主成分分析法
主成分分析法全
• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
根据旋转变换的公式:
y y1 1 x1xc1soin sx2 xs2cio ns
y y 1 2 cs o in sc si o n s x x 1 2 U x
设有P维正交向量 a1 a11, a21,, ap1
F1 a11X1 L ap1X p aX
1
V
(F1)
a1a1
a1U
2
Ua1
p
1
a1
u1
,
u2
,L,
up
2
O
u1
u2 M
a1
p
up
p
iauiuia i1
p
i (aui )2 i1
1ip1(aui )2
1)贡献率:第i个主成分的方差在全部方差中所占
比重
i
p
i 1
i
,称为贡献率
,反映了原来P个指标多大
的信息,有多大的综合能力 。
2)累积贡献率:前k个主成分共有多大的综合能力, 用这k个主成分的方差和在全部方差中所占比重
k
p
i i
i1
i1
来描述,称为累积贡献率。
我们进行主成分分析的目的之一是希望用尽可能 少的主成分F1,F2,…,Fk(k≤p)代替原来的P个指 标。到底应该选择多少个主成分,在实际工作中,主 成分个数的多少取决于能够反映原来变量80%以上的信 息量为依据,即当累积贡献率≥80%时的主成分的个数 就足够了。最常见的情况是主成分为2到3个。
F 1
主 成
F2
•• • • •
分 分 析 的 几 何
主成分分析法
主成分分析法什么事主成分分析法:主成分分析(principal components analysis , PCA 又称:主分量分析,主成分回归分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想:在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
主成分分析法
主成分的导出
确定主成分的个数 (1)粗略决定欲保留的方差百分。 (2)若某个主成分的方差大于1,就保留它。
累积贡献率:
i k 1 p k 1 k
(i 1,2, , p )
k
主成分的导出
相关矩阵R的特征向量为一个正交矩阵L,即
l11 l 21 L l p1 l12 l22 l p2 l1 p L1 L l2 p 2 L3 l pp L4
的分布大体为椭圆形,如图1所示:
x2
o
x1
图1 样本分布图
预备知识:向 量
Y
2b
bOBiblioteka a2aXaX bY,2aX 2bY, , kaX kbY, 等方向都是同一个方向
主成分分析法的原理
• 创建 y1
y1 a11 x1 a12 x2
a a 1
2 11 2 12
y2 l21 x1 l22 x2 l2 p x p y p l p1 x1 l p 2 x2 l pp x p
Y LX ( L为正交变换矩阵) 其矩阵表示形式为:
主成分的导出
假定X为已标准化的样本数据矩阵,对于n个样本,X的 矩阵可表示为
x11 x 21 X x p1
x i的总贡献率 i
y2
主成分分析法的应用
• 由表4可以看出,第一行 y1 对应的因子负荷量均为正数,表 示各门课程成绩提高都可以使 y1 增加,可以认为主成分 y1 全面反映了学生智力的整体情况。对应于 y1 的所有因子负荷 量 ji 数值相近,而且14 最大,这表明 y1 不仅能反映学生的全 面智能,而且物理课的成绩在智能评价中占有重要位置。 • 第二主成分 y2 的因子负荷量有正有负,语文和外语的为正, 数学和物理的为负,这样变量被分为两组。有表可以看出个 变量间相互关系的强弱,语文和外语反映文科类课程水平, 数学和物理反应理工科类的课程水平。
主成分分析法
主成分分析法1. 主成份分析:主成份分析是最经典的基于线性分类的分类系统。
这个分类系统的最⼤特点就是利⽤线性拟合的思路把分布在多个维度的⾼维数据投射到⼏个轴上。
如果每个样本只有两个数据变量,这种拟合就是其中和分别是样本的两个变量,⽽和则被称为loading,计算出的P值就被称为主成份。
实际上,当⼀个样本只有两个变量的时候,主成份分析本质上就是做⼀个线性回归。
公式本质上就是⼀条直线。
插⼊⼀幅图(主成份坐标旋转图,来⾃:PLS⼯具箱参考⼿册)如果⼀个样本有n个变量,那主成份就变为:其中PC1 称为第⼀主成份,⽽且,我们还可以获得⼀系列与PC这个直线正交的其它轴,如:被称为第⼆主成份以此类推,若令,此时向量A称为主成份的载荷(loading),计算出的主成份的值PC称为得分(score)。
1. 主成份分析举例作为⼀个典型的降维⽅法,主成份分析在数据降维⽅⾯⾮常有⽤,⽽且也是所有线性降维⽅法的基础。
很多时候,如果我们拿着⼀个⾮常复杂的数据不知所措的话,可以先考虑⽤主成份分析的⽅法对其进⾏分解,找出数据当中的种种趋势。
在这⾥,我们利⽤数据挖掘研究当中⾮常常见的⼀个数据集对主成份分析的使⽤举例如下:1996年,美国时代周刊(Times)发表了⼀篇关于酒类消费,⼼脏病发病率和平均预期寿命之间关系的科普⽂章,当中提到了10个国家的烈酒,葡萄酒和啤酒的⼈均消费量(升/年)与⼈均预期寿命(年)⼀级⼼脏病发病率(百万⼈/年)的数据,这些数据单位不⼀,⽽且数据与数据之间仅有间接关系。
因此直接相关分析不能获得重要且有趣的结果。
另外⼀⽅⾯,总共只有10个国家作为样本,各种常见的抽样和假设检验在这⽅⾯也没有⽤武之地,我们看看⽤何种⽅法能够从这个简单的数据表中获得重要知识作为数据挖掘的第⼀步,⾸先应该观察数据的总体分布情况。
⽆论是EXCEL软件,还是R语⾔,我们都能够很⽅便的从下表中获得表征数据分布的条形图。
从图中可以看出,总共10个国家,有5类数据,由于各类数据性质各不相同,因此数值上⼤⼩也很不相同。
105---主成分分析法
主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法目录1 什么是主成分分析法2 主成分分析的基本思想3 主成分分析法的基本原理4 主成分分析的主要作用5 主成分分析法的计算步骤6 主成分分析法的应用分析6.1 案例一:主成分分析法在啤酒风味评价分析中的应用[1]6.1.1 1 材料与方法6.1.2 2 主成分分析法的基本原理6.1.3 3 主成分分析法在啤酒质量一致性评价中的应用6.1.4 4 结论7 参考文献什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法
主成分分析法什么事主成分分析法:主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术.它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想:在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠.在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具.因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合.这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。
主成分分析法
主成分分析法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维方法,它通过线性变换将高维数据转换为低维数据,从而提取出数据的最主要特征。
本文将详细介绍主成分分析的原理、应用以及算法流程。
一、原理主成分分析是一种基于统计学的数据降维方法。
其基本思想是将原始数据通过线性变换,得到一组新的不相关变量,即主成分,用来代替原始变量。
这些主成分在不同维度上的方差依次递减,即第一主成分包含最多的原始变量信息,第二主成分包含不重叠的信息量,以此类推。
主成分分析的目标是最大化原始数据的方差,从而保留尽可能多的信息。
首先,通过计算协方差矩阵来评估各个变量之间的相关性,然后通过特征值分解找出协方差矩阵的特征向量,即主成分。
最后,根据特征值的大小来选择保留的主成分个数。
二、应用主成分分析广泛应用于数据预处理、特征提取和数据可视化等领域。
以下是主成分分析的几个典型应用:1. 数据降维:主成分分析可以将高维数据转换为低维数据,从而减少计算量和存储空间,并提高模型的计算效率。
2. 特征提取:主成分分析可以将原始数据中高度相关的特征转换为互不相关的主成分,保留了原始数据的主要信息。
这样可以提高模型的训练速度和泛化能力。
3. 图像压缩:主成分分析可以将图像的冗余信息去除,从而实现图像的压缩和存储。
通过保留图像中的主要特征,可以在减少存储空间的同时保持图像的质量。
4. 数据可视化:主成分分析可以将高维数据映射到二维空间,从而实现数据的可视化。
通过显示主成分的分布,可以更好地理解数据之间的关系,并发现数据中的模式和异常。
三、算法流程主成分分析的算法流程如下:1. 数据标准化:将原始数据进行标准化处理,使得每个变量具有相同的尺度,从而避免变量之间的差异对主成分的影响。
2. 计算协方差矩阵:根据标准化后的数据计算协方差矩阵,该矩阵表示各个变量之间的相关性。
3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。
主成分分析方法
主成分分析方法主成分分析方法是常用的一种统计分析方法,主要用于进行数据压缩或减少数据的维数[2]。
它是对一组相关的变量进行线性变换,得到一组维数不变但彼此互不相关的变量,亦即一组主成分。
由于各主成分是不相关的,因此可以认为它们是一组独立变量。
一般图像的线性变换可用下式表示:Y=TX (1)式中:X为待变换图像数据矩阵,Y为变换后的数据矩阵;T为实现这一线性变换的变换矩阵。
如果变换矩阵T是正交矩阵,并且它是由原始图像数据矩阵X的协方差矩阵S的特征向量所组成,则(1)式的线性变换称为主成分分析,并且变换后的数据矩阵的每一行矢量为主成分分析的一个主成分。
主成分分析的优点是消除了波段间的相互关系,减少了各波段提供信息的交叉和冗余,有利于分析。
同时,在分析过程中得到主要波段的合理权重,具有很好的客观性。
主成分分析法的主要步骤如下:(1)根据原始图像数据矩阵X,求出它的协方差矩阵S 以矩阵的形式表示多波段图像的原始数据如下:X=x11x12,x1nx21x22,x2ns s s sxn1xn1,xnn=[xij]m@n(2)矩阵X中,m,n分别为波段数和每幅图像中的像元数,矩阵中的每一行矢量表示一个波段的图像。
矩阵X的协方差矩阵S为:S=1n[X-Xl][X-Xl]T(3)式中:l=[1 1 , 1]1@n(4)X=[x1 x2 , x3]T(5)xi=1nEnk=1xik(第i波段的均值) (6)(2)求协方差矩阵S的特征值Ki和特征向量Ui,并组成变换矩阵T 求解特征方程(KI-S)U=0; 然后将特征值Ki按由小到大的顺序排列,求出对应特征值的单位特征向量Ui,以Ui为列构成矩阵U,U矩阵的转置矩阵,即UT为所求的变换矩阵T。
经过主成分变换后得到的新变量的各个行向量依次被称为第一主成分、第二主成分,,第m主成分,这时将新变量恢复为二维图像,便得到m个主成分图像。
主成分分析法
4,主成分分析法主成分分析(Principal Component Analysis,PCA),是一种统计方法。
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
信息的大小通常用离差平方和或方差来衡量。
②主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。
因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。
③当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。
4.4主成分分析法的运用叶晓枫,王志良,【2】在介绍主成分分析方法的基本思想及计算方法基础上,对水资源调配评价指标进行了降维计算. 结果显示筛选出的指标对原指标具有较好的代表性,简化了水资源评价问题的难度。
傅湘,纪昌明【3】,针对模糊综合评判法在综合评价中存在的主观随意性问题,提出采用主成分分析法进行区域水资源承载能力综合评价。
对各区域的灌溉率、水资源利用率、水资源开发程度、供水模数、需水模数、人均供水量和生态环境用水率达七个主要因索进行了分析;根据主成分分析法的原理,运用少数几个新的综合指标对原来的七个指标所包含的信息进行最佳综合与简化,研究其在各区域水资源开发利用过程中的不同贡献及综合效应。
周莨棋,徐向阳等【4】,针对传统主成分分析法用于水资源综合评价中存在一些问题,包括指标评价中的“线性”问题、无法体现评价指标主观重要性以及评价范围无法确定。
进行了改进,采用改进的极差正规方法对数据进行规格化,用规格化后的数据加入了主观重要性权进行协方差计算,对协方差特征向量采用正负理想点进行检验。
陈腊娇,冯利华等【5】,将主成分分析方法引入到水资源承载力研究中,并以浙江省为例,在现有资料的基础上,利用主成分分析的方法,定量分析影响水资源承载力变化的最主要的驱动因子。
主成分分析法简介
主成份分析法(Principal Component Analysis,PCA )也称主分量分析或矩阵数据分析,是统计分析常用的一种重要的方法,在系统评价、质量管理和发展对策等许多方面都有应用。
它利用数理统计方法找出系统中的主要因素和各因素之间的相互关系,由于系统地相互关系性,当出现异常情况时或对系统进行分析时,抓住几个主要参数的状态,就能把握系统的全局,这几个参数放映了问题的综合的指标,也就是系统的主要因素。
主成分分析法是一种把系统的多个变量转化为较少的几个综合指标的统计分析方法,因而可将多变量的高维空间转化为低维的综合指标问题,能放映系统信息量最大的综合指标为第一主成分,其次为第二主成分。
主成分的个数一般按需放映的全部信息的百分比来决定,几个主成分之间是互不相关的。
主成分分析法的主要作用是:发现隐含于系统内部的结构,找出存在于原有各变量之间的内在联系,并简化变量;对变量样本进行分类,根据指标的得分值在指标轴空间进行分类处理。
主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X 1,X 2,…,X P (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标F m 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量X P 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
设F 1表示原变量的第一个线性组合所形成的主成分指标,即11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F 1)越大,表示F 1包含的信息越多。
常常希望第一主成分F 1所含的信息量最大,因此在所有的线性组合中选取的F 11应该是X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 1为第一主成分。
如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F 2,为有效地反映原信息,F 1已有的信息就不需要再出现在F 2中,即F 2与F 1要保持独立、不相关,用数学语言表达就是其协方差Cov(F 1, F 2)=0,所以F 2是与F 1不相关的X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 2为第二主成分,依此类推构造出的F 1、F 2、……、F m 为原变量指标X 1,X 2,…,X P 第一、第二、……、第m 个主成分。
主成分分析方法PPT课件
X
x21
x22
x2
p
xn1
xn 2
xnp
❖ 当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理. 要求:较少的几个综合指标尽量多地反映原来较 多变量指标所反映的信息,同时它们之间又是彼 此独立的
例,成绩数据
❖ 100个学生的数学、物理、化学、语文、历 史、英语的成绩如下表(部分)。
p
lk2j 1, (k 1,2,, m)
j 1
Rlk lk (R E)lk 0
计算主成分贡献率及累计贡献率
▲贡献率:
k
p
i
(k 1,2,, p)
i 1
▲累计贡献率:
k
p
j1 j / i1 i
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p)个主成分
6
6
样方
1
物种X1 1
物种X2 5
2 3 4 5 6 总和 2 0 2 -4 -1 0 2 1 0 -4 -4 0
种X2
X2
12
10
8
6
4
2
0
0
1
2
3
4
5
6
7
种X1
6 5 4 3 2 1 0 -5 -4 -3 -2 -1-1 0 1 2 3 4 5 6 -2 -3 -4 -5
X1
中心化后的原始数据矩阵
X
1 5
2 2
0 1
2 0
4 4
1 4
❖ 把坐标轴X1、 X2刚性地旋转 一个角度,得
到图中新坐标
轴Y1和Y2
X2
6
主成分分析法
人均GDP→ x1 第二产业增加值比重→ x3 第三产业从业人员比重→ x5 城市化水平→ x7
人均第三产业增加值→ x2 第三产业增加值比重→ x4 第三产业固定资产投资比重→ x6
2、计算各指标之间的相关系数矩阵
x1
x2
Rij
x3 x4
x5
x6
x7
x1
x2
1 0.988
0.988 1
0.339 0.241
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
3.5 主成分分析法
本节主要内容:
❖ 主成分分析的基本原理 ❖ 主成分分析的计算步骤 ❖ 主成分分析方法应用实例 ❖ 主成分分析方法的SPSS实现
主成分分析法
概念:把原来多个变量划为少数几个综合指标 的一种统计分析方法,是一种降维处理技术.
一个研究对象,往往是多要素的复杂系统。变量太多无疑会增 加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少 的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留 原来较多的变量所反应的信息,这样问题就简5 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
0.011 0.012 0.034 0.055 0.076 0.001 0.015 0.002 5.055 0.01 0.011 0.154 0.012 0.069 0.048 0.092
主成分分析法
§7.1
引言 §7.2 总体的主成分 §7.3 样本的主成分
§7.1 引言
主成分分析(或称主分量分析,principal component analysis)由皮尔逊(Pearson,1901)首先引入,后来 被霍特林(Hotelling,1933)发展了。 主成分分析是一种通过降维技术把多个变量化为少 数几个主成分(即综合变量)的统计分析方法。这些 主成分能够反映原始变量的绝大部分信息,它们通 常表示为原始变量的某种线性组合。 主成分分析的一般目的是:(1)变量的降维;(2)主成 分的解释。
现比较本例中从R 出发和例7.2.2中从 Σ 出发的主成 分计算结果。从R 出发的 y1* 的贡献率0.705明显小于 从 Σ 出发的 y1的贡献率0.938,事实上,原始变量方 差之间的差异越大,这一点也就倾向于越明显, * * * (7.2.15)式有助于我们理解之。 y1 , y2 , y3 可用标准 化前的原变量表达如下: x3 3 x1 1 x2 2 *
Cov y1 , y2 0 我们在此条件和约束条件 a2a 2 1 下寻求向量a 2 ,使 得 V y2 a2 Σa2 达到最大,所求的 y2 称为第二主成
分。求得的第二主成分为
y2 t12 x1 t22 x2 t p 2 x p t x 2
3.原始变量 xi 与主成分 yk 之间的相关系数 k xi , yk tik , i, k 1, 2,, p ii
在实际应用中,通常我们只对 xi (i 1, 2,, p) 与 yk (k 1, 2,, m) 的相关系数感兴趣。
三、从相关阵出发求主成分
《主成分分析法》课件
主成分分析法的目的是减少数据的维 度,同时保留数据中的主要信息,以 便更好地理解和分析数据。
历史与发展
1901年
由英国统计学家Karl Pearson提出主成分的概 念。
1933年
美国统计学家Harold Hotelling将主成分分析 法应用于心理学和教育学领域。
20世纪70年代
随着计算机技术的发展,主成分分析法在各个领域得到广泛应用。
04
主成分分析法的步骤
数据标准化
总结词
消除量纲和数量级对分析的影响
详细描述
在进行主成分分析之前,需要对数据进行标准化处理,即将各指标的均值调整为0,标准差调整为1, 以消除不同量纲和数量级对分析的影响。
计算相关系数矩阵
总结词
衡量变量间的相关性
VS
详细描述
通过计算原变量之间的相关系数矩阵,可 以了解各变量之间的相关性。相关系数矩 阵中的元素表示各指标之间的相关系数, 用于衡量变量间的线性关系。
详细描述
市场细分是主成分分析法在市场营销领域中的重要应 用。通过对市场数据进行主成分分析,可以提取出影 响市场需求的共同因素,进而将市场划分为不同的子 市场。这种分析方法有助于企业识别不同子市场的需 求特点、消费行为和竞争状况,为制定针对性的营销 策略提供依据。
实例二:客户分类
要点一
总结词
利用主成分分析法对客户进行分类,有助于企业更好地了 解客户群体特征,提高客户满意度和忠诚度。
01
数学模型
主成分分析通过线性变换将原始 变量转换为彼此独立的主成分, 这种变换是线性的。
变换矩阵
02
03
特征向量
线性变换需要一个变换矩阵,该 矩阵由原始变量和主成分之间的 系数构成。
主成分分析法-EmpowerStats
主成分分析法主成分分析(Principal Component Analysis,PCA)是将多个变量通过线性变换以选出较少个数重要变量,并尽可能多地反映原来变量信息的一种多元统计分析方法,又称主分量分析。
也是数学上处理降维的一种方法。
主成分分析是设法将原来众多具有一定相关性的指标(比如P 个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。
因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
主要作用1. 主成分分析能降低所研究的数据空间的维数。
即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的X空间所损失的信息很少。
即使只有一个主成分Yl(即 m =1)时,这个Yl仍是使用全部X变量(p个)得到的,例如要计算Yl的均值也得使用全部x 的均值。
在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个Xi删除,这也是一种删除多余变量的方法。
2. 有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3. 多维数据的一种图形表示方法。
当维数大于3时不能画出几何图形,多元统计研究的问题大都多于3个变量。
要把研究的问题用图形表示出来是不可能的。
然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布,由图形可直观地看出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。
主成分分析法原理
主成分分析法原理主成分分析法(PrincipalComponentAnalysis,PCA)是一种常用的数据处理技术,可以将一组多变量的原始数据转换成一组较少数量的新变量,称为主成分,从而简化数据分析。
这一技术源自统计学,研究发展至今已被应用于各种领域,如医学、社会学、金融学、物理科学和经济学等。
本文将就主成分分析法原理及其应用展开讨论。
一、主成分分析法原理主成分分析法是一种经验模型,它的设计目的是从一组变量中找出其中存在的潜在的结构,以最大限度的信息内容和最小的变量数量保存在一起,特别是对于那种变量数量多于样本数量的情况。
主成分分析法的基本过程是,先从多个变量中提取出一组新的解释变量,称为主成分;然后通过把原始变量转换成主成分来进行数据处理;最后,把主成分转换回原变量,完成数据的分析和处理。
主成分分析法的基本原理是通过找到一组新的变量,构成一组独立的“基”,并通过线性组合的方式,把原始变量转换成一组新的变量。
这些新变量有一定的排列性质,彼此之间是线性相关的,而且排列顺序也有一定的规律,显示出原始数据中存在的内在结构特征。
主成分分析法属于一类称为“特征处理”的数据处理技术,其主要优势在于能将原始数据中存在的内在结构和特征得以保留,同时又可以使用更少的变量来描述原始数据。
因此,主成分分析法可以有效地减少数据量,同时又将原始变量的信息保留得更完整。
二、主成分分析法的应用由于主成分分析法能够从大量的原始变量中提取出相对少量的有效变量,因此应用较为广泛,常被用于预测、统计分析以及图像处理等方面。
在预测中,主成分分析法常常被用于构建预测模型,它可以有效地减少变量数量,同时又保留原始变量中存在的重要特征,使得预测精度有了极大的提升。
在统计分析中,主成分分析法可以对多元数据进行深入的统计分析,通过构建一组新变量从而解决原始数据中变量之间存在的多重关联性问题。
在图像处理方面,主成分分析法也有较多应用,它可以把图像中的像素替换为一组主要成分,使得图像更容易储存、处理和传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析法
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I个变量就有I个主成分。
其中Li为p维正交化向量(Li*Li=1),Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。
10
本词条无基本信息模块, 欢迎各位编辑词条,额外获取10个积分。
目录
1基本定义
2分析目的
3分析步骤
4因子旋转
5应用问题
个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主成
分的k满足Σλk/Σλj>0.85。
2分析目的
是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
3分析步骤
数据标准化;
求相关系数矩阵;
一系列正交变换,使非对角线上的数置0,加到主对角上;
得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;
求各个特征根对应的特征向量;
用下式计算每个特征根的贡献率Vi;
Vi=xi/(x1+x2+........)
根据特征根及其特征向量解释主成分物理意义。
4因子旋转
在对社会调查数据进行分析时,除了把相关的问题综合成因子并保留大的因子,研究者往往还需要对因子与测度项之间的关系进行检验,以确保每一个主要的因子(主成分)对应于一组意义相关的测度项。
为了更清楚的展现因子与测度项之间的关系,研究者需要进行因子旋转。
常见的旋转方法是VARIMAX旋转。
旋转之后,如果一个测度项与对应的因子的相关度很高(>0.5)就被认为是可以接受的。
如果一个测度项与一个不对应的因子的相关度过高(>0.4),则是不可接受的,这样的测度项可能需要修改或淘汰。
用主成分分析法得到因子,并用因子旋转分析测度项与因子关系的过程往往被称为探索性因子分析。
在探索性因子分析被接受之后,研究者可以对这些因子之间的关系进行进一步测试,比用如结构方程分析来做假设检验。
5应用问题
1问题的提出主成分分析是一种降维的方法,便于分析问题,在诸多领域中都有广泛的应用。
但有些教科书与论文使用主成分分析时,出现了一些错误与不足,不能解决实际问题。
如一些多元统计分析的教材中,用协方差矩阵的主成分分析出现了如下错误与不足:①没有明
确和判断该数据降维的条件是否成立。
②主成分系数的平方和不为1。
③没有明确和判断所用数据是否适合作单独的主成分分析。
④选取的主成分对原始变量没有代表性。
以下从相关性等理论与结果上依次解决上述问题,并给出相应建议。
2数据在行为与心理研究中,常常要求分析某种身份的人的行为特征,如本例中的小学生的日常行为特征,从而根据这些特征引导小学生向更积极的行为态度发展。
这里用文献[1]的数据见表1,其来自某课题组的调查结果。
课题组对北方某小学480名5~6年级学生的日常行为进行调查,共调查了15项指标如下:S1~对老师提问的反应、S2~对班级事务的关心、S 3~自习课上的表现、S4~对家庭作业的态度、S5~关心同学的程度、S6~对待劳动的态度、S7~学习上的特殊兴趣、S8~对待体育锻炼的态度、S9~在娱乐上的偏好、S10~解决问题的思考方式、S11~对未来的打算。