大小关系不确定,与P 点位置有关BCA P19.如图,在△ABC 内,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线.求证:BQ+AQ=AB+BP . (2002年全国初中数学竞赛矗)BCAQP20.如图,在△ABC 中,AB=AC ,∠ABC>60°,∠ABD=60°,且∠ADB=90°一21∠BDC ,求证:AC=BD+DC . (天津市竞赛题)BCDA21.如图,在△ABC 中,∠BAC=90°,AB =AC ,D 是△ABC 内一点,且∠DAC=∠DCA=15°,求证:BD =BA .BCDA22.在平面内确定四点,连接每两点,使任意三点构成等腰三角形(包括等边三角形),且每两点之间函线段长只有两个数值,则这四点的取法有多少种?画图说明.(2003年潍坊市中考题)23.(1)如图,四边形ABCD 中,AB=AD ,∠ABD=60°,∠BCD=120°,证明:BC+DC=AC .(2) 如图,四边形ABCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°,证明:PA+PD+PC ≥BD . (第15届江苏省竞赛题)(1)B C DA(2)BC DAP24.如图,等边三角形ABD 和等边三角形CBDD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a . (1)E 、F 移动时,△BEF 的形状如何? (2)求△BEF 面积的最小值.BCD AFE。

初二奥数之等腰三角形的判定

初二奥数之等腰三角形的判定

初二奥数之等腰三角形的判定专题17 等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等; ⑵从角入手,证明一个三角形的两个角相等. 2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明; ⑵当所证的两条线段位于同一个三角形,通过等角对等边证明; ⑶寻找某条线段,证明所证的两条线段都与它相等. 善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.ABD MFCABC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .ABCMD EEA BDCFBCADB CA D图1O BCA D图2E能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b a c a c =+-,44422c a b a b =+-,则△ABC ( ) A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )A .300B .300或1500C .1200或1500D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)ACDB B ′A ′(第2题)AB CDEF (第3题)(第4题)9915第5题图 第8题图 第9题图9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .BCABACD EBCADFG E B ACDAC ENMB D⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)B 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A BDFE C图1A B D FEC图2A ′E ′D ′ABC D(第1题)(第2题)ABD E CA BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 87.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)ABCPACBB ′图1图2ABPQC10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)11.如图,在平面直角坐标系中,O 为坐标原点,直线l :12y x m =-+与x 轴、y 轴的正半轴分别相交于点A 、B ,过点C (-4,-4)作平行于y 轴的直线交AB 于点D ,CD =10.⑴求直线l 的解析式;⑵求证:△ABC 是等腰直角三角形;⑶将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与x ,y 轴分别相交于点A ′、B ′,在直线CD 上存在点P ,使得△A ′B ′P 是等腰直角三角形,请直接写出所有符合条件的点P 的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4).ABD MCFE BACO Dyx⑴ 求B 点坐标; ⑵ 如图2,若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD =900,连接OD ,求∠AOD 度数;⑶ 如图3,过点A 作y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连接FM ,等式AM FMOF=1是否成立?若成立,请证明;若不成立,说明理由.B AOxyB AOxyC DB AO xyEFGH M 图1 图2图3专题17 等腰三角形的判定例1 延长MF ,BA 交于E ,延长FM 至点P ,使MP =MF ,连BP ,则△BMP ≌△CMF ,∴BP =CF .∵AD 平分∠BAC ,AD ∥FM ,∠BAD =∠DAC =∠MFC =∠AFE =∠E =∠P ,∴AE =AF ,BE =BP ,即AB +AE =AB +AF =AB +AC -CF =CF ,∴CF =12(AB +AC )= 12(7+11)=9.例 2 D例 3 提示:△EMC 为等腰直角三角形,连AM ,易证:△ADE ≌△BAC .∴AD =AB , 又∠DAB =90°.又∵M 为BD 中点,∴AM ⊥DB 且DM =BM =AM . 又∵∠MDE =∠MAC =105°,∴△EDM ≌△CAM . ∴EM =MC ,∠DME =∠AMC , ∴∠DME +∠EMA =∠AMC +∠EMA =90°. ∴△EMC 为等腰直角三角形.例4延长AD 至G ,使DG =AD ,连接BG . 由△ADC ≌△GDB ,得AC =BG ,AC ∥BG . ∵BE =AC ,∴BE =BG ,得∠BED =∠BGD , ∴∠F AE =∠BGD =∠BED =∠AEF , 故AF =EF .例5 提示:结合图1,给出解答过程.由图形的轴对称性知:△ABO ≌△ACO ,∴∠BAO =∠CAO =10°,∴∠ABO =∠ACO =20°,∴∠AOB =∠AOC =150°.又∵BO =BC =CO = AD ,∴△ACD ≌△CAO ,∴∠AOC =∠CDA =150°,故∠BDC =30°.A 级1.90°或75°或15°2.72°3.24.375.D6.D 提示:将三式相加7.D8.C9.⑴先证△ACD ≌△CBF ,∴∠CAD =∠BCF .又∵∠CAD +∠CDG =∠BCF +∠CDG =90°, ∴∠CGD =90°,∴AD ⊥CF . ⑵△ACF 为等腰三角形.10.提示:延长DB 至E ,使BE =AB ,连结AE ,证明∠E =∠C ,AC =AE . 11. 提示:证明△DCA ≌△ECB 、△DCM ≌△ECN ,∠NCM =60°. 12. ⑴提示:先证明∠CEF =∠CFE .⑵作EG ⊥AC 于G ,证明△CEG ≌△BE ´D ´,可得CE = BE ´,又CF =CE ,BE ´=CF .B 级1.2:12.110°3.104.D5.C 提示:在五边形内作等边三角形ABF ,则E 、F 、C 在一条直线上.6.B7. 提示:⑴23 ⑵ 在BB ´上取点P ,使∠BPC =120°,再在PB ´上取点E 使PE =PC ,连结CE . 则由△PCE 为等边三角形,可得:PC =CE ,∠PCE =60°,∠CEB ´=120°∵△ACB ´为正三角形,∴可证:△ACP ≌△B ´CE . ∴∠APC =∠B ´EC =120°,P A =EB ´.ABCGDEF∴∠APC =∠BPC =∠CP A =120°,∴P 为△ABC 的费马点.∴BB ´过△ABC 的P ,且BB ´=EB ´+PB +PE =P A +PB +PC .8. 提示:延长AB 至M ,使BM =BP ,连结PM ,则AB +BP =AM ,可证明BQ =QC .∴AQ +QB =AQ +QC =AC ,又由△AMP ≌△ACP 得AM =AC ,故AB +BP =AQ +BQ .9. 提示:延长FM 至P ,使PM =FM ,连结BP ,则△BMP ≌△CMF ,AE =AF ,BE =BP .10. 提示:当D 为BC 的端点,显见△AED 是等边三角形;当D 为BC 边的中点,取AC 的中点F ,连接DF ,易证△CDF 为等边三角形,又△ADF ≌△EDC ,故△ADE 为等边三角形.猜测:当D 为BC 上任意点时,△ADE 也为等边三角形.11.(1)142y x =-+; (2)过点C 作CH ⊥y 轴于H ,证明△AOB ≌△BHC 即可;(3)符合条件的P 点共有5个,分别为()()()()84,12,4,,4,8,4,4,4,43⎛⎫-------- ⎪⎝⎭. 12.提示:(1)B (8,0);(2)如图a ,过A 作AS ⊥OB 于S ,过D 作DT ⊥x 轴于T .∵△OAB 为等腰直角三角形,∴OS =AS =BS ,再由△ASC ≌△CTD ,可得:AS =CT ,SC =TD .∴CT =AS =OS ,∴OT =CS =TD .∴∠TOD =45°,则∠AOD =90°;(3)等式成立,理由如下:如图b ,在AM 上截取AS =OF ,连ES ,可证△EAS ≌△EOF ,可得:ES =EF ,∠AES =∠OEF∴∠SEF =∠AEO =90°,∴∠FEM =∠SEM =45°.又∵EM =EM ,∴△EFM ≌△ESM ,∴FM =SM ,∴AM =AS +SM =OF +FM ,∴1AM FM OF-=. x y T S A B O D C x y C S F A M H O G E 图a 图b。

构造等腰三角形解题的常见途径

构造等腰三角形解题的常见途径

构造等腰三角形解题的常见途径作者:陈独明来源:《初中生(二年级)》2007年第07期等腰三角形是研究几何图形的基础.在许多几何问题中,需要构造等腰三角形才能使问题获解.如何构造等腰三角形呢?一般有以下几种途径.一、利用角平分线+平行线,构造等腰三角形当一个三角形出现角平分线和平行线时,我们可以构造等腰三角形.图1①中,若AD平分∠BAC,AD∥EC,则△ACE是等腰三角形;图1②中,若AD平分∠BAC,DE∥AC,则△ADE是等腰三角形;图1③中,若AD平分∠BAC,CE∥AB,则△ACE是等腰三角形;图1④中,若AD平分∠BAC,EF∥AD,则△AGE是等腰三角形.例1 如图2,△ABC中,AB=AC,在AC上取点P,过点P作EF⊥BC,交BA的延长线于点E,垂足为F. 求证:AE=AP.分析:要证AE=AP,可寻找一条角平分线与EF平行,由于AB=AC,作AD平分∠BAC,则AD⊥BC.而EF⊥BC,所以AD∥EF,△AEP是等腰三角形,故AE=AP.例2 如图3,在△ABC中,∠BAC、∠BCA的平分线相交于点O,过点O作DE∥AC,分别交AB、BC于点D、E.试猜想线段AD、CE、DE的数量关系,并说明你的猜想理由.分析:猜想AD+CE=DE.理由如下:由于OA、OC分别是∠BAC、∠BCA的平分线,DE∥AC,所以△ADO和△CEO 均是等腰三角形,则DO=DA,EC=EO,故AD+CE=DE.二、利用角平分线+垂线,构造等腰三角形当一个三角形中出现角平分线和垂线时,就可构造等腰三角形. 如图4,若AD平分∠BAC,AD⊥DC,则△AEC是等腰三角形.例4 如图5,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于D.求证:BF=2CD.分析:BF平分∠ABC,CD⊥BD,延长线BA、CD交于点E,于是△BCE是等腰三角形,并有ED=CD.余下来的问题只需证明BF=CE.事实上,由∠BAC=90°,CD⊥BD,∠AFB=∠DFC,得∠ABF=∠DCF,而AB=AC,所以△ABF≌△ACE. 因此,BF=CE,BF=2CD三、转化倍角,构造等腰三角形当一个三角形中出现一个角是另一个角的2倍时,可以通过转化倍角寻找到等腰三角形.如图6①中,若∠ABC=2∠C,作BD平分∠ABC,则△DBC是等腰三角形;如图6②中,若∠ABC=2∠C,延长CB到D,使BD=BA,连结AD,则△ADC是等腰三角形;如图6③中,若∠B=2∠ACB,以C为角的顶点,CA为角的一边,在三角形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC是等腰三角形.例4 如图7,在△ABC中,∠ACB=2∠B,BC=2AC. 求证:∠A=90°.分析:由于条件中有两个2倍关系,而结论与角有关,首先考虑对∠ACB=2∠B进行处理,即作CD平分∠ACB交AB于D,过D作DE⊥BC于E,由∠ACB=2∠B知∠B=∠BCD,即△DBC是等腰三角形,而DE⊥BC,所以BC=2CE.又BC=2AC,可得AC=EC,易证得△ACD≌△ECD,所以∠A=∠DEC=90“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

利用平行线构造等腰三角形

利用平行线构造等腰三角形

利用平行线构造等腰三角形知识纵横:等腰三角形有丰富的性质,这些性质为我们解几何题提供了新的理论依据,所以寻找发现等腰三角形是解一些几何题的关键。

常用构造等腰三角形方法有:①.“角平分线+ 平行线”②.“角平分线+垂线”③.“垂直平分线”④.“三角形中角的2倍关系”一.作腰的平行线构造等腰三角形基本图形:如图,若AB=AC,DE//AC ,则BDE为等腰三角形例1.如图,△ABC中,AB=AC,点D为AB上一点,延长AC至E,使CE=BD,连接DE交BC于F,求证:DF=EF练习1.如图,等边三角形ABC中,AD=CE,DE交AC于点F,求证DF=EF二.作底边(或高)的平行线构造等腰三角形例2.如图,在△ABC中,AB=AC,点E在AC上,点D在BA的延长线上,且AD=AE,连接DE,求证:DE⊥BC练习2.如图,已知:BAC CBF ∠∠与的平分线相交于P ,联结CP ,分别过点B 、C 作PC 、PB 的垂线交AC 、AB 的延长线于E 、F ,G 、H 为垂足。

求证:BF=CE三.利用“角平分线+平行线”构造等腰三角形例3. 如图,BD 平分∠ABC 交AC 于点D ,点E 为CD 上一点,且AD=DE ,EF//BC 交BD 于点F ,求证:AB=EF 。

练习3..如图,△ABC 中,CE 为△ABC 的角平分线,交AB 于点E ,过点E 作EF//BC 交AC 于点O ,交△ABC 外角∠ACD 的平分线于点F ,求证:OE =OF练习4. 如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E ,求证:AE=BE .四.等腰直角三角形中的双垂线构造基本图形例4,如图,在四边形ABCE中,AB=BC,AB⊥BC,CE⊥AE,BD⊥AE于点D,求证:BD - CE=AD练习5.如图,在△ABC中,AB=AC,∠BAC=90°,D为BC上一点,过点D作DE⊥AD,且DE=AD,连接BE,求∠DBE的度数。

第4讲 等腰三角形

第4讲  等腰三角形

第4讲 等腰三角形考点·方法·破译 1.等腰三角形及其性质有两条边相等的三角形叫做等腰三角形,等腰三角形是轴对称图形,因此它的性质有:⑴等腰三角形的两个底角相等(即等边对等角);⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(即等腰三角形三线合一)2.等腰三角形的判定证明一个三角形是等腰三角形的基本方法是:⑴从定义入手,证明一个三角形有两条边相等;⑵从角入手,证明一个三角形有两个角相等,依据是等腰三角形判定定理;等角对等边.3.构造等腰三角形的常用方法⑴角平分线+平行线=等腰三角形 ⑵角平分线+垂线(或高)=等腰三角形 ⑶线段中垂线构造等腰三角形 ⑷将2倍角转化为相等角构造等腰三角形21321(4)(3)(2)(1)经典·考题·赏析【例1】 等腰三角形一腰上的高与另一腰所成的夹角为400,则这个等腰三角形的底角为________________.【解法指导】 若问题中涉及到三角形的高,则要分别考虑三角形的高是在三角形的外,三角形内的情况.解:如图1,当一腰上的高在三角形内时,∠ACD =400,∴∠A =500 ∴∠B =∠ACB =如图2,当一腰上的高在三角形外时,∠ACD =400,∠DAC =500∴∠DAC =∠B +∠ACB =2∠B ∴∠B =∠ACB =250,故填650或250.C AD BACD B图2图1【变式题组】01.(呼和浩特)在等腰⊿ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或1002.(黄冈)在⊿ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为500,则∠B =___________度.03.(襄樊)在⊿ABC 中,AB =AC =12cm ,BC =6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t ,那么当t =_________秒时,过D 、P 两点的直线将⊿ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.【例2】 如图,在⊿ABC 中,AB =AC ,点D 在AC 上,AD =BD =BC ,求∠A 的度数.【解法指导】 图中的等腰三角形多,可利用等腰三角形的性质,用方程的思想求角的度数.解:设∠A =x ,CABD∵BD=AD,∴∠A=∠ABD=x,∴∠BDC=∠A+∠ABD=2x,∵BD=BC,∴∠C=∠BDC=2x,∵AB=AC,∴∠ C=∠ABC=2x,∵在△ABC中, ∠A+∠ABC+∠ACB=180°∴x+2x+2x=180°,x=36°,∴∠A=36°.【变式题组】01.如图,在⊿ABC中,AB=AC,BD=BC,AD=DE=EB,求∠A的度数.02.如图,在⊿ABC中,AB=AC,BC=BD= ED=EA,求∠A的大小.【例3】已知坐标原点O和点A(2,-2),B是坐标轴上的一点.若⊿AOB是等腰三角形,则这样的点B一共有()个A.4 B.5 C.6 D.8A BCDPE【解法指导】 ⊿AOB 是等腰三角形,但不能确定哪条边是等腰三角形的底,因而要分三种情况进行说明①AO =OB ,②OA =AB ,③BA =BO ,又∵B 是坐标轴上的点.要考虑x 轴与y 轴两种情况.解:①如图1,当OA 是底边时,B 在OA 的中垂线上,又B 在坐标轴上,因而B 是OA 中垂线与坐标轴的交点;②如图2,当OA 为腰时,若O 为顶点,则B 在以O 为圆心,OA 为半径的圆上,又B 在坐标轴上,因而B 是圆与坐标轴的交点;③如图3,当OA 为腰时,若A 为顶点,则B 在以A 为圆心,OA 为半径的圆上,又B 在坐标轴上,因而B 是圆与坐标轴的交点.故选D .【变式题组】01.(海南竞赛试题)在平面直角坐标系xOy 内,已知A (3,-3),点P 是y 轴上一点,则使⊿AOP 为等腰三角形的点P 共有( )A .2个B .3个C .4个D .5个02.如图,在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(0,),点C在坐标平面内.若以A 、B 、C 为顶点构成的三角形是等腰三角形,且底角为30度,则满足条件的点C 有_________个.图3图2图1第2题图第3题图第4题图03.(南昌)如图,已知长方形纸片ABCD ,点E 是AB 的中点,点G 是BC 上一点,∠BEG>600,现沿直线EG 将纸片折叠,使点B 落在纸片中的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A .4B .3C .2D .104.(济南)如图所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )A .2个B .3个C .4个D .5个【例4】 (枣庄)两个全等的含30°,60°角的三角板ADE 和三角板ABC 如图所示放置,E ,A ,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC .试判断△EMC 的形状,并说明理由.【解法指导】 判断⊿MEC 为等腰直角三角形,M 为直角顶点,即想证∠EMC =900,而⊿ABD 为等腰三角形,M 是BD 的中点,若连接AM 则有∠AMD =900,因而只需证∠DME =∠AMC ,利用全等三角形即可.解:EMC △的形状是等腰直角三角形,理由如下: 连接AM ,由题意得: 90DE AC DAE BAC =+=︒,∠∠. 90DAB ∴=︒∠. 又DM MB =,1452MA DB DM MAD MAB ∴====︒,∠∠.1059M D EM A C D M A ∴==︒=︒,∠∠∠.E D M C A ∴△≌△.DME AMC EM MC ∴==,∠∠.又90DME EMA +=︒∠∠,A CBMDE(例4题90EMA AMC ∴+=︒∠∠. C M E M ∴⊥.所以ECM △的形状是等腰直角三角形. 【变式题组】01.如图,在等腰直角三角形ABC 中,P 是斜边BC 的中点,以P 为直角顶点的两边分别与边AB 、AC 交于点E 、F ,当∠EPF 绕顶点P 旋转时(点E 不与A 、B 重合),⊿PEF 也始终是等腰三角形,请你说明理由.02.如图,在等腰三角形ABC 中,∠ACB =900,D 是BC 的中点,DE ⊥AB 垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G . ⑴求证:AD ⊥CF ;⑵连接AF ,试判断⊿ACF 的形状,并说明理由.03.如图,⊿ABC 中,∠ACB =900,AC =BC ,CO 为中线.现将一直角三角板顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC 、CB 的延长线于点G 、H .⑴试写出图中除AC =BC ,OA =OB =OC 外其他所有相等的线段;⑵请选一组你写出的相等线段给予证明.【例5】 我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.⑴请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; ⑵如图,在ABC △中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;⑶在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.【解法指导】 证明两条线段相等时,若两条线段在同一三角形中,可证明它们所对的角相等.若两条线段在不同的三角形中,则证它们所在的两个三角形全等,若三角形不全等,即可通过构造全等三角形或等腰三角形解决问题.解:⑴如:平行四边形、等腰梯形等⑵答:与∠A 相等的角是∠BOD (或∠COE ),四边形DBCE 是等对边四边形; ⑶答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG ⊥BE 于G 点,作BF ⊥CD 交CD 延长线于∵∠DCB =∠EBC =∠A ,BC 为公共边, ∴△BCF ≌△CBG , ∴BF =CG ,D图1∵∠BDF =∠ABE +∠EBC +∠DCB ,∠BEC =∠ABE +∠A , ∴∠BDF =∠BEC , 可证△BDF ≌△CEG , ∴BD =CE∴四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作∠FCB =∠DBC ,CF 交BE 于F 点. ∵∠DCB =∠EBC =∠A ,BC 为公共边,∴△BDC ≌△CFB ,∴BD =CF ,∠BDC =∠CFB , ∴∠ADC =∠CFE ,∵∠ADC =∠DCB +∠EBC +∠ABE ,∠FEC =∠A +∠ABE , ∴∠ADC =∠FEC , ∴∠FEC =∠CFE , ∴CF =CE ,∴BD =CE , ∴四边形DBCE 是等边四边形. 【变式题组】01.如图,在ABC 中,∠B =2∠C ,AD 为∠BAC 的平分线.求证:AC =AB +BD .02.(天津初赛试题)如图,在四边形ABCD 中,∠ACB =∠BAD =1050,∠ABC =∠ADC =450,若AB =2,求CD 的长.DEF图203.如图,在ABC中,AB=AC,D在AB上,F在AC延长线上,BD=CF.求证DE=EF.【变式题组】01.(重庆)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.200B.1200C.200或1200D.360002.(云南)已知等腰三角形的两边分别为6和3,则此等腰三角形周长为()A.9 B.15 C.15 D.12或1503.(云南)如图,等腰ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为()A.13 B.14 C.15 D.1604.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A =180,则∠GEF的度数是()A.800B.900C.1000D.108005.如图,Rt ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.CH=HD D.AC=AF06.如图,ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①BDF和CEF都是等腰三角形;②DE=BD+CE;③ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A .①②③B .①②③④C .①②D .①07.(武汉)如图,已知O 是四边形ABCD 内一点,OA =OB =OC , ∠ABC =∠ADC =700,则∠DAO +∠DCO 的大小是( )A .700B .1100C .1400D .150008.(滨州)已知等腰ABC 的周长为10,若设腰长为x ,则x 的取值范围是__________. 09.如图所示,在ABC 中,已知AB =AC ,∠A =360,BC =2,BD 是ABC 的角平分线,则AD =___________.10.(威海)如图,AB =AC ,BD =BC ,若∠A =400,则∠ABD 的度数是_________. 11.(乌鲁木齐) 在一次数学课上,王老师在黑板上画出图6,并写下了四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形.请你已知:求证:AED△是等腰三角形. 证明:C12.(泰安) 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .⑴请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);⑵证明:DC BE ⊥.13.(包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.⑴如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?⑵若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?图图EQ C14.(临沂)如图1,已知ABC △中,1AB BC ==,90ABC =∠,把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转. ⑴在图1中,DE 交AB 于M ,DF 交BC 于N . ①证明DM DN =;②在这一旋转过程中,直角三角板DEF 与ABC △的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;⑵继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM DN =是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM DN =是否仍然成立?请写出结论,不用证明.F1F图2E图3B培优升级·奥赛检测01.如图,∠BAC 与∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA =GP ;②③BP 垂直平分CE ;④FP =FC ;其中正确的判断有( )A .只有①②B .只有③④C .只有①③④D .只有①②③④02.如图,点A 是网格图形中的一个网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A 为其中的一个顶点,面积等于2.5的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )A .10个B .12个C .14个D .16个03.如图,在ABC 中,AB =BC ,MN =NA , ∠BAM =∠NAC ,则∠MAC =______. 04.如图,AA ’、BB ’分别是∠EAB 、∠DBC 的平分线,若AA ’=BB ’=AB .则∠BAC 的度数为______________.05.(全国联赛)在等腰Rt ABC 中,AC =BC =1,M 是BC 的中点,CE ⊥AM 于E ,交AB 于F .则 =_____________06.如图,在ABC 中,AB =AC ,EF 为过点A 的任意一条直线,CF ⊥BC ,BE ⊥BC .求证:AE =AF .07.(湖州市竞赛试题)如图,在Rt ABC中,∠ACB=900,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB08.(四川省初二数学联赛试题)有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,求等腰三角形纸片的顶角的度数.09.如图,在ABC中,∠ABC=460,D是边BC上一点,DC=AB, ∠DAB=210,求∠CAD的度数.10.(浙江省杭州市中考试题)如图,在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F . (1) 证明:CBF CAE ∠=∠; (2) 证明:BF AE =;(3) 以线段BF AE ,和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别为ABC S ∆和ABG S ∆,如果存在点P ,能使得ABG ABC S S ∆∆= , 求∠C 的取值范围.11.如图,已知在△ABC 中,AB =AC ,∠BAC =900,AD =AE , AF ⊥BE 交BC 于F ,过F作FG ⊥CD 交BE 的延长线于G .求证:BG =AF +FG。

等腰三角形的判定

等腰三角形的判定

第二讲等腰三角形的判定知识扫盲由于等腰三角形有丰富的性质,这些性质为我们解决几何问题提供了理论依据,所以寻找发现等腰三角形是解决一些问题的关键,判定一个三角形是否为等腰三角形的基本方法:证明一个三角形的两条边相等,证明一个三角形的两个角相等。

实际解题中的一个常用的技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1.“角平分线+平行线”构造等腰三角形2.“角平分线+垂线”构造等腰三角形3.用“垂直平分线”构造等腰三角形4.“用三角形中角的2倍关系”构造等腰三角形A类经典例题例题1、已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少?思路激活:设长方形的长为a,宽为b,把相应的关系式表示出来。

例题2,已知a-b=-2,b-c=5,求a2+b2+c2-ab-bc-ca的值。

例3:已知,a、b为自然数且a+b=40(1)求a2+b2的最小值(2)求ab的最大值例题4:已知ab=60,a2+b2=169;求a2-b2B类例题1:(1)已知多项式2x3+ax2+x-3能被2x2+1整除,商式为x-3 ,求a的值;(2)已知:2a2+3a-1=0,试求代数式(2a5+3a4+3a3+9a2-5a+1)÷(3a-1)的值。

C类例题2:已知x2-4=0,求代数式x(x+1)2-x(x2+x)-x-7的值例题3:求1+2+22+23+...+22012的值,可令S=1+2+22+23+ (22012)则2S=2+22+23+...+22013,因此就有2S-S=22013-1;仿照以上推理,求1+5+52+53...+520131、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a .∵x-y=(a2-a-2)-(a2-a)=-2<0∴x<y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以 E= AP 所 以 AE= A

1 01 6 21 2 /
亨 罄 数字公开稀 警 I
特殊 四边形的性质与判定
0 江西宜黄神岗中学 徐小芬

f f 厂 形 正方 ] U
图1
甚 () 懿 1 可利 用 “A ” 明 ; SS证
() 1可判断 /B , D B , 2 由() D / C 且A = C
D /B . F/ E
() 证 : 1求 △A肋 AC B E.
C 所 以 △AF △C B(hS . E. D E S )
( 2)因 为 △AF D AC EB, 以 所
() 2四边形A D C 是平行 四边形吗 ? 请说 明理 由.
A C 乙D : B E D= B AF C .甄 、 D/ ’ 土A /
边 的 平 行 线 交 另 一 边 . 得 等 腰 三 角形 .
个 等腰 三角形.
() 2 自角一 边上 的任 一 点作 角平 分 线 的平 行 线 交另 一 边 的 反 向 延 长 线. 得等腰 三角形.

例 f 如图l 所示 , 在等腰直角
三 角 形 AB C中 . A= 0 . AB 的 平 9。 C


 ̄E _ C FL ,所以A B D∥E 于是易证
得 E A . = 船 故AE A =
图1
延 长c E交 的 延 长 线 于
点F. 为B 是 A 的 平 分 线 . E ̄ 因 E C B

作 /B 的 平 分 线 交启 _ Ac c
日 C
于 点 D. 则 B AD= C An 因 为A日=
例 4 如 图4 所示 ,在R A B tA C
中 . = 0 ,E是 曰的垂 直平 分 线 , AC 9  ̄D 交B C于 点 D.点 E是 垂 足 , AD : / _C
C B 1 3 求 B 度 数 . A = :。 的
C AD= . 则 C AB= x 3 .所 以 B=
“ 平 分 线 + 线 , 造 等 角 垂 , 构
腰 三 角 形
R △ C 所 以日 = = C t AK D C 2E
证 F = .因 为DF 甩 = E EC } DE. 以 D 所 +
层c E. - 即DE= .故 此 题 应 选A. 9
根 据等 腰三 角形 的 “ i线 合一 ” 性 质 作垂 线 : 三 角形 中 , 在 已知 一 个 角 的平分 线 . 自该 角一边 的另一 端 可 点作 已知角平 分线 的 垂线 . 之与 该 使 角另 一边 相交 . 则所构 成 的三 角形 是
因 而 四 边 形AB 是 平 行 四 边 形 . ∞
() 1 因为 /B , 以 /E 所
DF = B e 在 △AF A D和 △ C B E
中 . 为 D = E, D =_ E A 因 F B /B C,
例 f (0 0 州 贵 阳 ) 2 1贵 已知
如 图 1 示 . F 四 边 形 AB D对 角 所 E. 是 C
C 所 以 四 边 形AB D是 平 行 四 边 形 . B C
线AC 的 两 点 。且AF C D = E, 上 = E, F B
3 中垂线与等腰三角形
以 DA : 口丑
因为D E垂 直 平 分 A 所 B,
所 采
用整体 思 想 . 合 条件 “ 直 平分 线 ” 结 垂
因)D fB , D =  ̄ E C所以 船
/ B _F C 因 为 / F C= /F D. 所 以 _ B _ B _
D船 = 船 D.所 以DF= D. 同理 可 日
AD C=/E C= 0 .妖 娃 AD /E . F 9。 fF
所以 B AD= E. AD A /C =
数字公开锎 专
通看 每篇 文章 的标 题 , 择对 自己有用 的文章进 行细 读 选

中等成绩且 希望 不断提 高能力 的 同学 : 解题 时能力欠缺 的同学

如何构造等腰三角形
。 山东枣庄 二 中 朱述 亚
中垂线 、 角平分线均 与等腰三 角形 有着 密不 可分的联 系 , 多几何 问题 中 , 在许 遇到 等腰三角形就会想到顶 鹞的平分线 遇到角平分线又会 想到构造等腰三 角形。
所 以 BC
F 所以 AF C B 是等
图2
A 所以A C C. D LB .而 E F上B 所 以 C.
腰 三 角 形 .所 以 G 肥 . 所 以 C = E: F
2 E. 因 为 A日 C. A日D= 』 C 4CF. B AD= C = 0 . 以 Rt AD AF 9 。 所 △B
分线 交AC 于点D.过点C D的垂 线 作B
例 2 如 图2 所示 . AA C . 在 B  ̄
B和 C 的平分 线相交 于点F. 点F 过


F C
交B D的延 长线 于点E. 求证 :D= C . B 2 E

作D C 交A 于点D 交 于点 E #B , 曰 , c ,
若 B E = , 线 段 DE 长 为 ( D+ C 9 则 的
A.9 B .8
图3


要说 明A P 只需证明 E ,
/AP _ E即 可 . 仅 凭 已 知 条 件 似 但
C.7
D.6

乎 有 一 定的 难度.考 虑 ̄ A - q B- AC. 若
作 B AC的 平 分 线 AD. 则AD 上 C


2 “ 角平分线+ 平行线, , 构造
等 腰 三 角 形
例 3 如 图3 所示 , A B 中. 在 A C
AB AC,在 AC 取 一 点 P.过 点 P = 上 作
E L C. F_曰 交 的 延 长 线 于 点 . 足 垂 为 点 证 明 : = AE AP

( ) 自角 平 分线 上 任 一点 作 角 1
相关文档
最新文档