五年级方程解决问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程解决问题
题型一、一元一次方程之行程问题
例1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.
(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
题型二、一元一次方程之顺逆流(风)问题
例1、某轮船的静水速度为15千米/时,水流速度为3千米/时,则这艘轮船在两码头间往返一次逆流时间是顺流的时间的两倍,则两个码头之间的距离是( )km.
题型三、一元一次方程之利润及打折问题
例1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A .120元
B .100元
C .80元
D .60元
例2、长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )
A .562.5元
B .875元
C .550元
D .750元
题型四、一元一次方程之利率和增长率问题
例1、2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( )
A .()18.9%9.5%b a =++
B .()18.9%9.5%b a =+⨯
C .()()18.9%1+9.5%b a =+
D .()()2
18.9%1+9.5%b a =+ 例2、小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的利率为20%,则一年期储蓄的利率为( )
A .2.25%
B .4.5%
C .22.5%
D .45%
题型五、一元一次方程之工程问题
例1、将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?
题型六、一元一次方程之分配问题
例1、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间.求房间的个数和学生的人数.
例2、某工人原计划在限定的时间内加工一批零件,如果每小时加工10个零件,就可以超额完成3个;如果每小时加工11个零件,就可以提前1小时完成.问这批零件有多少个?按原计划需多少小时完成?
例3.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,其中
成人票每张8元;学生票每张5元.成人票和学生票各售出了多少张?
如果票价不变,那么售出1000张票所得票款可能是6930元吗?,
例4.希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的61是幸福的童年;再活了他生命的121
,两颊
长起了细细的胡须;又度过了一生的7
1,他结婚了;再过5年,他有了儿子,感到很幸福;可是儿子只活了他全部年龄的一半:儿子死后,他在极度痛苦中度过了4年,与世长辞了.那么他去世时的年龄是多少?
题型七、一元一次方程之配套问题
例1、包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?
题型八、一元一次方程之调配问题
例1、某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?
例2、已知甲仓库储粮37吨,乙仓库储粮17吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得
甲仓库的粮食是乙仓库的两倍?
调配问题的常见数量关系:
题型九、一元一次方程之比赛计分问题
例1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分.已知某人有5道题未作,得了103分,则这个人选错了____道题.
例2、某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?
题型十、一元一次方程之方案选择
例1、某家电商场计划用9万元从红星电视机厂购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价
分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
例2、某班准备购置一些乒乓球和乒乓球拍,班主任李老师安排小明和小强分别到甲、乙两家商店咨询了同样品牌的乒乓球和乒乓球拍的价格,下面是小明、小强和李老师的对话.
小明:甲商店乒乓球拍每副定价30元,乒乓球每盒定价5元,每买一副乒乓球拍可以赠送一盒乒乓球.
小强:乙商店乒乓球和乒乓球拍的定价与甲商店一样,但乙商店可以全部按定价的九折优惠.
李老师:我们班需要乒乓球拍5副,乒乓球不少于5盒.
根据以上对话回答下列问题:
(1)当购置的乒乓球为多少盒时,甲、乙两家商店所需费用一样多?
(2)若需要购置30盒乒乓球,你认为到哪家商店购买更合算?(要求有计算过程)