第一章 半导体物理基础 (二)解析

合集下载

第一章 半导体物理基础2

第一章 半导体物理基础2

Ec
Ei
EV
(c) (d) (e)
EF
(a)
(b )
强p型
p型
本征
n型
强n型
费米能级EF反映的是电子在不同能态上的填充水平
半导体材料与器件
当温度一定时,n0 、p0之积与EF无关;这表明:导带电 子浓度与价带空穴浓度是相互制约的,这是动态热平 衡的一个反映。
Ec EF EF Ev n0 p0 N c N v exp exp kT kT Ec Ev Eg / kT N c N v exp Nc Nve kT
由于kT是个很小的能量值(常温下),对于常见的 半导体(Si、Ge、GaAs)来说,其禁带能量要远 大于kT,从而使得费米能级相对于禁带中央的偏移 总是很小(几十meV) Eg(Si): 1.12eV
50meV
半导体材料与器件
掺杂原子与能级 为什么要掺杂?
半导体的导电性强烈地随掺杂而变化
硅中的施主杂质与受主杂质
*
3/ 2
其中Nv为价带的有效状态密度
2 m p kT Nv 2 2 h
*
3/ 2
半导体材料与器件
有效状态密度和有效质量有关 在一定温度下,特定半导体的有效状态密度为常量 平衡半导体的载流子浓度和费米能级EF的位臵密切相 关 Ec EF 指数项里的分子总 n0 N c exp 为负数,这保证了 kT EF Ev 指数项小于1,对应 于载流子浓度小于 p0 N v exp kT 状态密度的事实
3/ 2
T↑,NC、NV↑
f(EC) 、 f(EV) ~T

第一章 半导体物理基础解析

第一章 半导体物理基础解析
• 态密度
– 在能带中,能量E附近单位能量间隔内的量子 态数
g(E) dZ/dE
在量子力学中,微观粒子的运动状态称为量子态
费米-狄拉克统计分布规律
• 温度为T(绝对温度)的热平衡态下,半导体中电子占据能量为E
的量子态的几率是
f (E)
1
exp( E EF ) 1
kT
– k是玻尔兹曼常数,EF是一个与掺杂有关的常数,称为费米能级。 – 当E-EF>>kT时,f(E)=0,说明高于EF几个kT以上的能级都是空的;而当E-EF<<kT
• 平均自由时间愈长,或者说单位时间内遭受散射的次数愈少, 载流子的迁 移率愈高;电子和空穴的迁移率是不同的,因为它们的平均自由时间和有 效质量不同。
Hall效应
• 当有一方向与电流垂直的磁场作用于一有限半导体时, 则在半导体的两侧产生一横向电势差,其方向同时垂直 于电流和磁场,这种现象称为半导体的Hall效应。
简化能带图
1.3 半导体中的载流子
• 导带中的电子和价带中的空穴统称为载流子, 是在电场作用下能作定向运动的带电粒子。
满带
E
当电子从原来状态转移 到另一状态时,另一电子 必作相反的转移。没有额 外的定向运动。满带中电 子不能形成电流。
半(不)满带
E
半满带的电子可在外 场作用下跃迁到高一 级的能级形成电流。
能带结构:
(“施主能级”)
空带 施主能级 施主能级与上
空带下能级的
Eg
能级间隔称“
ED 施主杂质电离
满带
能”( ED )
导电机制:
空带
Eg
满带
施主能级
这种杂质可提 供导电电子故
ED 称为施主杂质

半导体物理_01基础知识概论

半导体物理_01基础知识概论

3、晶体中电子的状态——布洛赫定理与波函数的形式
波函数的形式——布洛赫定理证明:
定义平移算符Tˆ
r am
:

r am
f
xr
f
xr
mar
特点:Tˆ arm Tˆ arn Tˆ arn Tˆ arm 互易性
可以证明:Tˆ
r am

xr
HˆTˆ
r am
xr

xr
mar
因此,若 xr 是 Hˆ 的本征函数,则经过平移后的 xr mar
− N个Si原子组成晶体,形成的两个能带不与s、p能级相对
应,它们都包含2N个状态,各可容纳4N个电子:下面一个 能带填满4N个价电子,通常称为满带(价带);上面一个能带 是空的,称为空带(导带);二者之间是不允许电子状态存在 的禁区——禁带。
1.2.2 半导体中电子的状态和能带(数学分析)1
1、数学物理模型和近似
0
a
k
a
布里渊区按照E(k)的不连续点进行划分,对于一维晶体:
第一布里渊区 第二布里渊区
k
a
a
2 k ,
a
a
k 2
a
a
禁带在布里渊区边界,允带 在布里渊区之内
以此类推,有第三、第四布里渊区
1.2.2 半导体中电子的状态和能带(数学分析)11
3、晶体中电子的状态——布里渊区与能带 − E~ k关系的不连续点对应禁带,在布里渊区边界;
uk x na uk x
以上就是布洛赫定理
自由电子波函数
1.2.2 半导体中电子的状态和能带(数学分析)7
3、晶体中电子的状态——晶体中的电子与自由电子的比较 ➢ 波函数形式相似

国科大-半导体器件物理

国科大-半导体器件物理

国科⼤-半导体器件物理第⼀章半导体物理基础1.主要半导体材料的晶体结构。

简单⽴⽅(P/Mn)、体⼼⽴⽅(Na/W)、⾯⼼⽴⽅(Al/Au)⾦刚⽯结构:属⽴⽅晶系,由两个⾯⼼⽴⽅⼦晶格相互嵌套⽽成。

Si Ge闪锌矿结构(⽴⽅密堆积),两种元素,GaAs, GaP等主要是共价键纤锌矿结构(六⽅密堆积),CdS, ZnS闪锌矿和纤锌矿结构的异同点共同点:每个原⼦均处于另⼀种原⼦构成的四⾯体中⼼,配种原⼦构成的四⾯体中⼼,配位数4不同点:闪锌矿的次近邻,上下彼此错开60,⽽纤锌矿上下相对2.⾦属、半导体和绝缘体能带特点。

1)绝缘体价电⼦与近邻原⼦形成强键,很难打破,没有电⼦参与导电。

能带图上表现为⼤的禁带宽度,价带内能级被填满,导带空着,热能或外场不能把价带顶电⼦激发到导带。

2)半导体近邻原⼦形成的键结合强度适中,热振动使⼀些键破裂,产⽣电⼦和空⽳。

能带图上表现为禁带宽度较⼩,价带内的能级被填满,⼀部分电⼦能够从价带跃迁到导带,在价带留下空⽳。

外加电场,导带电⼦和价带空⽳都将获得动能,参与导电。

3)导体导带或者被部分填充,或者与价带重叠。

很容易产⽣电流3.Ge, Si,GaAs能带结构⽰意图及主要特点。

1)直接、间接禁带半导体,导带底,价带顶所对应的k是否在⼀条竖直线上2)导带底电⼦有效质量为正,带顶有效质量为负3)有效质量与能带的曲率成反⽐,导带的曲率⼤于价带,因此电⼦的有效质量⼤;轻空⽳带的曲率⼤,对应的有效质量⼩4.本征半导体的载流⼦浓度,本征费⽶能级。

5.⾮本征半导体载流⼦浓度和费⽶能级。

<100K 载流⼦主要由杂质电离提供杂质部分电离区(凝固区) 。

100~500K,杂质渐渐全部电离,在很⼤温度范围内本征激发的载流⼦数⽬⼩于杂质浓度,载流⼦主要由掺杂浓度决定。

饱和电离区。

>500K,本征激发的载流⼦浓度⼤于掺杂浓度,载流⼦主要由本征激发决定。

本征区。

6.Hall效应,Hall迁移率。

半导体物理基础(1-2)1

半导体物理基础(1-2)1

(3) Miller Indices
(2 3 6)
B:(1 0 1) A: (2 0 1) 或 (2 0 1)
等效晶面
<100>
(4)Interplanar spacing
(hkl)planes: d
a h2 k2 l2
a— Lattice constant
(5)the angle θbetween [h1k1l1] and [h2k2l2]:
这种束缚比共价键的束缚弱得多,只要很少的能量就可以使 它挣脱束缚,成为导带中的自由粒子.这个过程称杂质电离.
结论: 磷杂质在硅、锗中电离时,能够释放电子而产生导 电电子并形成正电中心。这种杂质称施主杂质 。掺施主 杂质后,导带中的导电电子增多,增强了半导体的导电能 力。
主要依靠导带电子导电的半导体称n型半导体。
Ec EF k0T
)
2
2
2
mnk0T h3
3 2
Ec EF
e k0T
Ec EF
Nce k0T
导带的有效状态密度Nc
电子占据量子 态Ec的几率
2. Hole concentration (价带中的空穴浓度)
*状态密度:
gV
(E)
4V
(2mp )3/ 2 h3
(EV
E)1/ 2
*分布函数fV(E)
fV E 1 f E
1
EEF
e k0T 1
fV(E)表示空穴占据能态E的几率,即能态E不被电子占据的几率。
当 EF E k0T
EF E
f E e k0T
*价带空穴浓度p0
1 EV
p g 0
V
V Ebottom

半导体物理基础第一章课件

半导体物理基础第一章课件
42
1.7.5只有一种杂质的半导体
• 2、P型半导体
• 在杂质饱和电离的温度范围内有:p N a • 导带电子浓度为: n ni2 ni2
p Na
• 费米能级为
EF

EV
KT ln
NV Na
EF

Ei
KT
ln
Na ni
43
1.7.5只有一种杂质的半导体
• 结论:对于P型半导体,在杂质饱和电离 温度范围之内,费米能级位于价带顶之上, 本征费米能级之下。随着掺杂浓度提高, 费米能级接近价带顶;随着温度升高,费 米能级远离价带顶。
成共价键时,将因缺少一个价电子而形 成一个空穴,于是半导体中的空穴数目 大量增加。
22
1.6杂质能级
• Acceptor,掺入半导体的杂质原子向半导 体中提供导电的空穴,并成为带负电的 离子。
• 掺入受主杂质的半导体为P(Positive)型 半导体。施主杂质的浓度记为NA。
23
1.6杂质能级
• 受主接受电子称为受主杂 志,提供了一个局域化的 电子态,相应的能级称为 受主能级—Ea。
NV

2 2mdp KT
h3
3 2
• 称为价带有效状态密度
34
1.7.3能带中电子和空穴的浓度
• 导带电子浓度和价带空穴浓度之积
Eg
np Nc NV e KT • 式 把中它E写g为成禁经带验宽关度系。式与E温g 度有E关g0 , 可T以
• 其 时中的Eg值为。禁带宽度温度系数,Eg0为0K
Chap1 半导体物理基础
1
1.2 能带
一、能带的形成 • 能级:电子所处的能量状态。 • 当原子结合成晶体时,原子最外层的价

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。

半导体物理课件:第一章 半导体中的电子状态

半导体物理课件:第一章  半导体中的电子状态

14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分

半导体物理 课后习题答案解析

半导体物理 课后习题答案解析

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。

单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。

由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。

从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。

1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k关系决定。

1.4本征半导体既无杂质有无缺陷的理想半导体材料。

1.4空穴空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

它引起的假想电流正好等于价带中的电子电流。

01.第一章 半导体物理基础2

01.第一章 半导体物理基础2

1000 500 200 100 50 20 10000 5000 2000 1000 500 200 100
1 0
1 4
20 10 5
µ p, Dp
1 0
1 5
2 1
1 0
1 6
1 0
1 7
GaAs
200 100 50
µ n , Dn
µ p , Dp
20 10 5
1018 1019 10 20
半导体物理基础 第一章 半导体物理基础
载流子漂移

J p = qpµ p E
vx = µ p E
JP E y = ( ) Bz = RH J P Bz . qp 1 称为霍耳系数 RH ≡ . qp
J P Bz ( I / A) Bz IBzW 1 p= = = = . qRH qE y q(VH / W ) qVH A
其中方程式右边的所有量皆可被测量出。可见,载流子浓度及 半导体的导电类型均可直接从霍耳效应测量中获得。 对n型半导体而言,亦可获得类似 的结果,但其霍耳系数为负
E y = vx Bz
I +
V
-
时达到平衡,在y方向产生一电势差。这一现象称为霍耳效应 霍耳效应。 霍耳效应
半导体物理基础 第一章 半导体物理基础
载流子漂移
霍耳效应的意义
可直接测量载流子浓度 判别半导体导电类型 证实空穴以带电载流子方式存在的最令人信服的方法之一。
半导体物理基础 第一章 半导体物理基础 理论依据 根据 所以 其中 因此
1
N-GaAs N-Si
10-1
10-2
10-3
10-4
12 10
13 10
14 10

(整理)半导体器件物理教学内容和要点

(整理)半导体器件物理教学内容和要点

教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的NP 结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想NP-结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节VI-特性的温度依赖关系一、反向饱和电流和温度的关系二、VI-特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应τ二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(MollEbers-)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE 和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm 、gbe、CD的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td 、tr、tf、ts三、解电荷控制方程求贮存时间ts 第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gmlgmCG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、 M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S 功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节 等效电路和频率响应一、参数:g d g m r d 二、等效电路 三、截止频率第七节 亚阈值区一、亚阈值概念二、MOSFET 的亚阈值概念第九节 MOS 场效应晶体管的类型一、 N —沟增强型 N —沟耗尽型 二、 P —沟增强型 P —沟耗尽型第十节 器件尺寸比例MOSFET 制造工艺 一、P 沟道工艺 二、N 沟道工艺 三、硅栅工艺 四、离子注入工艺第七章 太阳电池和光电二极管 第一节半导体中光吸收一、两种光吸收过程 二、吸收系数 三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式 五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m二、效率的概念%100⨯=inLOC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程 二、例1-1,求少子分布,电流分布 三、计算光子收集效率:On pt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响 理解Fig7-9,Fig7-10所反映的物理意义第六节 提高太阳能电池效率的考虑一、光谱考虑 (多媒体演示) 二、最大功率考虑 三、串联电阻考虑 四、表面反射的影响 五、聚光作用第七节 肖特基势垒和MIS 太阳电池一、基本结构和能带图二、工作原理和特点 阅读 §7.8第九节 光电二极管一、基本工作原理 二、P-I-N 光电二极管 三、雪崩光电二极管四、金属-半导体光电二极管第十节 光电二极管的特性参数一、量子效率和响应度 二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP ) 四、探测率(D )、比探测率(D *)第八章 发光二极管与半导体激光器 第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合 二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED 的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED 的特性参数一、I-V 特性二:量子效率:注射效率γ、辐射效率r η、内量子效率i η ,逸出概率o η、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布 ,峰值半高宽 FWHM,峰值波长 ,主波长 ,亮度第四节 可见光LED一、GaP LED 二、GaAs 1-x P x LED 三、GaN LED第五节 红外 LED一 、性能特点二、 应用 光隔离器 阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。

大学物理课件半导体基础

大学物理课件半导体基础
电子技术 模拟电路部分
第一章
半导体器件
(1-1)
第一章 半导体器件
§ 1.1 半导体的基本知识 § 1.2 PN 结及半导体二极管 § 1.3 特殊二极管 § 1.4 半导体三极管 § 1.5 场效应晶体管
(1-2)
§1.1 半导体的基本知识
1.1.1 导体、半导体和绝缘体
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-25)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
பைடு நூலகம்触丝线
PN结
引线 外壳线
基片
二极管的电路符号: P
面接触型
N
(1-26)
二、伏安特性
I
死区电压 硅管 0.6V,锗管0.2V。
反向击穿 电压UBR
导通压降: 硅管0.6~0.7V, 锗管0.2~0.3V。
U
(1-27)
三、主要参数 1. 最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大 正向平均电流。
2. 反向击穿电压UBR
二极管反向击穿时的电压值。击穿时反向电 流剧增,二极管的单向导电性被破坏,甚至 过热而烧坏。手册上给出的最高反向工作电 压UWRM一般是UBR的一半。
集电极
N
B
P
基极
N
集电极 C PNP型
P
B
N
基极
P
E
发射极
E

半导体物理学讲义

半导体物理学讲义

半导体物理学讲义第⼀章半导体中的电⼦状态本章介绍:本章主要讨论半导体中电⼦的运动状态。

主要介绍了半导体的⼏种常见晶体结构,半导体中能带的形成,半导体中电⼦的状态和能带特点,在讲解半导体中电⼦的运动时,引⼊了有效质量的概念。

阐述本征半导体的导电机构,引⼊了空⽳散射的概念。

最后,介绍了Si、Ge和GaAs的能带结构。

在1.1节,半导体的⼏种常见晶体结构及结合性质。

在1.2节,为了深⼊理解能带的形成,介绍了电⼦的共有化运动。

介绍半导体中电⼦的状态和能带特点,并对导体、半导体和绝缘体的能带进⾏⽐较,在此基础上引⼊本征激发的概念。

在1.3节,引⼊有效质量的概念。

讨论半导体中电⼦的平均速度和加速度。

在1.4节,阐述本征半导体的导电机构,由此引⼊了空⽳散射的概念,得到空⽳的特点。

在1.5节,介绍回旋共振测试有效质量的原理和⽅法。

⾃学内容。

在1.6节,介绍Si、Ge的能带结构在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构第⼀节半导体的晶格结构和结合性质本节要点1.常见半导体的3种晶体结构;2.常见半导体的2种化合键。

1. ⾦刚⽯型结构和共价键重要的半导体材料Si、Ge都属于⾦刚⽯型结构。

这种结构的特点是:每个原⼦周围都有四个最近邻的原⼦,与它形成四个共价键,组成⼀个如图1(a)所⽰的正四⾯体结构,其配位数为4。

⾦刚⽯型结构的结晶学原胞,是⽴⽅对称的晶胞如图1(b)图所⽰。

它是由两个相同原⼦的⾯⼼⽴⽅晶胞沿⽴⽅体的空间对⾓线滑移了1/4空间对⾓线长度套构成的。

⽴⽅体顶⾓和⾯⼼上的原⼦与这四个原⼦周围情况不同,所以它是由相同原⼦构成的复式晶格。

其固体物理学原胞和⾯⼼⽴⽅晶格的取法相同,但前者含两个原⼦,后者只含⼀个原⼦。

原⼦间通过共价键结合。

共价键的特点:饱和性、⽅向性。

2. 闪锌矿结构和混合键III-V族化合物半导体绝⼤多数具有闪锌矿型结构。

闪锌矿结构由两类原⼦各⾃组成的⾯⼼⽴⽅晶胞沿⽴⽅体的空间对⾓线滑移了1/4空间对⾓线长度套构成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间电荷区的自建电场强度是非均匀电场, 电场强度是x的函数
21
2.2 加偏压的PN结
2.2.1 PN结的单向导电性 2.2.2 少数载流子的注入与输运
22
2.2.1 PN结的单向导电性
非平衡PN结
处于一定偏置状态下的 PN结称为非平衡PN结
当PN结两端加正向偏 压VF,即P区接电源的 正极,N区接电源的负 极,称为正向PN结。
PN结
P
N
3
PN 结类型
按材料分为同质结,和异质结 按导电类型分为同型结和异型结
按杂质的分布分为突变结和线性缓变结
4
2 、 PN结的形成过程
工艺方法 合金法 扩散法 生长法 离子注入法 光刻工艺(硅平面工艺)
5
合金法制造PN结过程
熔融
Al N-Si
P-Si
突变结
P区与N区的交界面处的杂质浓度分布是突变的, 此法称为合金结,又称突变结。
在一块N型硅片上放置一铝箔,铝箔上加一石墨压块,
并置于600℃以上的烧结炉中恒温处理5分钟,然后缓慢降温
经这样的处理后的硅片的上表面就形成可很薄的一层P型再结
晶层,PN结形成了。
6
突变结
P区与N区的杂质浓度都是分布均匀的 N型区施主杂质浓度为ND P型区受主杂质浓度为NA 在交界面处x = 0,杂质浓度由P型突变为N型
17
N
XN
XP
P
空间电荷区XM
一个平衡PN结中,空间电荷区以外的区域都是电中性的。 P区一侧的中性区称为P型中性区; N区一侧的中性区称为N型中性区。
18
扩散电势差 0
0
kT q
ln
NAND ni2
NA:P区受主掺杂浓度 ND:N区施主掺杂浓度 ni :本征载流子浓度
kT 0.026 V T 300K
P区
N区
杂 质
NA


ND
xj
x
7
突变结
单边突变结:当一侧的浓度远大于另一侧时
N+ P结: ND >> NA N0 ≈ NA P+ N结: NA >> ND N0 ≈ ND
ND NA
ND
0
x
NA
8
扩散法制造PN结过程
N
P
N-Si P-Si
杂 质
ND -NA


PN结两边的杂质浓度是非均匀的
A、线性缓变结近似
B、突变结近似
xj
x
10
2.1 热平衡PN 结
2.1.1 PN结空间电荷区 2.1.2 电场分布于电势分布
11
2.1.1 PN结空间电荷区
平衡PN结:指半导体在零偏压条件下的PN结。
PN 结内温度均匀、稳定,不存在外加 电压、光照、磁场、辐射等外作用平衡 状态。
12
◎平衡PN结能带图
EECi
EFP
EF
EEVi
EV
16
2.1.2电场分布与电势分布
PN结分为三部分:
1、中性区:远离空间电荷区P型和N型区多子浓度等于电离杂质 浓度,因而保持电中性。这时这部分区域称为 “中性区”。 2、边界层:既存在失去电子的空穴的杂质电离中心,又存在一 些自由载流子,电荷分布很复杂,可以推得边界层的宽度远小于 空间电荷区的宽度,通常可以忽略 3、耗尽区:在空间电荷区,杂质电离中心浓度较大,远大于自 由载流子浓度,相当于载流子浓度被耗尽,所以该区域称为耗尽 区或者耗尽层。
形成较大的电流, 正向偏压给PN结形成了低阻的 电流通路
24
PN结的反向特性 反向PN结
P区接负,N区接正
外加电场与内建电场方向相同
空间电荷区中的电场增强 反向电压使: 势垒区宽度变宽 势垒高度变高 qV0D↑q(V0 D+VR)
载流子运动形成的,由N区指向P区。
PN结的内建电势(接触电势) 0
由内建电场所导致的N区和P区的电位差。
15
平衡PN结能带图
2.1.1 平衡PN结能带图
0 : 接触电势差 (内建电势)
空间电荷区又称 势垒区 耗尽层
能带
电位 电子的电势能
空间电荷区
P
N
xp 内建电场 xn
0
q 0
qEEVCFDN
常按照一定的函数规律而变化。
ND NA aj x xj
xj
x
缓变结
在一块N型硅片上用化学方法涂敷一层含有Al2O3的乙醇 溶液,在红外线灯下干燥后,置于1250℃的扩散炉中进行高
温处理若干小时,然后缓慢降温。 9
实际PN结近似
N
P
缓变PN结附近杂质浓 杂

度有两种近似处理方 浓


ND -NA
空间电荷区
P
N
xp 内建电场 xn
0
q 0
质提供。这时空间电荷
EC
区又可称为“耗尽区”。 EFP
能带
qEVFDN
EECi EF
和N型侧的耗尽层宽度分别为xp和xn, 整个空间电荷层宽度表示为W=x n +x p
耗尽层宽度与扩散电势差有关,具体的计 算分情况讨论(了解)
对于P+N突变结
平衡PN结有统一的费密能级EF
13
空间电荷区的形成
空间电荷:带正电的电离施主和带负电荷的电离 受主都是固定在晶格点上不可移动, 称之为空间电荷。
空间电荷区:空间电荷所在的区域。
空间电荷不能移动,也不能传导电流。 14
一、空间电荷区的形成
内建电场E内: 空间电荷所产生的电场, 此电场不是由外部因素引起的,而是由PN结内部
-+
P
-+
N
-+
+-
正向PN结
-- ++
P -- ++ N
-- ++
反之,当PN结两端加反 向偏压VR则称反向PN结。
-+ 反向PN结
23
正向电压VF
外加电场与内建电场方向相反
空间电荷区中的电场减弱 势垒区宽度变窄 势垒高度变低
qVD0↓ q(VD-0 VF)
破坏扩散与漂移运动间的平衡 扩散运动 强于 漂移运动
1.2.5半导体的结
1
半导体的结-PN 结
PN 结是构成各种半导体器件的基本单元。
PN结中的载流子既有漂移运动,又有扩散运动; 既有产生,又有复合,这些性质集中反映在半导体 的导电特性中。
P区 NA
N区 ND
2
1、PN 结的形成
在同一块N型(或P型)半导体单晶上,用特定 的工艺方法把P型(或N型)杂质掺入其中,使这块 单晶相连的二个不同区域分别具有N型区和P型区的 导电类型,在二者交界面以及交界面两侧的过渡区 即称为PN结。
q
PN结的势垒高度与两边的掺杂浓度有关。
掺杂浓度越高,势垒高度越大。
从能带图可以看出:
N区掺杂浓度越高,N型区费米能级(EF)n越靠近导带底 P区掺杂浓度越高,P型区费米能级(EF)p越靠近价带顶 PN结势垒高度qVD也越大。
19
2、耗尽区
电位 电子的电势能
耗尽近似:假设空 间电荷区内的载流子完 全扩散掉,即完全耗尽, 空间电荷完全由电离杂
相关文档
最新文档