七年级数学上册第四章单元测试题及答案
七年级数学上学期第四单元几何图形初步测试卷5套带答案
第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
人教版数学七年级上册第4章 几何图形初步单元测试(含答案)
七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。
2024年人教版七年级上册数学第四单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,哪个数是有理数?()A. √3B. πC. 3.14D. √12. 下列运算中,哪个运算是整式加减?()A. 2x + 3yB. 2x × 3yC. 2x ÷ 3yD. 2x² + 3y²3. 若a=3,b=2,则a+b的值为()A. 5B. 5C. 1D. 14. 下列各式中,哪个是单项式?()A. 3x + 2yB. 3x²yD. 3x²y²5. 计算下列各式的值:()A. |3| = 3B. |3| = 3C. |3 5| = 2D. |3 + 5| = 26. 下列各数中,哪个是正数?()A. 3B. 0C. √1D. 27. 下列各式中,哪个是同类项?()A. 3x和2yB. 3x²和2xC. 3x²和2x²D. 3xy和2x²y8. 若3x=12,则x的值为()A. 3B. 4C. 5D. 69. 下列各式中,哪个是多项式?()A. 3x²C. 3x² + 2xyD. 3x²y²10. 计算下列各式的值:()A. 3² = 9B. (3)² = 9C. √36 = 6D. √25 = 5二、判断题:1. 有理数包括整数和分数。
()2. 无理数是无限不循环小数。
()3. 3x和3x²是同类项。
()4. 单项式是只有一个项的整式。
()5. 多项式是由多个单项式相加或相减而成的。
()6. 0是正数。
()7. |3 5| = |3 + 5|。
()8. π是一个有理数。
()9. 3x²y和2x²y是同类项。
()10. 若a=3,b=2,则ab的值为5。
()三、计算题:1. 计算:(3/4) (2/3)。
(苏科版)初中数学七年级上册 第4章综合测试试卷01及答案
第四章综合测试一、单选题1.下列判断错误的是()A .若a b =,则33ac bc -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x=2.已知3x k =-,2y k =+,则y 与x 的关系是( )A .5x y +=B .1x y +=C .1x y -=D .1y x =-3.下列各式不是方程的是( )A .20x x +=B .0x y +=C .1x x+D .0x =4.将372x x -=变形正确的是( )A .327x x +=B .327x x -=-C .327x x +=-D .327x x -=5.下列等式的变形中,不正确的是( )A .若x y =,则55x y +=+B .若(0)x ya a a=¹,则x y =C .若33x y -=-,则x y=D .若mx my =,则x y=6.有一应用题:“李老师存了一个两年的定期储蓄5 000元,到期后扣除20%的利息税能取5 176元,求这种储蓄的年利率是多少?”四位同学都是设这种储蓄的年利率是x ,可他们列出的方程却不同,下列列出的方程中正确的是()A .5000(1220%)5176x +´´=B .5000(12)80%5176x +´=C .50005000280%5176x +´´=D .5000500080%5176x +´=7.下列方程为一元一次方程的是( )A .123+=B .423m n m+=C .2223x x+=D .423x x-=8.下列利用等式的性质,错误的是()A .若a b =,则11a b -=-B .若237a b +=-,则255a b +=-C .若a b =,则22ma mb =D .若ac bc =,则a b=二、填空题9.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为x 元,则可列方程:________10.若13x --=,则x =________11.一组数:2,1,3,x ,7,9-,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221´-”得到的,那么这组数中x 表示的数为________.12.若代数式7y -与21y -的值相等,则y 的值是________.13.已知关于x 的方程231x a -=-的解为1x =-,则a 的值等于________.14.当x =________时,代数式21x +与58x -的值互为相反数.15.当x =________时,式子1x -与式子214x -的值相等.16.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.17.已知3x =-是方程(21)40k x +-=的解,则k =________.三、计算题18.解方程:(1)2523163x x x +--=-;(2)2130.20.5x x -+-=.19.解方程:(1)3723x x+=-(2)3(2)(21)x x x -=--(3)12123x x-=+.20.解方程:31112x x -+=+.四、综合题21.已知方程323452x x -=-(1)求方程的解;(2)若上述方程与关于x 的方程383()2a x a a +=+-是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求2005()a b c ++的值.第四章综合测试答案解析一、1.【答案】C【解析】A .利用等式性质1,两边都减去3,得到33a b -=-,所以A 成立;B .利用等式性质2,两边都除以3-,得到33a b=--,所以B 成立;C .因为x 必须不为0,所以C 不成立;D .利用等式性质2,两边都乘x ,得到22x x =,所以D 成立;故选C .2.【答案】A【解析】3x k =-Q ,2y k =+,325x y k k \+=-++=.故选:A .3.【答案】C【解析】解:A .20x x +=是方程,x 是未知数,式子又是等式,故本选项不符合题意;B .0x y +=是方程,x 、y 是未知数,式子又是等式,故本选项不符合题意;C .1x x+是分式,不是等式,故本选项符合题意;D .0x =是方程,x 是未知数,式子又是等式,故本选项不符合题意;故选:C .4.【答案】D【解析】等式两边都加7得:327x x =+,等式两边都减2x 得:327x x -=.故选D .5.【答案】D【解析】A .若x y =,根据等式的性质1,两边同时加5可得55x y +=+,故正确;B .若(0)x ya a a=¹,根据等式的性质2,两边同时乘以(0)a a ¹可得x y =,故正确;C .若33x y -=-,根据等式的性质2,两边同时除以3-可得x y =,故正确;D .若mx my =,根据等式的性质2,两边同时除以m ,(0)m ¹,才可得x y =,缺少条件,错误.故选D .6.【答案】C【解析】解:设这种储蓄的年利率为x ,由题意得500050002(120%)5176x +´´-=,即50005000280%5176x +´´=.故答案为:C .7.【答案】D【解析】A .不含有未知数,是等式,不是方程,故选项错误;B .是二元一次方程,故选项错误;C .未知数的最高次数是2次,不是一元一次方程,故选项错误;D .符合一元一次方程的定义,故选项正确.故选D .8.【答案】D【解析】当0c =时,0ac bc ==,但a 不一定等于b ,故D 错误.故答案为:D .二、9.【答案】(120%)0.9270x +´=【解析】解:标价为(120%)x ´+,\可列方程为:(120%)0.9270x +´=.10.【答案】4-【解析】解:等式的两边同时加1得,1131x --+=+,即4x -=,等式的两边同时除以1-得,4x =-.故答案为:4-.11.【答案】1-【解析】解:Q 该组数列满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,2131x \=´-=-.故答案为:1-.12.【答案】6-【解析】解:Q 代数式7y -与21y -的值相等,7=21y y \--,移项、合并同类项,可得:=6y -.故答案为:6-.13.【答案】13-【解析】解:把1x =-代入方程231x a -=-得:231a --=-,解得:13a =-,故答案为:13-.14.【答案】1【解析】解:根据题意得:21580x x ++-=,移项合并得:77x =,解得:1x =,故答案为:1.15.【答案】32【解析】由式子1x -与式子214x -的值相等,得2114x x --=,去分母得:4421x x -=-解得:32x =.16.【答案】360x -=【解析】解:由题意可知:3a =,2x =.则将a 与x 的值代入0ax b +=中得:320b ´+=,解得:6b =-,所以,该一元一次方程为:360x -=.故答案为:360x -=.17.【答案】76-【解析】解: 3 x =-Q 是方程(21)40k x +-=的解,(2k 1)(3)40\+´--=,解得:76k =-.故答案为:76-.三、18.【答案】(1)解:去分母得:625646x x x --=-+,移项合并得:817x =,解得:178x =.(2)解:方程整理得:510223x x ---=,移项合并得:315x =,解得:5x =.【解析】(1)方程去分母,去括号,移项合并,把未知数系数化为1,即可求出解.(2)方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.19.【答案】(1)移项合并得:416x =,解得:4x =.(2)去括号得:3621x x x -=-+,移项合并得:47x =,解得:74x =.(3)去分母得:3(1)46x x -=+,去括号得:3346x x -=+,解得:9x =-.【解析】(1)方程移项合并,把x 系数化为1,即可求出解.(2)方程去括号,移项合并,把x 系数化为1,即可求出解.(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.20.【答案】解:方程两边都乘2得:31222x x -+=+,移项得:32212x x -=+-,合并同类项得:1x =.【解析】按照去分母,移项,合并的计算过程计算即可.四、21.【答案】(1)解:方程两边同时乘以10得:2(32)53410x x -=´-´,去括号得:641540x x -=-,移项得:615440x x -=-,合并同类项得:936x -=-,系数化为1得:4x =.(2)解:4x =Q 是方程383()2a x a a +=+-的解,383(4)2a a a \+=+-,解得:2a =.(3)解:2a =Q ,2b \=-,又c Q 是倒数等于本身的数,1c \=±,当1c =时,20052005()(221)1a b c \++=-+=;当1c =-时,20052005()(221)1a b c \++=--=-;综上所述:2005()a b c ++的值为1±.【解析】(1)根据解一元一次方程的步骤:去分母——去括号——移项——合并同类项——系数化为1.(2)将4x =代入方程383()2a x a a +=+-解得2a =.(3)根据题意可得2a =,2b =-,1c =±,再分情况求得代数式的值即可.。
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。
通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。
一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)
人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】
人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】第四章测试卷一、选择题(项)1.下列说法正确的是( ) A .两点确定一条直线B .两条射线组成的图形叫作角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点2.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A .3cmB .6cmC .9cmD .12cm第2题图 第3题图3.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A .140°B .135°C .120°D .40°4.如图是一个正方体纸巾盒,它的平面展开图是( )5.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A .30°B .45°C .55°D .60°6.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为8cm.若PB比AP长3cm,则这条绳子的原长为()A.10cm B.26cmC.10cm或22cm D.19cm或22cm二、填空题(本大题共6小题,每小题3分,共18分)7.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因__________________________.第7题图第8题图8.如图所示的图形中,柱体为__________(请填写你认为正确物体的序号).9.如图,已知线段AB=16cm,点M在AB上,AM∶BM=1∶3,P,Q分别为AM,AB的中点,则PQ的长为________.第9题图第11题图10.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有________种不同的票价,需准备________种车票.11.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.12.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC的度数为________.三、(本大题共5小题,每小题6分,共30分)13.下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.14.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.15.观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.16.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.17.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3,求线段CD,AB的长;(2)试说明:AD+AB=2AC.四、(本大题共3小题,每小题8分,共24分)18.已知∠α=76°,∠β=41°31′,求: (1)∠β的余角;(2)∠α的2倍与∠β的12的差.19.已知线段AB =20cm ,M 是线段AB 的中点,C 是线段AB 延长线上的点,AC :BC =3:1,点D 是线段BA 延长线上的点,AD =AB .求:(1)线段BC 的长; (2)线段DC 的长; (3)线段MD 的长.20.如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.五、(本大题共2小题,每小题9分,共18分)21.如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.22.如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).六、(本大题共12分)23.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB 的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n°得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.参考答案与解析1.A2.D3.A4.B5.B6.C7.两点之间,线段最短8.①②③⑥9.6cm10.102011. 20°12.15°或30°或60°解析:①如图①,当OC平分∠AOB时,∠AOC=12∠AOB=15°;②如图②,当OA平分∠BOC时,∠AOC=∠AOB=30°;③如图③,当OB平分∠AOC时,∠AOC=2∠AOB=60°.故答案为15°或30°或60°.13.解:如图所示.(6分)14.解:如图所示.(6分)15.解:图略.(6分)16.解:∵∠2=2∠1,∴∠1=12∠2.(1分)∵∠3=3∠2,∴∠1+∠2+∠3=12∠2+∠2+3∠2=180°,解得∠2=40°,(4分)∴∠3=3∠2=120°,∴∠DOE =∠3=120°.(6分)17.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(3分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(6分)18.解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(3分)(2)∵∠α=76°,∠β=41°31′,∴2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.(8分)19.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(2分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20+20+10=50(cm).(5分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20+10=30(cm).(8分)20.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠DCE =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠DCE ,∴∠DCE =180°-∠ACB =40°.(5分)(3)∠ACB +∠DCE =180°.(6分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE =180°-∠DCE ,∴∠ACB +∠DCE =180°.(8分)21.解:(1)2 2(2分)(2)∵点C ,D 分别是AO ,BO 的中点,CO =3cm ,DO =2cm ,∴AO =2CO =6cm ,BO =2DO =4cm ,∴AB =AO +BO =6+4=10(cm).(5分)(3)仍然成立,如图:理由如下:∵点C ,D 分别是AO ,BO 的中点,∴CO =12AO ,DO =12BO ,(7分)∴CD=CO -DO =12AO -12BO =12(AO -BO )=12AB =12×10=5(cm).(9分)22.解:(1)图略.(3分)(2)∠BAC =90°-80°+90°-20°=80°.(6分) (3)约2.3cm ,即实际距离约23海里.(9分)23.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC =13∠AOB=13×60°=20°.(3分) (2)①∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠BOC =∠AOD =13∠AOB=13×90°=30°,∴∠COD =∠AOB -∠BOC -∠AOD =90°-30°-30°=30°.(6分) ②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时,如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°;(9分)当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时,如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°.综上所述,n =40或50.(12分)第四章走进图形世界知识点详细梳理1、几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
初一上册第四章测试卷
初一上册第四章测试卷一、选择题(每题3分,共30分)1. 下列关于有理数的说法中,正确的是()A. 有理数就是整数B. 有理数包括正数和负数C. 有理数是整数和分数的统称D. 0不是有理数答案:C。
解析:有理数是整数和分数的统称,整数只是有理数的一部分,A错误;有理数包括正有理数、负有理数和0,B不全面;0是有理数,D错误。
2. 计算 - 3+5的结果是()A. - 2B. 2C. 8D. - 8答案:B。
解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,5的绝对值大于3的绝对值,5 - 3 = 2。
3. 一个数的相反数是 - 7,这个数是()A. - 7B. 7C. 1/7D. - 1/7答案:B。
解析:互为相反数的两个数和为0,设这个数为x,则x+( - 7)=0,解得x = 7。
4. 若 x = 3,则x的值为()A. 3B. - 3C. 3或 - 3D. 9答案:C。
解析:绝对值为3的数有两个,3和 - 3。
5. 化简 - (- 2)的结果是()A. - 2B. 2C. 1/2D. - 1/2答案:B。
解析:负负得正,所以 - (- 2)=2。
6. 单项式 - 3x²y的系数是()A. - 3B. 3C. - 3x²D. - 3y答案:A。
解析:单项式中的数字因数叫做单项式的系数,所以- 3x²y的系数是 - 3。
7. 多项式2x² - 3x+1的次数是()A. 2B. 3C. 1D. 0答案:A。
解析:多项式的次数是多项式中次数最高的项的次数,在2x² - 3x + 1中,2x²的次数最高,为2。
8. 计算2a+3a的结果是()A. 5aB. 6aC. aD. 1答案:A。
解析:同类项相加,字母和指数不变,系数相加,2 + 3 = 5,所以2a+3a = 5a。
9. 方程3x - 1 = 5的解是()A. x = 2B. x = 3C. x = 4/3D. x = 1/3答案:A。
人教版数学七年级上册第四单元测试试卷(含答案)
人教版数学7年级上册第4单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•榕城区校级月考)圆柱的截面不可能是( )A.梯形B.长方形C.正方形D.椭圆2.(3分)(2022秋•南岗区校级月考)如果长方体的长、宽、高都扩大3倍,则它的体积扩大( )倍.A.3B.9C.6D.273.(3分)(2022秋•南岗区校级月考)一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是( )A.45厘米B.30厘米C.90厘米D.60厘米4.(3分)(2022秋•南岗区校级月考)一个长方体水箱,从里面量长5分米,宽和高都是2分米,现在往这个水箱倒入15升水,水箱( )A.倒满了B.还没倒满C.溢出来了D.无法确定5.(3分)(2022秋•和平区校级月考)如图,AB=12cm,C为AB的中点,点D在线段AC上且AD:CB=1:3,则DB的长是( )A.8cm B.10cm C.12cm6.(3分)(2022秋•天桥区校级月考)用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③7.(3分)(2021秋•萨尔图区校级期末)甲、乙两人要从学校回家,他们分别选择了①、②两条路线,比较一下,所走的路程是( )A .①条长B .②条长C .一样长D .无法确定8.(3分)(2022秋•聊城月考)下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是( )A .B .C .D .9.(3分)(2021秋•乌当区期末)如图,点O 在直线AB 上,射线OD 是∠AOC的平分线,若∠COB =40°,则∠DOC 的度数是( )A .20°B .45°C .60°D .70°10.(3分)(2021秋•萨尔图区校级期末)一个圆锥的体积是12立方厘米,底面积是4平方厘米,高是( )厘米.A .3B .6C .9D .1211.(3分)(2022春•东营期末)如图,OC 平分∠AOB ,OD 平分∠BOC ,下列各式正确的是( )A .∠COD =12∠AOBB .∠BOD =12∠AODC .∠BOC =23∠AOD D .∠AOD =23∠AOB 12.(3分)(2022•南京模拟)如图,已知B ,C 是线段AD 上任意两点,E是AB 的中点,F 是CD 的中点,下列结论不正确的是( )A.AC=CD B.AB=2AECD D.BC=EF﹣AE﹣FDC.CF=12二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2021秋•栾城区期末)如图,∠AOB=∠COD=90°,则∠AOC ∠BOD(选填“>”、“=”或“<”).14.(3分)(2022秋•新城区校级月考)如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是 .15.(3分)(2022秋•柳江区月考)如图,把6个形状、大小完全相同的长方形如图摆放,面积共是12平方单位,则阴影部分的面积是 平方单位.16.(3分)(2021秋•萨尔图区校级期末)一个体积是60立方厘米的圆柱,削成一个最大的圆锥体,这个圆锥的体积是 cm3.17.(3分)(2022春•沂水县期中)如图,AB与CD相交于点O,OE是∠AOC 的平分线,且OA恰好平分∠EOD,则∠AOC= 度.18.(3分)(2022春•岚山区期末)如图,将一张宽度相等的纸条折叠,折叠后的一边与原边的夹角是140°,则∠α的度数是 .三、解答题(共7小题,满分66分)19.(9分)(2022秋•新城区校级月考)已知一个直棱柱,它有27条棱,其中一条侧棱长为20,底面各边长都为5.(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?20.(9分)(2022秋•昭阳区校级月考)如图,经测量,B处在A处的南偏西56°的方向,C处在A处的南偏东17°方向,C处在B处的北偏东78°方向,求∠C的度数.21.(9分)(2022秋•高州市校级月考)如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它有多少条棱?它有多少个顶点?它的所有侧面的面积之和是多少?22.(9分)(2021秋•萨尔图区校级期末)求阴影部分的面积.23.(10分)(2022秋•萍乡月考)如图所示是一个多面体的展开图形,每个面(外表面)都标注了字母,请你根据要求回答问题:(1)这个多面体是什么常见几何体;(2)如果B 在前面,C 在左面,那么哪一面在上面.24.(10分)(2022•丰顺县校级开学)如图1,把一张长10cm 、宽6cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为V 圆锥=13πr 2ℎ,π取3.14).(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?25.(10分)(2022春•钢城区期末)如图,点C 是线段AB 上的一点,点M是线段AC 的中点,点N 是线段BC 的中点.(1)如果AB =14cm ,AM =5cm ,求BC 的长;(2)如果MN =8cm ,求AB 的长.参考答案一、选择题(共12小题,满分36分,每小题3分)1.A2.D3.A4.B5.B6.B7.C8.C9.D10.C11.C12.A二、填空题(共6小题,满分18分,每小题3分)13.=14.长方形15.816.2017.12018.70°三、解答题(共7小题,满分66分)19.【解答】解:(1)∵此直棱柱有27条棱,∴由27÷3=9,可知此棱柱是九棱柱;(2)这个九棱柱有11个面,有18个顶点;(3)这个棱柱的所有侧面的面积之和是5×9×20=900.20.【解答】解:由题意得:∠ABC=78°﹣56°=22°,∠BAC=56°+17°=73°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣22°﹣73°=85°,∴∠C 的度数为85°.21.【解答】解:如图,它有7个面,15条棱,10个顶点,所有侧面的面积之和为:5×12×5=300(cm 3).答:它有7个面,15条棱,10个顶点,它的所有侧面的面积之和是300cm 3.22.【解答】解:阴影部分的面积为:90°360°×π×(42)2=π(cm 2).23.【解答】解:(1)根据多面体的展开图形可知,多面体是长方体;(2)根据长方体及其表面展开图的特点可知,面“B ”与面“D ”相对,面“E ”与面“A ”相对,面“C ”与面“F ”相对,如果B 在前面,C 在左面,则E 在下面,A 在上面.24.【解答】解:(1)甲三角形旋转一周可以形成一个圆锥,它的体积是 13×3.14×62×10=376.8(cm 3).(2)乙三角形旋转一周可以形成一个圆柱,里面被挖去一个圆锥,它的体积是 3.14×62×10―13×3.14×62×10=753.6(cm 3).25.【解答】解:(1)∵点M 是线段AC 的中点,AM =5cm ,∴AC =2AM =10cm ,∵AB =14cm ,∴BC =AB ﹣AC =14﹣10=4cm ;(2)∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴NC =12BC ,CM =12AC ,∴MN =NC +CM =12(BC +AC )=12AB ,∵MN =8cm ,∴12AB =8,∴AB =16cm .。
2023年人教版七年级数学上册 第四章 几何图形初步 单元测试卷及答案
2023年人教版七年级数学上册第四章几何图形初步单元测试卷及答案七年级数学·上时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列几何体中,是圆锥的为()2.【2021·百色】已知∠α=25°30′,则它的余角为()A.25°30′ B.64°30′ C.74°30′ D.154°30′3.下列作图语句错误..的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm4.下列立体图形中,都是柱体的为()5.如图,表示∠1的其他方法中,不正确...的是()A.∠ACBB.∠CC.∠BCAD.∠ACD6.如图所示的几何体从上面看到的图形为()17.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()①平板弹墨线②建筑工人砌墙③会场摆直茶杯④弯河道改直A.1个B.2个C.3个D.4个8.【教材P138例4变式】如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的度数为()A.69°B.111°C.141°D.159°9.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 10.如图,点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是()二、填空题(每题3分,共24分)11.【2020·广州】已知∠A=100°,则∠A的补角等于________.12.七棱柱有________个面,________个顶点.13.【教材P130习题T10改编】已知线段AB=8 cm,在直线AB上画线段BC,使2它等于3 cm,则线段AC=______________.14.用“度、分、秒”表示21.24°为__________.15.【教材P136例1变式】【中考·大连】如图,点O在直线AB上,射线OC平分∠BOD,若∠COB=35°,则∠AOD等于________.(第15题)(第17题)(第18题)16.【教材P134练习T1改编】钟表在8:25时,时针与分针的夹角是________度.17.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是________.18.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB =________.三、解答题(19~22题每题10分,其余每题13分,共66分)19.【教材P128练习T2改编】如图,已知线段a,b,画一条线段,使它等于3a -b(用直尺和圆规画图,不要求写画法).20.一个角的余角比它的补角的13还少20°,求这个角的度数.3421.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB .若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(1)求∠AOB的度数.(2)①求∠DOC和∠ADE的度数;②判断∠DOE与∠AOB是否互补,并说明理由.24.已知在同一平面内,∠AOB=90°,∠AOC=60°.(1)∠COB=____________.(2)若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数为________.(3)在(2)的条件下,将题目中的∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请写出求解过程;若不能,说明理由.5答案一、1.B 2.B 3.B 4.C 5.B 6.C7.A8.C9.C10.A二、11.80°12.9;1413.11 cm或5 cm14.21°14′24″15.110°16.102.517.518.180°点思路:根据角的和差关系,将∠AOC表示为∠AOD+∠COD,则∠AOC+∠DOB=∠AOD+∠DOB+∠COD=∠AOB+∠COD=90°+90°=180°.三、19.解:如图,AE=3a-b .20.解:设这个角的度数为x.依题意得90°-x+20°=13(180°-x),解得x=75°.答:这个角的度数为75°. 21.解:(1)长方体(2)体积为3×3×4=36(cm3).22.解:因为点C是AB的中点,所以AC=BC=12AB=12×24=12(cm).所以AD=23AC=23×12=8(cm).所以CD=AC-AD=12-8=4(cm).因为DE=35AB=35×24=14.4(cm),所以CE=DE-CD=14.4-4=10.4(cm).23.解:(1)∠AOB=∠BOC+∠AOC=60°+58°=118°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.6②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°.所以∠DOE与∠AOB不互补.24. 点易错:本题根据题目条件解答时,OC是在∠AOB内部,还是在∠AOB外部,其位置不确定,且它们都符合条件,因此解答本题应分OC在∠AOB 外部和内部两种情况讨论.解:(1)30°或150°(2)45°(3)能求出∠DOE的度数.需要分两种情况讨论:①当OC在∠AOB内部时,如图①所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC ,∠COE=12∠AOC.所以∠DOE=∠COD+∠COE=12∠BOC+12∠AOC=12(90°-2α)+12·2α=45°.②当OC在∠AOB外部时,如图②所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC,∠COE=12∠AOC.所以∠DOE=∠COD-∠COE=12∠BOC-12∠AOC=12(90°+2α)-12·2α=45°.综上所述,∠DOE的度数是45°.78。
人教版七年级数学上册《第四章》单元测试题及答案
人教版七年级数学上册《第四章》单元测试题及答案人教版七年级数学上册第四章单元测试题及答案一、选择题(每小题3分,共30分)1.下列说法正确的是()A.①②2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是(C)3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是(C)4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有(B)5.如图所示,从A地到达B地,最短的路线是(A)6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是(B)7.如图所示的立体图形从上面看到的图形是(D)8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是(。
)C.(∠1-∠2)9.若∠=40.4°,∠=40°4′,则∠与∠的关系是(。
)D.以上都不对10.下列叙述正确的是()B.110°和90°的角互为补角二、填空题(每小题3分,共24分)11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为12.12.(2012•山东菏泽中考)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=5cm.13.若一个角的补角是这个角的余角的3倍,则这个角的度数是多少?答案:设这个角的度数为x,则它的补角为90-x,余角为180-x。
根据题意,有90-x=3(180-x),解得x=30.因此,这个角的度数为30°。
14.已知直线上有A、B、C三点,其中AB=3cm,BC=5cm,则AC的长度是多少?答案:根据三角形两边之和大于第三边的性质,知ACBC-AB=2cm。
七年级数学上册第四章单元测试题及答案
第四章《平面图形及其位置关系》检测时间:__________ 姓名:__________ 成绩:__________一、选择题 (每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是( )A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是( )A、在m、n、p三个量中,如果m=n, n=p,那么m=p.B.在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;C.a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;D.a、b、c是同一平面内的三条直线,如果a丄b,b丄c,那么a丄c;3、垂直是指一位置特殊的( )A、直线B、直角C、线段D、射线4.如图,四条表示方向的射线中,表示北偏东60°的是( )5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是( )A、75°B、105°C、45°D、135°6、同一平面内互不重合的三条直线的公共点的个数是( )A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是( )A、AB∥CDB、∠B+∠C=180°C、∠B=∠CD、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则( )A 、AP>5㎝;B 、AP ≥5㎝;C 、AP=5㎝;D 、AP<5㎝9、 下列说法中正确的是( )A 、8时45分,时针与分针的夹角是30°B 、6时30分,时针与分针重合C 、3时30分,时针与分针的夹角是90°D 、3时整,时针与分针的夹角是30°10、下列说法正确的是( )A 、过一点能作已知直线的一条平行线;B 、过一点能作已知直线的一条垂线C 、射线AB 的端点是A 和B ;D 、点可以用一个大写字母表示,也可用小写字母表示二.填空题(本大题共 6小题,每小题 5分,共 30分)11、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子_____________________,原因是__________________;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是12、如图1,AB 的长为m ,OC 的长为n ,MN 分别是AB ,BC 的中点,则MN=_____13、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.AB +BC_____AC , AC +BC_____AB , BC_____AB +AC ,理由是__________14、计算:48°39′+67°41′=_________;90°-78°19′40″=___________ 21°17′×5=_______; 176°52′÷3=_________(精确到分)15、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为_______________;两个角的和为90°的角有_____对;两个角的和为180°的角有________对.16、面上两条直线的位置关系只有两种,即__________和_________________17、平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.18、面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.三、解答下列各题19、要注意“几何语言”的学习,如图甲,称作“点A 在直线l 外”,请在图乙标上字母,用“几何语言”说出该图的意义(7分)20、 如图,已知∠AOB ,画图并回答:(9分)甲 A · l⑴画∠AOB 的平分线OP ;⑵在OP 上任取两点C 、D ,过C 、D 分别画OA 、OB 的垂线,交OA 于E ,F ,交OB 于G 、H , ⑶量出CE ,CG ,DF ,DH的长,由此可得到的结论是什么?⑷过C 作MC ∥OB 交OA 于M21、如图,用量角器量出图中∠1,∠2,∠3的度数,猜一猜它们之间有何关系?(8分)22、如图所示,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°18′,求∠AOC 的度数(8分)23、如图所示,A 、B 、C 、D 、E 五个城市,它们之间原有道路相通,现在打算在C 、 E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?(11分)AO B24、在桌面上放了一个正方体的盒子,一只蚂蚁在顶点A 处,它要爬到顶点B 处,你能帮助蚂蚁设计一条最短的爬行路线吗?第四单元《平面图形及其位置关系》参 考 答 案一、选择题1、B 2.D 3.A 4.B 5,C 6.C 7.D 8.B 9.D 10.B二、填空题11.旋转 过一点可以作无数条直线 两点确定一条直线12. )(21n m 13、> > < ,两点之间线段最短14、⑴116°20′ ⑵11°40′20″;⑶106°25′;⑷58°57′15、3 ∠AOC=∠BOC , ∠BOC=∠DOE ,∠DOE=∠AOC 4, 316、相交 平行 17、12 18、10 0三.解答题19、20.略 21.∠1=∠2+∠3 22、145°24′23、连结CD 和AD ,BD 的交点处架立交桥 2座24、取BB ′的中点M ,连结CM ,MA ′,由图中正方体部分展开图及两点之间线段最短知。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
七年级数学上册《第四章 角》章节测试卷及答案(人教版)
七年级数学上册《第四章角》章节测试卷及答案(人教版)班级姓名学号一、选择题(共8题)1.已知A,B两地的位置如图所示,且∠BAC=150∘,那么下列语句正确的是( )A.A地在B地的北偏东60∘方向B.A地在B地的北偏东30∘方向C.B地在A地的北偏东60∘方向D.B地在A地的北偏东30∘方向2.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=( )A.90∘B.180∘C.160∘D.120∘3.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是A.∠1=∠3B.∠1=180∘−∠3C.∠1=90∘+∠3D.以上都不对4.只用一副三角板不能拼出来的角度是( )A.125度B.105度C.75度D.15度5.如图,一张地图上有A,B,C三地,C地在A地的北偏东38∘方向,在B地的西北方向,则∠ACB等于( )A.73∘B.83∘C.90∘D.97∘6.下列时刻中,时针与分针所成的角(小于平角)最大的是( )A.9:00B.3:30C.6:40D.5:457.把10∘36ʺ用度表示为( )A.10.6∘B.10.001∘C.10.01∘D.10.1∘8. 位于点O处的军演指挥部观测到军舰A位于点O的北偏东70∘方向(如图),同时观测到军舰B位于点O处的南偏西15∘方向,那么∠AOB的大小是( )A.85∘B.105∘C.115∘D.125∘二、填空题(共5题)9.如图∠AOC=50∘,OB平分∠COE,∠COE=36∘则∠AOB=度.10.若一个锐角∠α=32∘18ʹ,则∠α的余角为.11.如图,已知∠AOB=129∘,∠1=(5x+18)∘,∠2=(57−2x)∘那么∠2=度.12.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.13.如图,直线AB交CD于点O,OE平分∠BOC,OF平分∠BOD,∠AOC=3∠COE则∠AOF等于.三、解答题(共6题)14.如图,直线AB,CD相交于点O,OA平分∠EOC.(1) 若∠EOC=70∘,求∠BOD的度数.(2) 若∠EOC:∠EOD=2:3,求∠BOD的度数.∠EOC,∠COD=15∘.15.如图,OE为∠AOD的平分线∠COD=14(1) 求∠EOC的大小.(2) 求∠AOD的大小.16.如图,OA的方向是北偏东15∘,OB的方向是西偏北50∘,OD是OB的反向延长线.(1) 若∠AOC=∠AOB,求OC的方向.(2) 在(1)问的条件下,作∠AOD的角平分线OE,求∠COE的度数.17.如图,OD是∠BOC的平分线,OE是∠AOC的平分线∠AOB:∠BOC=3:2若∠BOE=13∘求∠DOE的度数.18.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90∘,∠1=40∘.求:(1) ∠3的度数;(2) 求∠2的度数.19.如图,点O是直线AB上一点,OC是∠AOB的平分线∠COD=31∘28ʹ求∠AOD的度数.答案1. C2. B3. C4. A5. B6. D7. C8. D9. 6810. 57∘42ʹ11. 2112. 18013. 126°14.(1) ∵OA平分∠EOC∴∠AOC=12∠EOC=12×70∘=35∘∴∠BOD=∠AOC=35∘.(2) 设∠EOC=2x∠EOD=3x根据题意得2x+3x=180∘,解得x=36∘∴∠EOC=2x=72∘∴∠AOC=12∠EOC=12×72∘=36∘∴∠BOD=∠AOC=36∘.15.(1) ∵∠COD=14∠EOC∠COD=15∘∴∠EOC=60∘.(2) ∵OE平分∠AOD∴∠DOE=∠AOE∵∠EOC=60∘∠COD=15∘∴∠DOE=45∘,则∠AOD=2∠DOE=90∘.16.(1) ∵OB的方向是西偏北50∘∴∠BOF=90∘−50∘=40∘∴∠AOB=40∘+15∘=55∘∵∠AOC=∠AOB∴∠AOC=55∘∴∠FOC=∠AOF+∠AOC=15∘+55∘=70∘∴OC的方向是北偏东70∘.(2) 由题意可知∠AOD=90∘−15∘+50∘=125∘∵OE是∠AOD的角平分线∴∠AOE=12∠AOD=62.5∘∴∠COE=∠AOE−∠AOC=62.5∘−55∘=7.5∘.17. 设∠AOB=3x∠BOC=2x.则∠AOC=∠AOB+∠BOC=5x.∵OE是∠AOC的平分线∴∠AOE=12∠AOC=52x∴∠BOE=∠AOB−∠AOE=3x−52x=12x∵∠BOE=13∘∴12x=13∘,解得x=26∘∵OD是∠BOC的平分线∴∠BOD=12∠BOC=x=26∘∴∠DOE=∠DOB+∠BOE=26∘+13∘=39∘.18.(1) ∵∠AOB=180∘∴∠1+∠3+∠COF=180∘∵∠FOC=90∘,∠1=40∘∴∠3=180∘−∠1−∠FOC=50∘.(2) ∠BOC=∠1+∠FOC=130∘∴∠AOD=∠BOC=130∘∵OE平分∠AOD∴∠2=12∠AOD=65∘.19. ∵∠AOB=180∘,OC是∠AOB的平分线∴∠AOC=12∠AOB=12×180∘=90∘又∵∠COD=31∘28ʹ∴∠AOD=∠AOC−∠COD∴∠AOD=90∘−31∘28ʹ=58∘32ʹ.。
七年级数学上册第四章测试题及有答案[最终版]
七年级数学上册第四章测试题及有答案[最终版]第一篇:七年级数学上册第四章测试题及有答案[最终版]1.下面去括号错误的是(CX)TA.Xa-(b+c)=a-b-cTB.Xa+(b-c)=a+b-cTC.X3(a-b)=3a-bTD.X-(a-2b)=-a+2b2.-4x+313x-2等于(BX)TA.X-3x+6TB.X-3x-6TC.X-5x-6TD.X-5x+63.下列运算中,正确的是(DX)TA.X-2(a-b)=-2a-bTB.X-2(a-b)=-2a+bTC.X-2(a-b)=-2a-2bTD.X-2(a-b)=-2a+2b4.a-b+c的相反数是(CX)TA.X-a-b+cTB.Xa-b-cTC.Xb-a-cTD.Xa+b-c5.化简:(2x2+x-3)-3(x2-x+1)=-x2+4x-6.6.填空:(1)x2-y2+2y-1=x2-(y2-2y+1);(2)a-3b-4c=a-(3b+4c);(3)(5x2+6x-7)+[-4x2-(4x-8)]=x2+2x+1;(4)(x3-4x2y+11xy2-y3)+(7x2y-16xy2+y3)=x3+3x2y-5xy2.7.去括号,并合并同类项:(1)-2n-(3n-1);(2)a-(5a-3b)+(2b-a);(3)-3(2s-5)+6s;(4)1-(2a-1)-(3a+3).【解】(1)原式=-2n-3n+1=-5n+1.(2)原式=a-5a+3b+2b-a=-5a+5b.(3)原式=-6s+15+6s=15.(4)原式=1-2a+1-3a-3=-5a-1.(第8题)8.有理数a,b,c在数轴上的对应点如图所示,化简|a-b|-|a+c|-|b-c|.【解】由图可知:a3x2-(2x2-x+1)+2(-3+x-x2),其中x=-3.【解】原式=3x2+2x2+x-1+(-6)+2x-2x2=-x2+3x-7.当x=-3时,原式=-(-3)2+3×(-3)-7=-25.(第10题)10.如图,面积分别为25和9的两个正方形叠合在一起,所形成的两个阴影部分的面积分别为a,b(a>b),则代数式(a+5b)-412a+b 的值是多少?【解】设叠合部分的面积为x.则a=25-x,b=9-x.∴(a+5b)-412a+b=a+5b-2a-4b=b-a=(9-x)-(25-x)=9-x-25+x=-16.11.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6.试说明不论x,y,z取何值,A+B+C都是常数.【解】∵A+B+C=(x3-2y3+3x2y+xy2-3xy+4)+(y3-x3-4x2y-3xy-3xy2+3)+(y3+x2y+2xy2+6xy-6)=1,∴不论x,y,z取何值,A+B+C都等于常数1.12.不改变a-(3b-5c)的值.把括号前的“-”号改成“+”号应为(CX)TA.Xa+(3b+5c)TB.Xa+(3b-5c)TC.Xa+(-3b+5c)TD.Xa+(-3b-5c)13.当a为整数时,多项式2a5-3a3-3a+7与多项式3a3-7a-2-2a5的和一定是(CX)TA.X3的倍数TB.X偶数TC.X5的倍数TD.X以上均不对【解】(2a5-3a3-3a+7)+(3a3-7a-2-2a5)=2a5-3a3-3a+7+3a3-7a-2-2a5=-10a+5=-5(2a-1),故选TCX.14.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面:-x2+3xy-12y2--12x2+4xy-12y2=-12x2,污点处即墨迹弄污的部分,那么被墨迹遮住的一项应是(AX)TA.X-xyTB.X+xyTC.X-7xyTD.X+7xy【解】-x2+3xy-12y2--12x2+4xy-12y2=-x2+3xy-12y2+12x2-4xy+12y2=-12x2-xy,故选TAX.15.若m,n互为倒数,则mn2-(n-1)的值为__1__.【解】∵m,n互为倒数,∴mn=1.∴mn2-(n-1)=1n-(n-1)=n-n+1=1.16.比2x2-3x+7少4x2-1的多项式是-2x2-3x+8.【解】(2x2-3x+7)-(4x2-1)=2x2-3x+7-4x2+1=-2x2-3x+8.17.化简关于m的代数式(2m2+m)-[km2-(3m2-m+1)],并求使该代数式的值为常数的k的值.【解】原式=2m2+m-[km2-3m2+m-1]=2m2+m-km2+3m2-m+1=(5-k)m2+1.要使该代数式的值为常数,则5-k=0,∴k=5.18.某同学做一道代数题:当x=-1时,求代数式10x9+9x8+8x7+…+3x2+2x+1的值.该同学由于将式中某一项前的“+”看成了“-”,求得代数式的值为7,那么这位同学看错了几次项前的符号?【解】当x=-1时,第1,2;3,4;5,6;7,8;9,10项的和均为-1,∴结果应为-5.又∵看错符号后的代数式的值为7,∴看错的项应为+6x5.∴该同学看错了五次项前面的符号.19.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共需315元;若购买甲4件、乙10件、丙1件共需420元.问:购买甲、乙、丙各1件共需多少元?【解】设甲、乙、丙的单价分别是x,y,z元,由题意,得3x+7y+z=315,4x+10y+z=420,∴x+y+z=3(3x+7y+z)-2(4x+10y+z)=3×315-2×420=105(元).答:购买甲、乙、丙各1件共需105元.第二篇:七年级数学上册第一单元测试题及答案七年级数学上册第一单元测试题(附答案)一、仔细选一选(30分)1.0是()A.正有理数 B.负有理数 C.整数 D.负整数2.中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()A.计数 B.测量 C.标号或排序 D.以上都不是3.下列说法不正确的是()A.0既不是正数,也不是负数 B.0的绝对值是0C.一个有理数不是整数就是分数 D.1是绝对值最小的数4.在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有()个A.2 B.3 C.4 D.55.一个数的相反数是3,那么这个数是()A.3 B.-3 C. D.6.下列式子正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4-147.一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-18.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-19.大于-2.2的最小整数是()A.-2 B.-3 C.-1 D.010.学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在()A.在家B.在学校C.在书店D.不在上述地方二、认真填一填(本题共30分)11.若上升15米记作+15米,则-8米表示。
人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)
人教版七年级上册数学《第四章几何图形初步》章节检测试卷《第四章几何图形初步》单元检测试卷(一)考试时间:60分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法正确的是( ).A.直线的一半是射线B.直线上两点间的部分叫做线段C.线段AB的长度就是A,B两点间的距离D.若点P使PA=AB,则P是AB的中点2.钟表在5点半时,它的时针和分针所成的锐角是( ).A.15° B.70° C.75° D.90°3.从点A看B的方向是北偏东35°,那么从B看A的方向是( ).A.南偏东55° B.南偏西55°C.南偏东35° D.南偏西35°4.如图是一正方体展开图,则“有”“志”“者”三面的对面分别是( ).A.事竟成B.事成竟C.成竟事D.竟成事5.下图中的三棱柱从正面、左面、上面看到的图形是( ).A.三个三角形B .两个长方形和一个三角形C .三个长方形D .两个长方形,且长方形内有一条连接对边的点的线段和一个三角形6.如图所示,点P ,Q ,C 都在直线AB 上,且P 是AC 的中点,Q 是BC 的中点,若AC =m ,BC =n ,则线段PQ 的长为( ).A .B . C.D . 7.如图所示的四个图形,可以折叠成棱柱的是( ).8.线段AB =5厘米,BC =4厘米,那么A ,C 两点间的距离是( ).A .1厘米B .9厘米C .1厘米或9厘米D .以上结果都不对9.已知一个角的余角的补角是这个角补角的,则这个角的余角度数是( ). A .90° B .60° C .30° D .10°10.轮船从A 地出发向北偏东70°方向行驶了4海里到达B 地,又从B 地出发向南偏西20°方向行驶了5海里到达C 地,则∠ABC 等于( ).A .90°B .50°C .110°D .70°二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.植树时只要先确定两个树坑的位置,就能确定一行树所在的位置,其根据是__________.12.已知线段AB =9厘米,在直线AB 上画线段BC ,使它等于3厘米,则线段AC =__________.13.若∠AOB =40°,∠BOC =60°,则∠AOC =__________.14.53°40′30″×2-75°57′28″÷2=__________.15.已知线段AB =3厘米,延长AB 到C ,使BC =2AB ,若D 为AB 中点,则线段3m 2n 2m n +2m n -45DC 的长为__________.16.8°44′24″用度表示为__________,110.32°用度、分、秒表示为__________.17.如图是一套三角尺组成的图形,则∠AFD =____________,∠AEB =__________,∠BED =____________.18.∠α与∠β互补,若∠α=47°37′,则∠β=__________.19.将线段AB 延长到C ,使BC=,延长BC 到D ,使CD =,延长CD到E ,使DE =,若AE =80厘米,则AB =__________. 20.在圆柱的展开图中,圆柱的侧面展开图为__________,棱柱的侧面展开图为三、解答题(本大题共5小题,共40分)21.(6分)如图所示的一张纸:(1)将其折叠能叠成什么几何体?(2)要把这个几何体重新展开,最少需要剪开几条棱?22.(7分)如图所示,点E ,F 分别是线段AC ,BC 的中点,若EF =3厘米,求线段AB 的长.23.(8分)如图所示,直线AB ,CD ,EF 都经过点O ,且AB ⊥CD ,OG 二等分∠BOE ,如果∠EOG =∠AOE ,求∠EOG ,∠DOF 和∠AOE 的度数.13AB 13BC 13CD 2524.(9分)如图所示,设相邻两个角∠AOB ,∠BOC 的平分线分别为OE ,OF ,且∠EOF 是直角,你能说明OA ,OC 为什么成一条直线吗?试试看吧!25.(10分)某校七年级学生李刚在周六下午六点多钟外出买东西时,看手表上的时针和分针的夹角是110°,下午近七点回家时,发现时针和分针的夹角又是110°,你能知道李刚同学外出用了多长时间吗?你是怎么知道的呢?参考答案1答案:C2答案:A 点拨:由于5点半时,时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,即×30°=15°. 3答案:D4答案:A5答案:D6答案:C 点拨:PQ =PC +CQ =. 7答案:C 点拨:由于棱柱的上底与下底分别在两边,所以A ,B ,D 都不对. 8答案:D 点拨:C 点可能在线段AB 内,亦可能在线段AB 的延长线上,还可能在直线AB 外.9答案:B 点拨:设这个角为∠α,则180°-(90°-∠α)=, ∴∠α=30°.∴90°-∠α=90°-30°=60°.10答案:B11答案:两点确定一条直线12答案:6厘米或12厘米 点拨:由于点C 的位置不确定,所以要分情况讨论:当C 在线段AB 上时,AC =AB -BC =9-3=6(厘米);当C 在AB的延长线上时,1211222m n AC BC ++=4(180)5a ︒-∠AC =AB +BC =9+3=12(厘米).13答案:100°或20°14答案:69°22′16″15答案:7.5厘米16答案:8.74° 110°19′12″17答案:135° 30° 60°18答案:132°23′19答案:54厘米 点拨:设DE =x 厘米,则CD =3x 厘米,BC =9x 厘米,AB =27x 厘米,∴AE =x +3x +9x +27x =80,解得x =2,∴AB =54厘米. __________,圆锥的侧面展开图为__________.20答案:长方形 长方形 扇形21解:(1)三棱柱.(2)最少剪开5条棱.22解:∵E ,F 分别是AC ,BC 的中点,∴EC =,FC =, ∴EF =EC -FC =-===3(厘米), ∴AB =6厘米.23解:∵∠EOG =,OG 平分∠BOE , ∴∠BOE =. ∵∠AOE +∠BOE ==180°, ∴∠AOE =100°,∠BOE ==×100°=80°,∴∠EOG =40°. ∵AB ⊥CD ,∠EOF =180°,∴∠DOF =180°-∠BOE -∠BOD =180°-80°-90°=10°.24解:根据题意可得:∠AOE =∠BOE ,∠COF =∠BOF ,∠EOF =90°, ∴(∠AOE +∠EOB )+(∠COF +∠BOF )=2×90°=180°,即∠AOB +∠BOC =180°,∴∠AOC =180°,12AC 12BC 12AC 12BC 1()2AC BC -12AB 25AOE ∠45AOE ∠95AOE ∠45AOE ∠45∴AO ,OC 成一直线(即A ,O ,C 三点共线).25解:设时针从李刚外出到回家走了x °,则分针走了(2×110°+x °), 由题意,得,解得x =20, 因时针每小时走30°,则小时,即李刚外出用了40分钟时间.《第四章 几何图形初步》单元检测试卷(二)姓名:________班级:_____得分:_________一 选择题:1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.5B.6C.7D.82.如图,把一个正方形三次对折后沿虚线剪下则得到的图形是 ( )3.下列四个图中能用,,三种方法表示同一个角的是( )A. B. C. D.22036030x x ︒+︒︒=︒︒202303︒=︒4.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.5.下列说法中,正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,垂线最短;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.下列命题中是真命题是()A.锐角大于它的余角B.锐角大于它的补角C.钝角大于他的补角D.锐角与钝角之和等于平角7.下列举反例说明“一个角的余角大于这个角”是假命题的四个选项中,错误的是( )A.设这个角是45°,它的余角是40°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°8.把两条线段AB和CD放在同一条直线上比较长短时,下列说法错误的是()A.如果线段AB的两个端点均落在线段CD的内部,那么AB<CDB.如果A,C重合,B落在线段CD的内部,那么AB<CDC.如果线段AB的一个端点在线段CD的内部,另一个端点在线段CD的外部,那么AB〉CDD.如果B,D重合,A,C位于点B的同侧,且落在线段CD的外部,则AB〉CD9.下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线⑥直线经过点A,那么点A在直线上.A.2个B.3个C.4个D.5个11.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cmB.1cmC.5或1 cmD.无法确定12.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为()A.8.1cmB.9.1cmC.10.8cmD.7.4cm13.经过同一平面内A、B、C三点可连结直线的条数为( )A.只能一条B.只能三条C.三条或一条D.不能确定14.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于()A.1B.2C.3D.415.如图∠AOB是平角,过点O作射线OE,OC,OD.把∠BOE用图中的角表示成两个角或三个角和的形式,能有几种不同的表示方法()A.2种 B.3种 C.4种 D.5种16.如图,甲从 A 点出发向北偏东 70°方向走到点 B,乙从点 A 出发向南偏西15°方向走到点 C,则∠BAC 的度数是()A.85° B.160° C.125°D.105°17.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°18.如图,∠AOB=∠COD,若∠AOD=110º,∠BOC=70º,则以下结论正确的个数为()①∠AOC=∠BOD=90º②∠AOB=20º③∠AOB=∠AOD-∠AOC ④A.1个B.2个C.3个D.4个19.一个角比它的余角大18°22′46″,则这个角的补角的度数为( )A.35°48′37″B.144°11′23″C.125°48′37″D.36°11′23″20.如图所示, 两人沿着边长为90m的正方形, 按A→B→C→D→A……的方向行走. 甲从A点以65m/min的速度、乙从B点以72m/min的速度行走, 当乙第一次追上甲时, 将在正方形的()(A)AB边上(B)DA边上(C)BC边上(D)CD边上二填空题:21.如图,点C是的边OA上一点,D、E是边OB上两点,则图中共有条线段,条射线,个小于平角的角。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
人教版七年级数学上册《第4章几何图形初步》单元测试题人教版(有答案)
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题)1.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段3.已知A、B、C三点,过其中任意两点画直线,一共可以画多少条直线()A.1B.3C.3或1D.无数条4.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 5.将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是()A.B.C.D.6.下列图形中,不是正方体平面展开图的是()A.B.C.D.7.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面8.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC 为()A.70°B.65°C.55°D.45°9.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 10.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°二.填空题(共8小题)11.若∠A=52°16'32'',则∠A的补角为.12.班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米),则此长方体包装盒的体积为立方毫米(用含x、y的式子表示).13.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠COD=,∠BOC=,∠AOB=.14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为.17.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.18.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为.三.解答题(共8小题)19.(1)如图,已知点C在线段AB上,AC=8cm,BC=6cm,M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)题中,如果AC=acm,BC=bcm,其他条件不变,求此时线段MN的长度.20.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=25°,OD平分∠COE,(1)写出图中所有互补的角.(2)求∠COB的度数.21.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)22.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.25.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长参考答案与试题解析一.选择题(共10小题)1.解:根据题意可知,盒子里的水能形成的几何体是长方体,三棱柱,三棱锥;不可能是正方体.故选:A.2.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.3.解:如图最多可以画3条直线,最少可以画1条直线;.故选:C.4.解:最短的路线是A→F→E→B.故选:D.5.解:∵∠1+∠2+90°=180°,∴1+∠2=90°,即∠1和∠2互余,因此A选项符合题意;选项B中的∠1=∠2,因此选项B不符合题意;选项C中的∠1=∠2=135°,因此选项C不符合题意;可求出选项D中的∠1=45°,∠2=60°,因此选项D不符合题意;故选:A.6.解:根据正方体的展开图的特征可知,共有11种情况,可以分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,没有“1﹣2﹣3型”的,因此选项B不是正方体平面展开图,故选:B.7.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.8.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故选:C.9.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.10.解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.二.填空题(共8小题)11.解:∵∠A=52°16'32'',∴∠A的补角=180°﹣52°16'32''=127°43′28″,故答案为:127°43′28″.12.解:将展开图折叠,可得长、宽、高为y毫米、x毫米、65毫米的长方体,于是,体积为y•x×65=65xy立方毫米,故答案为:65xy.13.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=3×15°=45°,∠BOC=∠COD﹣∠BOD=45°﹣15°=30°,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=30°=∠AOB,∴∠AOB=60°,故答案为:45°,30°,60°.14.解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°﹣44°=36°,故答案为:36°.15.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.16.解:AC的长度有两种情况:①点C在线段AB的延长线时,如图1所示:∵AC=AB+BC,AB=1cm,BC=3cm,∴AC=1+3=4cm;②点C在线段AB的反向延长线时,如图2所示:∵AC=BC﹣AB,AB=1cm,BC=3cm,∴AC=3﹣1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.17.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.18.解:如图所示:∴AC=AB+BC,AB=20,BC=8,∴AC=20+8=28,又∵点O是线段AC的中点,∴AO=CO===14,又∵OB=OC﹣BC,∴OB=14﹣8=6,故答案为6.三.解答题(共7题)19.解:(1)∵AC=8cm,点M是AC的中点,∴CM=AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm;(2)∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∵AC=acm,BC=bcm,∴MN=(AC+BC)=cm.20.解:(1)∵点A,O,E在同一直线上,∴∠AOB+∠BOE=180°,∠AOC+∠COE=180°,∠AOD+∠DOE=180°,∵OD平分∠COE,∴∠COD=∠DOE,∴∠COD+∠AOD=180°.∴图中所有互补的角有:∠AOB与∠BOE,∠AOC与∠COE,∠AOD与∠DOE,∠COD 与∠AOD.(2)因为∠EOD=25°,OD平分∠COE,所以∠COE=2∠EOD=50°,所以∠COB=180°﹣∠AOB﹣∠COE,=180°﹣40°﹣50°=90°.21.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.22.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.25.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.。
人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析
《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
七年级上册《数学》第四章测试卷(含答案)
七年级上册《数学》第四章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.下列四个几何体中,从左面看为圆的是()2.下列图形中,∠1和∠2互为余角的是()3.(2020·江西中考)如图所示,正方体的展开图为()4.由5块完全相同的小正方体所搭成的几何体从上面看到的平面图如图所示,小正方形中的数字表示在该位置小正方体的个数,则从正面看到的平面图形是()5.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短6.(2020·四川自贡中考)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°7.将一长方形纸片按下图的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°8.如图,把左侧的图形折叠后,围成的几何体是()二、填空题(本大题共4小题,每小题4分,共16分)9.已知一个角的补角等于它的余角的6倍,则这个角的大小为.10.13°53'×3-32°5'31″=.11.如图,以O为端点画六条射线OA,OB,OC,OD,OE,OF后,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线.若将各条射线上所描的点依次记为1,2,3,4,5,6,7,8…,则所描的第2021个点在射线上.12.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,从三个方向看到的平面图形如图所示,则n的值是.三、解答题(本大题共5小题,共52分)13.(10分)已知:线段a,b(a>b),用尺规作一条线段,使它等于3a-2b.14.(10分)如图,在一张城市地图上有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,试在图上确定图书馆的位置.15.(10分)如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和(OA+OB+OC+OD)最小,并说出理由.16.(10分)如图,已知∠AOC=60°,∠BOD=90°,∠AOB的度数是∠DOC的3倍,求∠AOB的度数.17.(12分)如图,∠AOB=90°,OC,OD分别是∠AOE,∠BOE的平分线.(1)求∠COD的度数;(2)若∠AOB=α°,其他条件不变,则∠COD=°;(3)你从(1),(2)的结果中能发现什么规律?(不必证明)七年级上册《数学》第四章测试卷答案一、选择题1.D2.D3.A4.B5.D由题意可知,从原图形中剪掉一部分后,其中的剪痕是线段,而剪掉部分是曲线,根据两点之间,线段最短可知,剩下树叶的周长比原树叶的周长要小.6.C7.C本题考查角平分线和平角的概念.由图的折叠可知BC,BD分别是∠ABA',∠E'BE的平分线,而∠ABE是一个平角,故∠CBD=90°.8.D上下左右的小正方形恰好拼成正方体的一个面,且涂色部分处于斜对角的位置.二、填空题9.72°;设这个角的大小为x°,列方程得180°-x°=6(90°-x°),解得x°=72°.10.9°33'29″原式=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.11.OC因为点在6条射线上逆时针依次循环出现,所以点的序号除以6所得余数也循环出现.2021÷6=336……5,而点3在射线OE上,所以点2021也在射线OE上.12.7正面看的图形有2列,每列中正方形的个数分别为1和3,故从上面看到的图形中,第1列的两个正方形分别记上1,1,第2列分别记上3,3;从左面看的图形有2列,每列中正方形个数分别为3,2,故从上面看到的图形中,第1行的两个正方形分别记上3,3,第2行分别记上2,2,取从上面看的图中每个正方形中较小的数字相加,得n=4+2+1=7.三、解答题13.解:作法:(1)作射线OM,如图所示;(2)用圆规在射线OM上依次截取OA=AB=BC=a;(3)用圆规在射线OM上依次截取OD=DE=b.则线段EC就是所求作的线段,其长为3a-2b.14.解:如图,点P就是图书馆所在的位置.15.解:要使OA+OB+OC+OD最小,则点O是线段AC,BD的交点.理由如下:如果存在不同于点O的交点P,连接PA,PB,PC,PD,那么PA+PC>AC,即PA+PC>OA+OC,同理,PB+PD>OB+OD,因此PA+PB+PC+PD>OA+OB+OC+OD,即点O是线段AC,BD的交点时,OA+OB+OC+OD之和最小.16.解:因为∠AOD=∠AOC-∠DOC=60°-∠DOC,∠BOC=∠BOD-∠DOC=90°-∠DOC,所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠DOC+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.所以∠DOC=37.5°.所以∠AOB=3×37.5°=112.5°.17.解:(1)∠COD=∠COE-∠DOE=12∠AOE-12∠BOE=12(∠AOE-∠BOE)=12∠AOB=12×90°=45°.(2)12α.(3)∠COD 的度数总等于∠AOB 的一半.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《平面图形及其位置关系》
检测时间:__________ 姓名:__________ 成绩:__________
一、选择题 (每小题4分,共32分)
1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是( )
A、AB=8㎝,BC=19㎝,AC=27㎝;
B、AB=10㎝,BC=9㎝,AC=18㎝
C、AB=11㎝,BC=21㎝,AC=10㎝;
D、AB=30㎝,BC=12㎝,AC=18㎝
2、下列推理中,错误的是( )
A、在m、n、p三个量中,如果m=n, n=p,那么m=p.
B.在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;
C.a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;
D.a、b、c是同一平面内的三条直线,如果a丄b,b丄c,那么a丄c;
3、垂直是指一位置特殊的( )
A、直线
B、直角
C、线段
D、射线
4.如图,四条表示方向的射线中,表示北偏东60°的是( )
5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,
那么∠ABC的度数是( )
A、75°
B、105°
C、45°
D、135°
6、同一平面内互不重合的三条直线的公共点的个数是( )
A、可能是0个,1个,2个
B、可能是0个,2个,3个
C、可能是0个,1个,2个或3个
D、可能是1个可3个
7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是( )
A、AB∥CD
B、∠B+∠C=180°
C、∠B=∠C
D、∠C+∠D=180°
8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则( )
A、AP>5㎝;
B、AP≥5㎝;
C、AP=5㎝;
D、AP<5㎝
9、下列说法中正确的是( )
A、8时45分,时针与分针的夹角是30°
B、6时30分,时针与分针重合
C 、3时30分,时针与分针的夹角是90°
D 、3时整,时针与分针的夹角是30°
10、下列说法正确的是( )
A 、过一点能作已知直线的一条平行线;
B 、过一点能作已知直线的一条垂线
C 、射线AB 的端点是A 和B ;
D 、点可以用一个大写字母表示,也可用小写字母表示
二.填空题(本大题共 6小题,每小题 5分,共 30分)
11、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子_____________________,原因是
__________________;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是
12、如图1,AB 的长为m ,OC 的长为n ,MN 分别是AB ,BC 的中点,则MN=_____
13、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.
AB +BC_____AC , AC +BC_____AB , BC_____AB +AC ,理由是__________
14、计算:48°39′+67°41′=_________;90°-78°19′40″=___________
21°17′×5=_______; 176°52′÷3=_________(精确到分)
15、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为
_______________;两个角的和为90°的角有_____对;两个角的和为180°的角有________对.
16、面上两条直线的位置关系只有两种,即__________和_________________
17、平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.
18、面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.
三、解答下列各题
19、要注意“几何语言”的学习,如图甲,称作“点A 在直线l 外”,请在图乙标上字母,用“几何
语言”说出该图的意义(7分)
20、 如图,已知∠AOB ,画图并回答:(9分)
⑴画∠AOB 的平分线OP ;
甲
A · l
⑵在OP 上任取两点C 、D ,过C 、D 分别画OA 、OB 的垂线,交OA 于E ,F ,交OB 于G 、H , ⑶量出CE ,CG ,DF ,DH
⑷过C 作MC ∥OB 交OA 于M 21、如图,用量角器量出图中∠1,∠2,∠3)
22、如图所示,OA 丄OB ,OC 丄OD ,OE 为∠BOD ∠AOC 的度数(8分)
23、如图所示,A 、B 、C 、D 、E 五个城市,它们之间原有道路相通,现在打算在C 、 E
两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交
桥的位置?应架设几座立交桥?(11分)
24、在桌面上放了一个正方体的盒子,一只蚂蚁在顶点A 处,它要爬到顶点B 处,你能帮助蚂蚁设计一条最短的爬行路线吗?
第四单元《平面图形及其位置关系》
参 考 答 案
一、选择题
1、B 2.D 3.A 4.B 5,C 6.C 7.D 8.B 9.D 10.B
二、填空题
11.旋转 过一点可以作无数条直线 两点确定一条直线
12. )(2
1n m 13、> > < ,两点之间线段最短 14、⑴116°20′ ⑵11°40′20″;⑶106°25′;⑷58°57′
15、3 ∠AOC=∠BOC , ∠BOC=∠DOE ,∠DOE=∠AOC 4, 3
16、相交 平行 17、12 18、10 0
三.解答题
19、20.略 21.∠1=∠2+∠3 22、145°24′
23、连结CD 和AD ,BD 的交点处架立交桥 2座
24、取BB ′的中点M ,连结CM ,MA ′,由图中正方体部分展开图及两点之间线段最短知
B。