TSP问题分析
TSP问题算法分析
算法第二次大作业TSP问题算法分析021251班王昱(02125029)-.问题描述“TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。
TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。
二.算法描述2.1分支界限法2.1.1算法思想分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所需的解或活结点表为空时为止。
2.1.2算法设计说明设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri 。
在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down, up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。
对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即:bound(x1) >bound(x1,x2)》bound(x1,…,xn)若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。
再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。
直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。
2.2 A*算法算法思想对于某一已到达的现行状态,如已到达图中的n节点,它是否可能成为最佳路径上的一点的估价,应由估价函数f(n)值来决定。
智能优化-TSP-旅行商问题
智能优化实验报告基于遗传算法的TSP问题求解研究一、问题描述1、TSP问题的概述旅行商问题 (Traveling Salesman Problem,简称 TSP) 是一个经典的组合化问题。
它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城出发需要经过所有城市后回到出发地,应如何选择行进路线以使总行程短。
从图论的角度看,该问题实质是在一个带权完全无向图中找一个权值最的小回路。
在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。
旅行商问题也是经典的组合数学的问题,生活中随处可见这类组合数学问题。
例如,计算下列赛制下的总的比赛次数:n个球队比赛,每队只和其他队比赛一次。
在纸上画一个网络,用铅笔沿着网络的线路走,在笔不离开纸面且不重复线路的条件下,一笔画出网络图。
一个邮递员从邮局出发,要走完他所管辖的街道,他应该选择什么样的路径,这就是著名的“中国邮递员问题”。
一个通调网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。
库房和运输的管理也是典型的组合数学问题,怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取。
上述的这些例子中,其中一部分就和旅行商问题有关系。
2、TSP问题研究意义解决旅行商问题有着极其重要的理论和现实意义。
从理论层面来讲,解TSP不仅为其他算法提供了思想方法平台,使这些算法广泛地应用于各种组合优化问题;而且经常被用来测试算法的优劣,如模拟退火算法、禁忌搜索、神经网络、进化算法等,都可用旅行商问题来测试。
从实际应用层面来讲,旅行商问题作为一个理想化的问题,尽管多数的研究成果不是为了直接的应用,但却被广泛地转化为许多组合优化问题,最直接的就是其在交通、物流和大规模生产中的应用。
3、TSP问题的解决TSP问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。
TSP问题分析动态规划,分支界限法,蛮力法
算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成输入函数in()利用动态规划法算法实现的求解函数solve()主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明n 表示顶点个数。
mp[i][j] 表示顶点i和顶点j之间的距离。
dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
实验六:遗传算法求解TSP问题实验3篇
实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
分支限界法——TSP问题讲诉
算法中while循环的终止条件是排列树的一个叶结点成为 当前扩展结点。当s=n-1时,已找到的回路前缀是x[0:n1],它已包含图G的所有n个顶点。因此,当s=n-1时,相 应的扩展结点表示一个叶结点。此时该叶结点所相应的回 路的费用等于cc和lcost的值。剩余的活结点的lcost值不 小于已找到的回路的费用。它们都不可能导致费用更小的 回路。因此已找到叶结点所相应的回路是一个最小费用旅 行售货员回路,算法可结束。 算法结束时返回找到的最小费用,相应的最优解由数组v 给出。
0
当前最优解,故没必要扩展
结点C
结点I本身的费用已高于当前 最优解,故没必要扩展结点I
此时,优先队列为空,算法 终止。
算法的while循环体完成对排列树内部结点的扩展。
对于当前扩展结点,算法分2种情况进行处理:
①首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结 点。如果该叶结点相应一条可行回路且费用小于当前最小费用,则将该叶结 点插入到优先队列中,否则舍去该叶结点。 ②当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。由于当前扩展 结点所相应的路径是x[0:s],其可行儿子结点是从剩余顶点x[s+1:n-1]中选 取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。对于当前扩展结点 的每一个可行儿子结点,计算出其前缀(x[0:s],x[i])的费用cc和相应的下界 lcost。当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。
算法: 1.找出中间的蚂蚁离两端的距离中较小的。
a[2]=11
a[2]''=27-11=14, 因为a[2]<a[2]'',所以最小距离是11,时间11/1=11 2.找出两端的蚂蚁距两端的距离中较大的。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SW AP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
TSP的几种求解方法及其优缺点
v1.0 可编辑可修改TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
tsp
一、问题描述旅行商问题,即TSP问题(Travelling Salesman Problem)是指对给定一组n个城市和它们两两之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次而且总的旅行距离最短。
此问题是典型NPC组合优化问题(NPC=Non-deterministic Polynomial complete,即是多项式复杂程度的非确定性完全问题。
)。
优化问题有三个基本要素:变量、约束和目标函数。
在求解过程中,选定的基本参数称为变量;对变量取值的限制成为约束;表示可行方案衡量标准的函数成为目标函数。
二、问题分析与建模TSP问题的数学描述为:在一个边赋权的带权图中,寻找最小汉密尔顿回路。
对于N个城市的TSP问题,其城市的数目应为N。
若N个城市中,每两个城市之间都有连通的路径,其连通路径数目应为n*(n-1)/2。
而对于含有个顶点无向连接图来说,其完全图的边数也为n*(n-1)/2,因此可以用含有n个顶点的完全连通无向图来形象的描绘TSP问题的已知条件,而此完全连通无向图中每条边上的权值,可以表示TSP问题中每两个顶点之间的路径长度。
因此在其后的设计中,使用带权的完全无向连通图来分析TSP问题的求解过程。
一棵生成树是连通图的一个极小连通子图,它含有连通图中的全部n个顶点,一个连通图的最小生成树,是此图所有生成树中代价和最小的一棵生成树。
它与TSP问题所求路径有许多相同之处,它们都必须经过所有的n个顶点,n个顶点之间都是相互连通(但在TSP问题中,路径为回路),并且路径长度为最短。
因此,对于TSP问题的求解,可以借助于最小生成树的求解方法。
三、求解问题的算法用最小生成树解决TSP问题。
构造最小生成树可以有多种,其中一种为普里姆(Prim)算法。
算法的描述为::在含有n(n>1)个顶点的完全连通无向图中,任意选择一个顶点Vi作为起始点,在与顶点Vi相关联的n-1条边中,选择一条权值最小的边ei,此边可连接V i及图中另一个顶点Vj,然后在与V i或Vj相关联除ei以外的所有边中,选择权值最小的边ej,ej又可连接另外一个顶点(边的选则还要保证树中没有环的产生)。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点TSP(Traveling Salesman Problem)是一种NP-hard问题,其目标是找到一条路径,使得旅行商经过所有城市并返回原始城市的总距离最小。
由于TSP在实际应用中具有广泛的应用,很多研究者提出了多种方法来解决TSP问题。
本文将介绍几种常见的TSP求解方法及其优缺点。
1.枚举法枚举法是最简单直观的方法,它遍历所有可能的路径,并选择总距离最小的路径作为最优解。
由于TSP问题的解空间随问题规模呈指数级增长,这种方法只适用于规模较小的问题。
枚举法的优点是保证找到最优解,缺点是耗时较长。
2.最近邻法最近邻法从一个起始城市出发,每次选择与当前城市距离最近的未访问城市作为下一个城市。
直到所有城市都被访问一遍,并返回原始城市。
最近邻法的优点是简单易实现,缺点是容易陷入局部最优解,从而得不到整体最优解。
3.插入法插入法从初始路径开始,将未访问的城市不断插入到已访问城市之间,直到所有城市都被访问一遍。
插入方法有多种,比如最短边插入、最长边插入和最佳位置插入等。
插入法的优点是相对于最近邻法来说,可以得到更好的解。
缺点是算法复杂度较高,计算时间较长。
4.遗传算法遗传算法是一种群体智能算法,模拟生物进化的过程,通过遗传操作寻找优秀的解。
在TSP问题中,遗传算法可以将城市路径看作染色体,并通过选择、交叉和变异等操作进行优化。
遗传算法的优点是能够快速找到次优解,并且对于规模较大的问题也适用。
缺点是需要调节大量参数,算法收敛速度较慢。
5.动态规划动态规划是一种由上而下的分治思想,将原问题分解为若干子问题,通过求解子问题的最优解来求解原问题。
在TSP问题中,可以通过建立状态转移方程来求解最优路径。
动态规划的优点是求解过程中可以剪枝,避免重复计算,能够得到精确解。
缺点是算法时间复杂度较高,不适用于大规模问题。
以上是几种常见的TSP求解方法及其优缺点。
不同的方法适用于不同的问题规模和实际应用场景。
TSP问题的算法研究
TSP问题的算法研究简介旅行商问题(Traveling Salesman Problem,简称TSP)是指在旅行商(salesman)需要依次拜访多个城市,并最终返回起点城市的问题。
TSP是一个著名的NP-hard问题,在实际应用中有着广泛的应用。
本文将对TSP问题的算法研究进行探讨。
问题描述给定n个城市之间的距离矩阵D(n*n),以及起点城市,要求找到一条最短的路径,使得旅行商能够依次经过每个城市,并最终回到起点城市。
传统方法基于暴力搜索的穷举算法最简单直观的解决TSP问题的方法是穷举法。
即尝试遍历所有可能的路径,计算每条路径的总长度,并找出最短路径。
但这种方法的时间复杂度为O(n!),随着城市数量的增加,计算量呈指数级增长,不适用于大规模问题。
动态规划算法动态规划算法可以用于求解TSP问题的近似解。
其基本思想是将问题划分为子问题,并利用子问题的最优解求解原问题的最优解。
但是由于TSP问题的子问题形态特殊,采用动态规划算法时需要引入状态压缩技巧,以减小问题规模,提高求解效率。
进化算法遗传算法遗传算法是一种基于进化和遗传机制的优化算法,常用于解决TSP问题。
其基本思想是模拟生物进化中的遗传、突变、选择等过程,通过不断迭代优化求解策略,最终找到最优解。
遗传算法的步骤如下:1.初始化一组随机的路径作为初始种群。
2.计算每个路径的适应度评估值,即路径长度。
3.使用选择操作选取一部分适应度较高的个体作为父代。
4.使用交叉操作生成子代,在子代中引入新的解,并避免陷入局部最优解。
5.使用变异操作对子代进行突变,增加种群的多样性。
6.计算新种群中每个路径的适应度评估值。
7.重复步骤3-6,直到满足停止条件。
蚁群算法蚁群算法是基于蚁群觅食行为的启发式算法,常用于求解TSP问题。
其基本思想是通过模拟蚂蚁在寻找食物过程中的行为,不断更新路径信息素,从而实现解的优化。
蚁群算法的步骤如下:1.初始化一群蚂蚁,每只蚂蚁在一个城市开始。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点旅行商问题(Traveling Salesman Problem,TSP)是一种典型的组合优化问题,在计算机科学和运筹学中具有重要的研究意义和应用价值。
TSP常用来描述一个旅行商在给定的一系列城市之间寻找最短路径的问题,即如何选择最短路径经过所有城市并回到起始城市。
针对TSP问题,有多种求解方法可供选择,下面将介绍一些常用的方法及其优缺点。
1.穷举法穷举法是一种非常简单和直观的方法,它会列举出所有可能路径并计算它们的总长度,然后从中选择最短的路径作为最优解。
穷举法的优点是能够保证找到最优解,但当城市数量较多时,计算量呈指数级增长,很难在合理的时间内得到结果。
2.贪婪算法贪婪算法是一种基于局部最优策略的求解方法。
它从一些城市出发,在每一步选择离当前城市最近的未访问过的城市作为下一步访问的城市,直到所有城市都访问过并回到起始城市。
贪婪算法的优点是简单、易于实现,计算速度较快。
然而,贪婪算法并不能保证得到最优解,可能会陷入局部最优解。
3.动态规划动态规划是一种通过将原问题分解为更小的子问题,并利用子问题的解来求解原问题的方法。
对于TSP问题,可以使用动态规划求解。
动态规划的优点是能够在较短的时间内找到最优解,但由于需要存储大量的中间结果,空间复杂度较高。
4.遗传算法遗传算法是一种模拟生物进化过程的求解方法。
它通过对候选解进行遗传操作(交叉、变异等),然后根据适应度函数来评估和选择较好的解进行下一轮进化,直到满足停止条件为止。
遗传算法的优点是适用于大规模问题,能够得到较优解,但其需要调整一些参数,并且收敛速度较慢。
5. Lin-Kernighan启发式算法Lin-Kernighan启发式算法是一种基于局部优化的TSP求解方法。
它采用迭代的方式,在每一步通过反转局部路径来优化当前解,直到达到停止条件。
Lin-Kernighan算法的优点是计算速度较快,对于大规模问题也有较好的效果。
(完整word版)TSP问题的动态规划解法
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
tsp问题有几种方案
TSP问题有几种方案引言TSP(Traveling Salesman Problem,旅行商问题)是指给定一系列城市和每对城市之间的距离,找出一条最短路径,使得旅行商可以从起始城市出发,经过每个城市恰好一次,最后回到起始城市。
TSP问题是一个经典的组合优化问题,在计算机科学和运筹学领域被广泛研究。
本文将介绍TSP问题的几种解决方案。
1. 暴力法暴力法是最简单直接的解决TSP问题的方法。
该方法通过枚举所有可能的路径,并计算每个路径的总距离,最后找出最短路径。
但是,由于TSP问题的解空间随着城市数量的增加呈指数级增长,因此暴力法的时间复杂度非常高,不适用于大规模的问题。
2. 穷举法穷举法是改进的暴力法,通过剪枝操作减少了暴力法的时间复杂度。
穷举法一般使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来遍历解空间,并在搜索过程中记录当前路径的总距离。
当搜索到目标节点时,更新最短路径。
穷举法的时间复杂度仍然很高,但相比暴力法有所改善。
3. 动态规划动态规划是一种常用的解决TSP问题的方法。
动态规划通过将原问题划分为若干子问题,并记录每个子问题的最优解,从而通过计算较小规模的问题得到整体问题的最优解。
具体来说,动态规划中的状态转移方程可以表示为:dp[S][i] = min(dp[S-{i}][j] + d[j][i]),其中 S 表示已经访问过的城市集合,i 表示当前城市,j 表示 i 的上一个访问的城市。
通过迭代计算出 dp[S][i],最后找出使得 dp[S][i] + d[i][0] 最小的 i 值作为最优路径的终点。
4. 贪心算法贪心算法是一种启发式算法,它通过贪心地选择当前最优解来逐步构建整体问题的解。
在TSP问题中,贪心算法每一步都选择离当前城市最近的未访问过的城市,直到遍历完所有城市。
然而,贪心算法并不能保证得到最优解,因为局部最优解并不一定是全局最优解。
5. 遗传算法遗传算法是一种演化算法,模拟生物进化的过程来寻找最优解。
TSP的几种求解方法及其优缺点
TSP的几种求解方法及其优缺点旅行商问题(TSP)是一个组合优化问题,目的是找到一条最短的路径,使得旅行商能够访问一系列城市并返回起始点。
TSP由于其复杂性而被广泛研究,已经发展出了许多求解方法。
本文将讨论几种主要的TSP求解方法,包括贪婪算法、局部算法、遗传算法和蚁群算法,并分析它们的优缺点。
1.贪婪算法贪婪算法是一种基于贪心策略的求解方法。
它从一个起始城市开始,每次选择距离当前城市最近的未被访问过的城市作为下一步的目标城市,直到所有的城市都被访问过。
贪婪算法的优点是简单易于理解和实现,并且在处理小规模问题时效果显著。
然而,贪婪算法没有考虑全局最优解,很容易陷入局部最优解,不能保证找到最优解。
2.局部算法局部算法是一类启发式算法,它通过不断优化当前解来逐步接近最优解。
其中最典型的是2-opt算法,它通过交换路径中的两个顶点位置来改进解的质量。
局部算法的优点是可以找到局部最优解,且计算时间较短。
然而,局部算法容易陷入局部最优解,而且计算开销随问题规模增加而增加,且不能保证找到全局最优解。
3.遗传算法遗传算法是一种模拟生物进化的随机算法。
它通过模拟遗传、交叉和变异等基因操作来生成和改进解。
遗传算法的优点是可以处理大规模问题,且不容易陷入局部最优解。
同时,遗传算法能够在空间中探索多个解,提高解的多样性。
然而,遗传算法的计算开销相对较高,需要大量的迭代和种群更新。
此外,遗传算法的性能与参数设置相关,需要进行调整。
4.蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的算法。
它通过模拟蚂蚁在路径上释放信息素的过程,来引导蚂蚁选择路径。
蚁群算法的优点是能够找到较好的解并具有一定的自适应性。
它适用于处理大规模问题,且能够处理问题中的不确定性。
然而,蚁群算法的计算开销较高,并且参数设置对结果影响较大。
综上所述,TSP的求解方法包括贪婪算法、局部算法、遗传算法和蚁群算法等。
每种方法都有自己的优点和缺点。
选择适合问题规模、问题特征和求解时间的方法是关键。
TSP问题报告 算法分析与设计
TSP问题一、问题描述所谓 TSP 问题是指旅行商要去 n 个城市推销商品,其中每个城市到达且仅到达一次,并且要求所走的路程最短(该问题又称货郎担问题、邮递员问题、售货员问题等)。
TSP 问题最容易想到、也肯定能得到最优解的算法是穷举法,即考察所有可能的行走线路,从中选出最佳的一条。
二、解题思路1.基本思路对于图G=(V,E),从起点出发,其余点作为路径集合,然后列出路径集合中各个点作为子路径起点,其余点作为路径集合的情况,从中选取路径长度最短的情况,再对路径集合迭代计算,直到路径集合为空的时候,这时最短路径的情况即是该点到原点的距离,路径集合是空集{},此时已触碰临界条件,可以不断回溯之前的迭代,进而解决此问题。
2.最优值函数和边界条件第二行是最优值函数。
从i到集合V'的最优路径是以V’中某一点作为子路径起点,其余点作为路径集合的路径的长度加上从k到i 的距离的最优值。
第一行是边界条件。
当子路径的路径集合是空集时,最优子问题的解,本题来说也就是子路径的最短路径就是从子路径的起点到原来起点的距离。
3.标记函数标记函数同时也是算法的核心函数,完全按照递推公式的思想,使用迭代的方式。
distance是第一个核心函数,主要负责路径的输出;distance1是第二个核心函数,主要负责寻求子集合的最短路径并计算长度。
第一核心函数中调用了第二核心函数,第一核心函数只负路径的输出,在将问题细化深入的过程中,将真正的路径寻找和计算交给第二核心函数。
4.标记函数的解读:(1)distancedouble distance(int a,int b[],int c,double d[][NUM],int start) a:子问题起点b[]:字问题路径集合d[][]:距离矩阵(最开始创建的,所有调用函数过程中,都使用的这个,没有更改,只有读取)start:原问题起点(达到临界条件时,找到路径长度)//边界条件if(c==0){cout<<start;return d[a][start];}//非临界条件时候,构建所有路径集合的,起点和对应的路径集合,在迭代的时候会使用到else{for(i=0;i<c;i++){point[i]=b[i];k=0;for(j=0;j<c;j++){if(i!=j){e[i][k]=b[j]; /*节点方阵,冗余的*/k++;}}}mindistance=distance1(point[k],e[k],c-1,d,start)+d[a][point[k] ];//假定下一层的最短路径就是p[0]以及其对应的路径矩阵e[k]for(i=0;i<c-1;i++) //比较出下一层真正的最短路径if(mindistance>(distance1(point[i+1],e[i+1],c-1,d,start)+d[ a][point[i+1]])){k=i+1;mindistance=distance1(point[k],e[k],c-1,d,start)+d[a][poin t[k]];}cout<<point[k]<<"->";return distance(point[k],e[k],c-1,d,start)+d[a][point[k]]; }(2)distance1double distance1(int a,int b[],int c,double d[][NUM],int start) //边界条件if(c==0){return d[a][start];}//非边界条件else{for(i=0;i<c;i++){point[i]=b[i];k=0;for(j=0;j<c;j++){if(i!=j){e[i][k]=b[j];k++;}}}//拆分该点到达起点所需经过的集合该点的下一点到达起点所需经过的集合mindistance=distance1(point[0],e[0],c-1,d,start)+d[a][point[ 0]];for(i=0;i<c-1;i++)if(mindistance>(distance1(point[i+1],e[i+1],c-1,d,start)+d[ a][point[i+1]]))mindistance=distance1(point[i+1],e[i+1],c-1,d,start)+d[a][ point[i+1]];return mindistance; //求最小值}}5.时间复杂度分析整体的时间复杂度是O (2^n )。
TSP
TSP(旅行商)问题一、问题描述假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
二、解题思路对于N个城市的TSP问题,其城市的数目应为N。
若N个城市中,每两个城市之间都有连通的路径,其连通路径数目应为n3(n-1)/2。
而对于含有个顶点无向连接图来说,其完全图的边数也为n3(n-1)/2,因此可以用含有n个顶点的完全连通无向图来形象的描绘TSP问题的已知条件,而此完全连通无向图中每条边上的权值,可以表示TSP问题中每两个顶点之间的路径长度。
因此在其后的设计中,使用带权的完全无向连通图来分析TSP问题的求解过程。
需要进行输入的内容有:城市的数目、以及各个城市的基本信息(基本信息应输入各个城市的坐标,在算法中通过坐标来求出每两个城市之间的距离,在输出时并通过坐标来区分各个城市)。
城市的数目用一个变量max可以表示。
对于各个城市的基本信息,因为有max个城市,因此需要用一个数组来存储,数组中各个元素的类型相同,在这个算法设计中用城市的坐标来区分各个城市,因此需要自定义一个数组array2,数组长度为max。
arrar2类型定义如下: struct {intx;//用来存储横坐标 inty;//用来存储纵坐标 }array2[m]在数据结构中,图的存储方式由多种。
对于完全图来说,一般使用邻接矩阵对其进行存储。
邻接矩阵用二维数组存储图中各条边的权值,若顶点之间没有边,其相应位置上存储数据0。
如图1的邻接矩阵存储形式如下:对于完全图,它的邻接矩阵除对角线外,其余位置上的元素数据均不为0,因此采用二维数组来存储TSP问题中的各个顶点之间的路径长度,需设立一个Array1[max][max]的数组,数组中的值需要通过输入的坐标值求得。
三、实验代码#include<stdio.h>int b[100][100];int mins(int p,int n){ int min,i,j;for(i=1;i<=n;i++) b[p][i]=9999;min=b[1][p];j=1;for(i=2;i<=n;i++)if(b[i][p]<min) { min=b[i][p]; j=i; }return(j);}int main(){int a[100][100],i,j,n,x,y,qs,t;for(i=0;i<100;i++)for(j=0;j<100;j++) a[i][j]=9999;printf("请输入城市个数:");scanf("%d",&n);for(i=1;i<=n;i++){ for(j=i+1;j<=n;j++){ printf("请输入第%d个到第%d个城市的距离:",i,j);scanf("%d",&a[i][j]);a[j][i]=a[i][j];}}printf("请输入起始城市:" );scanf("%d",&qs);printf("贪心算法求得的最优路径为:%d->",qs);y=qs;t=0;for(i=0;i<100;i++)for(j=0;j<100;j++) b[i][j]=a[i][j];for(i=1;i<n;i++){ x=mins(y,n);printf("%d->",x);t+=a[y][x];y=x;}printf("%d\n",qs);t+=a[qs][x];printf("路径总长度为:%d\n",t);return 0;}四、运行结果图1 运行结果五、实验总结通过此次练习,对用最小生成树法求解最优二叉树有了更进一步的认识,但实验尚有不足,希望以后能用更简便的算法实现。
tsp问题总结归纳
tsp问题总结归纳TSP(Traveling Salesman Problem,旅行商问题)是一类经典的组合优化问题,在数学和计算机科学领域具有重要的研究价值和实际应用。
本文将从定义、解决方法和应用三个方面,对TSP问题进行总结归纳。
一、定义TSP问题是指给定一系列城市和城市之间的距离,求解经过每个城市一次且路径最短的旅行路线。
该问题可以用图论中的欧拉图和哈密顿图来描述。
在欧拉图中,一笔画问题要求从图的一个顶点开始,经过每个边一次并回到起点;而哈密顿图中,要求从图的一个顶点开始,经过每个顶点一次而路径最短。
二、解决方法1. 穷举法:穷举法是最简单直接的解决TSP问题的方法,即尝试遍历所有可能的路径,并计算每条路径的总距离,从中选出最短的一条。
然而,由于TSP问题的复杂性,穷举法在实际应用中很少使用,因为其时间复杂度随着城市数量的增加而急剧增加。
2. 动态规划:通过将问题分解为子问题,并利用子问题的最优解构建整体最优解。
动态规划方法可以有效地解决TSP问题,但其时间复杂度仍然较高,在大规模问题中难以实施。
3. 遗传算法:遗传算法是一种基于生物进化原理的搜索算法,通过模拟遗传、突变和选择等操作,逐步优化解的质量。
遗传算法在解决TSP问题中具有良好的性能和适应性,能够处理较大规模的问题,但其结果并不一定是全局最优解。
三、应用TSP问题在实际生活和工程领域中有广泛的应用,如物流配送、路径规划、电路布线等。
通过求解TSP问题,可以帮助优化物流运输路线、节约时间和资源成本,提高效率。
结论TSP问题是一个具有理论研究价值和实际应用的经典问题,其求解方法多种多样。
穷举法虽然简单直接,但在实际问题中难以应用;动态规划方法虽然高效,但对于大规模问题仍有限制;遗传算法具有较好的适应性和性能,可以处理较大规模的问题。
TSP问题在实际应用中可以有效地优化物流和路径规划等方面,提高效率和节约成本。
通过对TSP问题的总结归纳,我们可以更好地理解和应用有关组合优化问题的解决方法,推动其在实践中的发展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太 原
南 昌
呼 和 浩 特
最短路程路线
为了得到任意两城市之间的路程,需 要34个城市的地理坐标,经纬度;
得到了,经纬度,知道了地球半径, 通过球面距离公式:
Dis(i,j)=2Rarcsin{sin[ Lat(i) Lat( j)]2 2
+sin[
Lon(i)
Lon(
j)
]2
1
cos[Lat(j)cos(Lat(j))]}2
5.End Do 6. 输出当前最优解,计算结束
1)产生一个初始路径X=randperm(34)
23 14 ........ 19 18 34 26 1;
2)计算初始路径总长D(X);
3)设置始末温度T0,Te ,降温率Decay; 4)对初始路径经行局部扰动,得到新路径Xn ,
计算D(Xn); 5)T=T0 * Decay Te ,如果T<= Te ,继续循环,
2
算出任意两个城市之间的球面距离
最经济路线
价格来源: ,中国票价网 价格组合: 全部乘火车、全部乘飞机、火车飞机两种混 合
模型的假设
假设两个城市间的旅行距离就为两个目标点 的球面距离; 假设选最短路线时,在前一阶段决策路线时 不受下一阶 段距离的影响,两者相互独立; 假设交通工具的票价在周先生旅行的近三个 月间保持不变。
LINGO求解:
决策变量是 xij 0 或1(0表示不连接,1表示连接)
目标函数与约束条件:
min s
D1(i , j ) xij
i , jV
xij 1
jV
s.t
xij 1iVຫໍສະໝຸດ (i V ), (i V ),
xi
,
j
0, 1
(i, j V ).
LINGO求解出的最优值: s 16124940 m
8
9
10 11 12 13 14 15 16 17
乌 城北上天香广杭重台福兰贵长南沈成拉鲁 市京海津港州州庆北州州阳沙京阳都萨木
齐
编 号
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
城 市
昆 明
西 安
西 宁
银 川
哈 尔 滨
长 春
武 汉
郑 州
石 家 庄
海 口
澳 门
南 宁
合 肥
济 南
TSP问题简介 TSP问题实例 TSP问题中的经典算法
货郎担~~
TSP (Travelling Salesman Problem), 旅行商问题,该问题又译为旅行推 销员问题、货郎担问题,是数学建 模领域中著名问题之一;
有一个旅行商人,要拜访n个 城市,每个城市都必须要去一 次,而且最后要回到原来出发 的城市,怎样走使得“路径长 度”最小;
反之结束;
6)如果D(X)> =D(Xn),那么Xbest =Xn; 7)反之D(X)< D(Xn),
rand< exp((D(X)- D(Xn))/t) , 那么Xbest =Xn ,反之Xbest =X;
经过模拟退火运行初始温度为10,找到 了一条最短的路线:总长度为:17403.1km。
经过模拟退火运行初始温度为100,找到了 一条最短的路线:总长度为:15684.0km。
得到火车和飞机,票价矩阵P1, P2 将三个票价矩阵进行删选,把票价最低的留
下,得到票价矩阵p;
同理把p对角线上的值变成无穷大,此处的p
就是问题一的距离矩阵。
飞机旅行,12163.0元
火车旅行,7083.0元
飞机和火车混合,6772.0元
2012年“深圳杯” 全国大学生数学建模夏令营 D题:打孔机生产效能的提高
任意两个城市之间的距离矩阵 Dis(i, j)
0 d12 d13 d1 j d21 0 d23 d2 j
d j1 d j2 d j3 0
由于要选择一条总路程最短的路线, 所以距离矩阵中,城市到城市自身的 距离,为无穷大Inf。
Inf d12 d13 d1 j d21 Inf d23 d2 j
A要3344 用算法。
为了得到最经济的路线,我们需要知 道34个城市之间的常用交通工具的票 价;
可不可以把票价类比成第一问的距离。
问题的分析 模型的准备 模型的假设 模型的建立 模型的求解 模型的结果 模型的检验
为了便于排序,将34个城市从1到34编号;
编 号
1
2
3
4
5
6
7
开始
“改良圈”算法得到优良父代
对父代进行交叉、变异操作, 形成新的群体
计算群体中个体的适应值,
否
并选择优良子代
满足遗传代数? 数?
是
输出结果
结束
模拟退火 改良圈算法 遗传算法 神经网络优化初始解 粒子群算法 ……
THANK YOU FOR
YOUR ATTENTION !!!
xnew ,计算新的目标函数值E(xnew),计算目标函数值增量
3)如果 E 0,则
xbest
xbe
;
st
4)如果 E ,0则 p exp(E / T (i)) ;
如果c random[0,1] p, xbest xnew; 否则 xbest xbest 返回步骤1)
5)End for 4.i=i+1;T(i+1)=a*T(i);
网订票方案(可选择航空、铁路(快车 卧铺或动车) ;
34个城市,有且只去一次,才能保证总
路路顺不是程程序同一短最应的个;短该排很, 是 列大与 数 有的走 学A算 本 顺 解种数3344过 中法 运 序 决;,城 的可 算 所 问不市 排以 及 构 题能的 列理 规 成 的穷顺问解 定 的 步举序题为的完骤解有;有运整。决关基算的;;
TSP问题是一个组合优化问题。 TSP问题当今计算机领域内,检
验一个算法是否智能的标准之一。
2010年全国赛B题:走遍全中国 周游先生退休后想到各地旅游。计划走
遍全国的省会城市、直辖市、香港、澳 我要去旅 门、台北,共34个城市。 行~~~ 问题一:请你为他按地理位置,设计最
短程的旅行方案; 问题二:请你为设计最经济的旅行互联
d j1 d j2 d j3 Inf
模型的求解
模拟退火求解流程:
1.随机产生一个初始解x0,令 xbest x0 ,并计算目标函数值 E(x0 ) ;
2.设置初始温度 T (0) xo ,迭代次数 i L;
3.Do while T (i) Tmin
1)for j = 1~k
2)对当前最优解xbest 按照某一邻域函数,产生一新解