电动汽车悬架系统动力学性能开发设计
汽车双横臂独立悬架动力学建模与优化设计
![汽车双横臂独立悬架动力学建模与优化设计](https://img.taocdn.com/s3/m/8265e5d74b73f242326c5f1d.png)
9000.0 8000.0 7000.0 6000.0 5000.0 4000.0
-50.0
2.0
1.0
initial_left_hub_forces
-25.0
0.0
25.0
50.0
wheel travel(mm)
initial_wheel_travel_base
0.0
-1.0
-50.0
-25.0
0.0
通 过 模 拟 数 据 分 析 之 后, 依 照 车 辆 前 后 悬 架 的 偏 差 比 例, 确 定 前 悬 架 的 线 性 段 刚 性 程 度 为 33N/mm, 具 体 的 取 值 范 围 在 ±10mm 之间。从图 2 当中的数据分析可以看 出,前侧中心的高度在设计负载的状态下为 79mm,保持在合理的设计范围之内,侧倾的 中心高度直接影响到了汽车悬架系统的稳定 性,侧倾中心越高,车轮之间的间距变化也 就越大,则对轮胎的磨损越严重。同时侧倾 中心越高,在弯道过程中越容易翻车。因此, 在进行悬架设计工作中,必须要对这些问题
MANUFACTURING AND PROCESS | 制造与工艺
时代汽车
汽车双横臂独立悬架动力学建模与优化设计
何名基 方盛车桥(柳州)有限公司 广西柳州市 545006
摘 要:随着汽车行业的发展,对汽车的操控稳定性和整车舒适性要求是越来越高。目前越来越多商用车使用了独 立悬架系统,提高整车的操控稳定性和舒适性。基于此。本文结合工作内容,重点针对汽车双横臂独立悬 架系统展开了分析和研究,并且提出了相应的优化设计要点,以供参考。
本文以目前在商用车上日益流行的双横 臂独立悬架系统为模型,进行优化分析,并 提出了相应的优化设计方法。在双横臂独立 悬架系统设计过程中,合理的设计上下摆臂 的长度和角度的,可有效提高车轮的定位精 度、有效降低侧倾中心高度和中心高度,使 得整车在弯路当中的表现更加稳定,有效提 高整车行驶安全性。
汽车悬架的性能开发专题资料集锦(二)
![汽车悬架的性能开发专题资料集锦(二)](https://img.taocdn.com/s3/m/69610708eff9aef8941e0661.png)
基于ADAMS的Z型悬架性能分析及四轮定位优化.pdf
建立Z型后悬架的ADAMS模型,分析了其悬架运动学和弹性运动学特性,将四轮 定位角动态变化与试验值做了对标,并且介绍了利用虚拟样机技术虚拟优化四 轮定位的方法。
基于ADAMS的刚柔耦合汽车悬架性能分析.pdf 在ADAMS软件中建立柔性体的方法;建立了刚柔耦合的汽车麦式独立前悬架与
悬架构件的柔性在建模中是不可忽略的, 建立刚柔耦合的悬架模型进行性能 分析是可行的并且是必要的。
悬架性能研究相关案例: 弹性元件对悬架性能的影响.pdf
随着现代轿车性能的不断提高,对悬架系统的缓冲、减振和导向性能的要求
愈加严格。轿车悬架中广泛采用的弹性元件的力学特性及其测试方法。对悬
架的空间弹性运动学问题进行了讨论,提出了处理此类问题的思路和方法, 为进一步分析整车行驶性能提供了依据。
轿车悬架性能对车身影响的分析与测试.pdf
微型汽车悬架的动态仿真方法.pdf 建立了微型汽车的两种四自由度动力学模型.其中,一种考虑车身纵向角振
动;另一种不考虑车身纵向角振动.推导出了计算公式,编制了悬挂系统特
性仿真计算的程序,并以长安微车为实例对加速度、相对动载、动挠度功率 谱和加速度均方根值进行了不同路面的模拟计算.
双连杆独立后悬架系统模型;对悬架系统进行运动学分析,并通过仿真结果与
实测数据的比较,证明了刚柔耦合悬架模型比刚体悬架模型更为准确。
乘用车前悬架的综合性能研究.rar
通过CATIA、ADAMS软件建立了半主动悬架的仿真模型、并依据悬架性能的评
定标准对悬架模型进行仿真分析,在与理论结果比较的基础上,实现了悬架性 能的改善。主要工作和成果如下:(1)首先对悬架系统的结构、控制及研究现 状与趋势进行了分析,阐明了本课题研究的意义。(2)在车辆行驶平顺性相关 的性能指标对比的基础上,分析了以车身加速度为评价指标的评价方法,最后, 建立了综合指标的平顺性评价函数。(3)应用CATIA、ADAMS分别建立了前后悬 架、转向系、发动机以及车身等各个子系统模型,并通过建立或修改信号交换 器将各个子系统组装成整车模型,为悬架系统性能的仿真分析做好准备。(4) 对所建模型进行车轮定位参数、前悬架刚度、前悬架侧倾性能的仿真分析,并 在此基础上进行了相应的参数优化,最后对悬架系统在整车中的性能发挥进行 了仿真分析。通过以上建模分析,将ADAMS仿真软件应用于汽车悬架系统仿真,
基于ADAMS的悬架系统动力学仿真分析与优化设计
![基于ADAMS的悬架系统动力学仿真分析与优化设计](https://img.taocdn.com/s3/m/4b75b21a814d2b160b4e767f5acfa1c7aa0082f3.png)
基于ADAMS的悬架系统动力学仿真分析与优化设计摘要:本文基于ADAMS软件,对悬架系统进行了动力学仿真分析与优化设计。
通过建立悬架系统的模型,应用动力学仿真技术,研究了悬架系统在不同工况下的动力学性能,并进行了相应的优化设计。
仿真结果表明,通过优化设计,悬架系统的动力学性能得到了明显的提升,进而提高了整车的操纵稳定性和行驶舒适性。
1. 引言随着汽车工业的发展,悬架系统的性能对于整车的操纵稳定性和行驶舒适性起着至关重要的作用。
因此,对悬架系统进行动力学仿真分析和优化设计具有重要的理论意义和工程应用价值。
2. 悬架系统模型建立首先,根据悬架系统的实际结构和工作原理,建立了悬架系统的运动学和动力学模型。
模型包括弹簧、减振器、转向杆等各个部件,并考虑了车轮与地面之间的接触力和摩擦力。
通过ADAMS软件的建模工具和功能,对悬架系统进行了准确地建模。
3. 悬架系统动力学仿真基于悬架系统的模型,进行了不同工况下的动力学仿真分析。
通过设定不同的工况参数,如路面不平度、悬架系统参数等,研究了悬架系统在不同路况下的动力学性能。
仿真结果显示了悬架系统的悬架行程、车体加速度、横向加速度、滚动转矩等关键参数的变化规律。
4. 悬架系统优化设计根据悬架系统动力学仿真的结果,对悬架系统进行了优化设计。
通过改变悬架系统的参数和结构,优化了悬架系统的动力学性能。
具体而言,通过增加弹簧刚度、调整减振器阻尼等方式改善了悬架系统的行程和刚度特性。
通过优化悬架系统的参数,达到了提高整车操纵稳定性和行驶舒适性的目的。
5. 结果与分析通过悬架系统动力学仿真和优化设计,得到了悬架系统在不同工况下的性能变化趋势。
仿真结果表明,通过合理的优化设计,悬架系统的行程和刚度均得到了明显的改善。
同时,整车的操纵稳定性和行驶舒适性也得到了显著提升。
6. 结论本文基于ADAMS软件,对悬架系统进行了动力学仿真分析与优化设计。
通过建立悬架系统的模型,进行了不同工况下的仿真分析,并进行了相应的优化设计。
浅析新能源汽车悬架设计
![浅析新能源汽车悬架设计](https://img.taocdn.com/s3/m/bcd3e55502020740bf1e9b43.png)
浅析新能源汽车悬架设计作者:许宇佳周峰来源:《科学导报·科学工程与电力》2019年第03期【摘要】在人们对汽车驾驶性能要求日益重视的情况下,汽车前悬架性能分析和研究、前悬架的运动学以及动力仿真学分析的作用日益突出,这种新的计算分析方式为汽车前悬架的设计提供了一种新的方法和思路。
并对汽车前悬架的集合定位参数、减震器、衬套、扭杆等组成部分进行实验设计以及对各项参数进行分析,使得汽车车轮的角度、前悬架的垂直刚度得到进一步改善或强化,改善了前悬架的设计。
【关键词】汽车悬架设计;发展;趋势1汽车悬架的种类和工作原理根据悬架的阻尼和刚度是否随着行驶条件的变化而变化,可分为被动悬架、半主动悬架和主动悬架,半主动悬架还可以按阻尼级分为有级式和无级式两类。
传统的悬架系统的刚度和阻尼系数,是按经验设计或优化设计方法选择的,一经选定后,在车辆行驶过程中,就无法进行调节,因此其减振性能的进一步提高受到限制,这种悬架称为被动悬架。
为了克服被动悬架的缺陷,国外在20世纪60年代就提出了主动悬架的概念,主动悬架就是由在悬架系统中采用有源或无源可控制的元件组成。
它是一个闭环控制系统,根据车辆的运动状态和路面状况主动作出反应,以抑制车体的运动,使悬架始终处于最优减振状态。
所以主动悬架的特点就是能根据外界输入或车辆本身状态的变化进行动态自适应调节。
因此,系统必须是有源的。
半主动悬架则由无源但可控制的阻尼元件组成。
在车辆悬架中,弹性元件除了吸收和存贮能量外,还得承受车身重量及载荷,因此,半主动悬架不考虑改变悬架的刚度而只考虑改变悬架的阻尼。
由于半主動悬架结构简单,在工作时,几乎不消耗车辆动力,又能获得与主动悬架相近的性能,故应用较广。
由于路面输入的随机性,车辆悬架阻尼的控制属于自适应控制,即所设计的系统在输入或干扰发生大范围的变化时,能自适应环境,调节系统参数,使输出仍能被有效控制,达到设计要求。
它不同于一般的反馈控制系统,因为它处理的具有“不确定性”的反馈信息。
四轮独立驱动独立转向电动汽车悬架和转向机构设计本科生毕业论文
![四轮独立驱动独立转向电动汽车悬架和转向机构设计本科生毕业论文](https://img.taocdn.com/s3/m/ce9a5cc233d4b14e85246827.png)
3.更具我们的结构特点,选用了双横臂弹簧减震悬架机构。简易的选择了控制臂的空间位置形式,并根据经验设计了控制臂的尺寸,校验了连接点的强度。计算并选择了合适的液压阻尼器和螺旋弹簧。
关键字:四轮独立四轮转向轮毂电机驱动轮边线控转向双横臂悬架螺栓弹簧液压减震
1.1
电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动汽车的四个车轮,车轮之间没有机械传动环节。典型四轮驱动布置型式,其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱动系统与传统汽车驱动系统相比有以下特点:
1)传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。但是,在实际实际交通环境中无声行驶,带来的很多问题,在汽车系统没有实现完全的智能化前,带来的往往祸大于福。
1.2
在一般汽车,以操纵方向盘使前轮的轮胎转向发挥转弯机能,但四轮转向是后轮的轮胎也可转向之系统。四轮转向的目的:在低速行驶时作逆相转向(前轮与旋转方向为逆向)使旋转时小转弯性能良好,中高速时为同相转向(前轮与旋转方向为同方向),以提高在高速时之车道变换或旋转时操纵稳定性。
1)四轮转向降低低速转向半径。
如图1-1a所示,汽车在低速旋转时,车辆行进方向与轮胎方向大概可视为一致,在各轮大部份不会产生旋转向心力(cornering force )。四轮行进方向的垂直线会交于一点,车辆就以该点为中心(旋转中心)旋转。参考下图低速旋转时之行车轨迹,单轴转向车(通常前轮转向)时,因为后轮不转向,旋转中心差不多在后轴的延长线上。
微型电动汽车悬架系统设计与平顺性分析
![微型电动汽车悬架系统设计与平顺性分析](https://img.taocdn.com/s3/m/5678a806f08583d049649b6648d7c1c708a10b37.png)
微型电动汽车悬架系统设计与平顺性分析陈鑫;兰凤崇;陈吉清;翁楚滨;曾文波【摘要】为了开发一款微型纯电动汽车,针对其乘坐舒适、安全可靠的设计要求,分析了悬架系统设计参数并完成了初步设计.为了保证汽车有良好的操纵稳定性,基于Adams/Insight对设计的麦弗逊悬架进行了前轮定位参数优化.在3种极限工况下,对设计的扭转梁悬架模型进行有限元强度分析,以验证其可靠性.为评估整车的平顺性,在随机沥青路面上进行仿真,并经过功率谱密度变换和频率加权得到了3个轴向的加权加速度均方根值.结果表明:优化后的前轮定位参数随车轮跳动有着良好的变化特性;设计的扭转梁悬架满足强度要求;设计的悬架系统使汽车具有良好的平顺性.【期刊名称】《重庆理工大学学报(自然科学版)》【年(卷),期】2018(032)008【总页数】8页(P24-31)【关键词】微型纯电动汽车;麦弗逊悬架;扭转梁悬架;平顺性【作者】陈鑫;兰凤崇;陈吉清;翁楚滨;曾文波【作者单位】华南理工大学机械与汽车工程学院/广东省汽车工程重点实验室,广州510640;华南理工大学机械与汽车工程学院/广东省汽车工程重点实验室,广州510640;华南理工大学机械与汽车工程学院/广东省汽车工程重点实验室,广州510640;华南理工大学机械与汽车工程学院/广东省汽车工程重点实验室,广州510640;中国电器科学研究院工业产品环境适应性国家重点实验室,广州 510300【正文语种】中文【中图分类】U463.33近年来,微型电动汽车逐渐受到一些消费者的青睐,但其也存在着操纵稳定性和平顺性较差、安全得不到保障等问题,这不仅会影响到乘员的乘坐体验,甚至会危及乘员的生命安全。
汽车悬架系统作为汽车重要的组成部分,对于确保汽车的舒适性和安全性有着重要意义。
国内外关于汽车悬架系统的研究主要围绕以上性能展开,并且多以基准车为基础,针对已有悬架系统以改善性能为目标进行分析和优化。
一方面,在已有悬架系统结构基础上进行结构参数化,根据悬架的综合性能要求进行参数协同设计优化。
基于ADAMSCar的汽车悬架系统_动力学建模与仿真分析毕业设计
![基于ADAMSCar的汽车悬架系统_动力学建模与仿真分析毕业设计](https://img.taocdn.com/s3/m/a2ad4afa534de518964bcf84b9d528ea81c72fde.png)
毕业设计(论文)题目:基于ADAMS/Car的汽车悬架系统动力学建模与仿真分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日指导教师评价:一、撰写(设计)过程1、学生在论文(设计)过程中的治学态度、工作精神□优□良□中□及格□不及格2、学生掌握专业知识、技能的扎实程度□优□良□中□及格□不及格3、学生综合运用所学知识和专业技能分析和解决问题的能力□优□良□中□及格□不及格4、研究方法的科学性;技术线路的可行性;设计方案的合理性□优□良□中□及格□不及格5、完成毕业论文(设计)期间的出勤情况□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)指导教师:(签名)单位:(盖章)年月日评阅教师评价:一、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格二、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)评阅教师:(签名)单位:(盖章)年月日教研室(或答辩小组)及教学系意见教研室(或答辩小组)评价:一、答辩过程1、毕业论文(设计)的基本要点和见解的叙述情况□优□良□中□及格□不及格2、对答辩问题的反应、理解、表达情况□优□良□中□及格□不及格3、学生答辩过程中的精神状态□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格评定成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)教研室主任(或答辩小组组长):(签名)年月日教学系意见:系主任:(签名)年月日********大学毕业设计(论文)任务书姓名:院(系):专业:班号:任务起至日期:毕业设计(论文)题目:基于ADAMS/Car汽车悬架系统动力学建模与仿真分析立题的目的和意义:汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。
汽车悬架系统动力学模型的研究
![汽车悬架系统动力学模型的研究](https://img.taocdn.com/s3/m/489d5e40c850ad02de804143.png)
1 绪论随着社会的发展和文明的进步,汽车作为一种交通工具,已成为人们出行的主要选择,汽车乘坐的安全性、舒适性已成为世人关注的焦点。
汽车作为高速客运载体,其运行品质的好坏直接影响到人的生命安全,因此,与乘坐安全性、舒适性密切相关的轿车动力学性能的研究就显得非常重要。
悬架系统汽车的一个重要组成部分,它连接车身与车轮,主要由弹簧、减震器和导向机构三部分组成。
它能缓冲和吸收来自车轮的振动,传递车轮与地面的驱动力与制动力,还能在汽车转向时承受来自车身的侧倾力,在汽车启动和制动时抑制车身的俯仰和点头。
悬架系统是提高车辆平顺性和操作稳定性、减少动载荷引起零部件损坏的关键。
一个好的悬架系统不仅要能改善汽车的舒适性,同时也要保证汽车行驶的安全性,而提高汽车的舒适性必须限制汽车车身的加速度,这就需要悬架有足够的变形吸收来自路面的作用力。
然而为了保证汽车的安全性,悬架的变形必须限定在一个很小的范围内,为了改善悬架性能必须协调舒适性和操作稳定性之间的矛盾,而这个矛盾只有采用这折衷的控制策略才能合理的解决。
因此,研究汽车振动、设计新型汽车悬架系统、将振动控制在最低水平是提高现代汽车性能的重要措施[1][2]。
1.1 车辆悬架系统的分类及发展按工作原理不同,悬架可分为被动悬架(Passive Suspension)、半主动悬架(Semi-Active Suspension)和主动悬架(Active Suspension)三种,如图1.1所示[3]。
(a)被动悬架 (b)全主动悬架 (c)半主动悬架图 1.1 悬架的分类图1.1中Mu为非簧载质,Ms为簧载质量,Ks为悬架刚度,Kt为轮胎刚度;C1为被动悬架阻尼,C2为半主动悬架可变阻尼,F为主动悬架作动力。
目前我国车辆主要还是采用被动悬架(Passive Suspension)。
其两自由度系统模型如图1.1(a)所示。
传统的被动悬架一般由参数固定的弹簧和减振器组成,其弹簧的弹性特性和减振器的阻尼特性不能随着车辆运行工况的变化而进行调节,而且各元件在工作时不消耗外界能源,故称为被动悬架。
汽车悬架系统动力学研究剖析
![汽车悬架系统动力学研究剖析](https://img.taocdn.com/s3/m/813f535dcd7931b765ce0508763231126edb77c3.png)
汽车悬架系统动力学研究剖析汽车悬架系统是汽车重要的组成部分之一,它承担着减震、支撑车身、提供舒适性、保证车辆操控性的重要功能。
随着汽车技术的不断发展,对汽车悬架系统的要求也越来越高。
本文将对汽车悬架系统的动力学研究进行剖析,从力学角度探讨悬架系统的运动规律和影响因素。
汽车悬架系统的动力学研究主要包括悬架系统的振动、冲击与控制。
悬架系统的振动是指汽车在不同路面条件下的颠簸现象,这种振动会直接影响到车辆的行驶舒适性和操控性能。
冲击则是指车辆在行驶过程中遇到的突然上升或下降的力,这种冲击会对车辆的稳定性和安全性造成影响。
控制则是指通过悬架系统的特性调整,来保持车辆的稳定性和操控性能。
悬架系统的振动主要通过弹簧和减振器来吸收和控制。
弹簧是悬架系统的主要支撑元件,它能够通过储存和释放能量,来实现对车身的支撑。
而减振器则主要用于控制车身在弹簧的作用下产生的振动,使车身保持平稳。
这两个元件的组合和特性对车辆的振动特性起着至关重要的作用。
悬架系统的冲击主要通过减震器来控制。
减震器是悬架系统中的关键元件,它能够通过阻尼力来减缓车身的冲击,从而使车辆在行驶过程中更为稳定和安全。
减震器的阻尼特性和调节方式对车辆的冲击响应有着直接的影响。
悬架系统的控制主要是通过悬架系统的参数调节和悬架控制系统来实现。
悬架系统的参数调节包括弹簧刚度、减振器的阻尼特性等,通过调整这些参数,可以实现对车辆振动和冲击的控制。
而悬架控制系统则是指通过电子控制单元(ECU)来感知车辆的运动状态,并通过调节悬架系统的特性,来实现对车辆悬架系统的控制。
这种控制方式可以使得悬架系统根据不同的路面、驾驶条件和驾驶模式进行调节,从而提供更好的行驶舒适性和操控性能。
除了悬架系统的振动、冲击和控制外,悬架系统的动力学研究还包括悬架系统的动力学建模和优化设计。
动力学建模是指通过建立悬架系统的数学模型,来研究悬架系统的振动、冲击和控制特性。
优化设计则是指通过分析悬架系统的动力学特性和需求,对悬架系统的结构和参数进行优化,以提高悬架系统的性能和效能。
汽车底盘悬架系统的动力学建模与优化设计
![汽车底盘悬架系统的动力学建模与优化设计](https://img.taocdn.com/s3/m/2b1a9aa36394dd88d0d233d4b14e852459fb3940.png)
汽车底盘悬架系统的动力学建模与优化设计作为汽车底盘中重要的一部分,悬架系统承担着车身支撑以及减震的重要功能。
一个优秀的悬架系统可以提供良好的操控性和驾驶舒适性,对汽车的性能和安全性有着至关重要的影响。
本文将探讨汽车底盘悬架系统的动力学建模与优化设计,旨在提升汽车悬架系统的性能。
一、悬架系统动力学建模悬架系统的动力学建模是优化设计的基础。
动力学建模的目的是描述悬架系统在不同工况下的运动规律和力学特性。
常用的悬架系统动力学模型包括质点模型、弹簧-阻尼-质量模型以及多体动力学模型等。
质点模型是最简单的悬架系统动力学模型,它基于质点运动学和动力学原理来描述悬架系统的运动规律。
质点模型可以用来分析悬架系统的振动特性和悬架与车身的相对运动。
弹簧-阻尼-质量模型是一种常用的悬架系统动力学模型,它把悬架系统看作是由弹簧、减震器和质量单元组成的动力学系统。
这种模型能够更加准确地描述悬架系统的力学特性,包括悬架系统的减震性能和下垂量等。
多体动力学模型是最复杂的悬架系统动力学模型,它考虑了悬架系统的多个部件之间的相互作用。
多体动力学模型可以有效地预测悬架系统在复杂路况下的运动规律和力学响应。
二、悬架系统优化设计基于悬架系统的动力学模型,可以进行悬架系统的优化设计。
悬架系统的优化设计旨在提升汽车的操控性、驾驶舒适性和安全性。
1. 悬架系统刚度与减震器调校悬架系统刚度对汽车的操控性和驾驶舒适性有着重要的影响。
较高的悬架系统刚度可以提高车辆的操控性能,但对驾驶舒适性会产生不利影响。
因此,在悬架系统的优化设计中,需要根据车辆的使用环境和性能要求来选择合适的悬架系统刚度。
减震器是悬架系统中起到减震功能的重要部件。
通过对减震器的调校,可以改善车辆在不同路况下的驾驶舒适性和操控性能。
减震器调校需要考虑悬架系统的刚度、减震器特性以及车辆的动力学特性等因素。
2. 悬架系统动态特性与操控性优化悬架系统的动态特性对车辆的操控性能有着重要的影响。
《轮毂电机驱动电动汽车悬架分析与优化》范文
![《轮毂电机驱动电动汽车悬架分析与优化》范文](https://img.taocdn.com/s3/m/907755734531b90d6c85ec3a87c24028915f8581.png)
《轮毂电机驱动电动汽车悬架分析与优化》篇一一、引言随着科技的发展,电动汽车逐渐成为现代交通的重要组成部分。
轮毂电机作为一种新型的驱动方式,因其高效、紧凑的结构特点,在电动汽车中得到了广泛应用。
然而,电动汽车的悬架系统对其行驶性能、乘坐舒适性及安全性有着至关重要的影响。
因此,对轮毂电机驱动电动汽车的悬架系统进行分析与优化,具有重要的研究价值。
二、轮毂电机驱动电动汽车悬架系统概述轮毂电机驱动电动汽车的悬架系统主要由弹性元件、减震器、导向机构等部分组成。
其中,弹性元件负责承受和传递垂直载荷,减震器则用于减小路面不平度引起的振动和冲击,导向机构则保证车轮按照设定的轨迹运动。
三、轮毂电机驱动电动汽车悬架系统问题分析1. 振动与噪声问题:由于轮毂电机的特殊性,其驱动系统与悬架系统的耦合性较高,容易产生振动和噪声,影响乘坐舒适性。
2. 悬架性能问题:在复杂的路况下,传统的悬架系统可能无法很好地适应轮毂电机驱动的电动汽车,导致行驶性能和安全性下降。
3. 结构优化问题:现有的悬架系统结构可能存在设计上的不足,如结构笨重、耗能大等,需要进行优化以提升整体性能。
四、轮毂电机驱动电动汽车悬架系统分析方法1. 理论分析:通过建立数学模型,对悬架系统的动力学特性进行分析,了解其工作原理及性能特点。
2. 仿真分析:利用计算机仿真软件,对不同路况下的悬架系统进行仿真分析,预测其性能表现。
3. 实验分析:通过实际道路实验,对理论分析和仿真分析的结果进行验证和修正。
五、轮毂电机驱动电动汽车悬架系统优化策略1. 优化振动与噪声问题:通过改进减震器设计、优化悬挂系统结构等方式,减小振动和噪声的产生。
同时,采用先进的材料和技术,提高悬架系统的刚度和阻尼性能。
2. 提升悬架性能:针对复杂路况,通过优化悬挂系统的参数设置,如弹簧刚度、减震器阻尼等,提高行驶性能和安全性。
同时,采用智能控制技术,实现悬架系统的自动调节和优化。
3. 结构优化:对现有的悬架系统结构进行轻量化设计,降低耗能。
悬架实验仿真实验报告总结(3篇)
![悬架实验仿真实验报告总结(3篇)](https://img.taocdn.com/s3/m/cb8ffe4fa4e9856a561252d380eb6294dc882248.png)
第1篇一、实验背景随着汽车工业的快速发展,汽车悬架系统在车辆行驶的舒适性、操控稳定性和安全性等方面发挥着至关重要的作用。
为了提高悬架系统的设计质量和性能,本实验采用仿真软件对悬架系统进行了详细的模拟和分析。
本次实验旨在通过仿真验证悬架设计的合理性和优化潜力,为实际工程应用提供理论依据。
二、实验目的1. 建立悬架系统的数学模型。
2. 仿真分析不同工况下悬架系统的性能。
3. 优化悬架系统参数,提高车辆行驶的舒适性和操控稳定性。
4. 为实际工程应用提供理论支持和设计指导。
三、实验方法1. 数学建模:根据悬架系统的物理特性,建立悬架系统的动力学模型,包括弹簧、减震器、转向系统等主要部件。
2. 仿真软件:采用专业的仿真软件(如ADAMS、MATLAB等)进行仿真实验。
3. 实验方案:设计多种工况,如直线行驶、曲线行驶、紧急制动等,模拟不同路况下悬架系统的性能。
4. 数据分析:通过对比仿真结果与实际测试数据,分析悬架系统的性能,并找出存在的问题。
四、实验结果与分析1. 直线行驶工况:在直线行驶工况下,仿真结果显示悬架系统能够有效地抑制车身振动,提高行驶的舒适性。
2. 曲线行驶工况:在曲线行驶工况下,仿真结果显示悬架系统对车辆侧倾有较好的抑制效果,提高了车辆的操控稳定性。
3. 紧急制动工况:在紧急制动工况下,仿真结果显示悬架系统能够迅速响应制动需求,保证车辆的稳定性。
4. 参数优化:通过对悬架系统参数进行优化,仿真结果显示在保持车辆稳定性的同时,舒适性得到了进一步提高。
五、实验结论1. 通过仿真实验,验证了悬架系统在直线行驶、曲线行驶和紧急制动工况下的性能。
2. 仿真结果表明,通过优化悬架系统参数,可以显著提高车辆的舒适性、操控稳定性和安全性。
3. 仿真实验为实际工程应用提供了理论支持和设计指导,有助于提高悬架系统的设计质量和性能。
六、实验展望1. 进一步完善悬架系统的数学模型,提高仿真精度。
2. 结合实际工程需求,开发具有自适应功能的悬架系统。
汽车悬架性能优化设计
![汽车悬架性能优化设计](https://img.taocdn.com/s3/m/a1b9296daeaad1f346933fe8.png)
D • c 1 l 1 ( z • 1 z • 2 l 1 z • 3 ) c 2 l2 ( z • 2 l2 z • 3 z • 4 ) c 3 l 3 ( z • 2 l 3 z • 3 z • 5 ) z 3
D • c4 [z •4f•0 1(t)] z4
D • c5 [z •5f•0 2(t)] z5
较复杂。多目标函数可表示为:
f1 ( X ) f1 ( x1,x 2, ,x n )
f 2 ( X )
f 2 ( x1,x 2, ,x n ) 综合: f (X ) q f j (X )
j 1
f q ( X ) f q ( x1,x 2,
如果目标函数的最优点为可行域中的最大值时, 则可看成是[-f(X)]的最小值,因为min[-f(X)]与 max[f(X)]是等价的,或可看成求1/f(X)的最小值。
1.4 优化设计常用方法
①常用的优化方法
按无约束和有约束优化方法如下:
0.618法
一维优化方法
格点法
坐标轮换法
二次插值法
无约束优
梯度法
②设计变量的维数 设计变量的数目,称为设计变量的维数。若有 n个设计变量(n=1,2,┅,n),则称为n维设计问题。 设计变量的维数,又表征为设计的自由度。 为了使问题简化, 应尽量减少设计变量 的数目。
设n个设计变量为x1,x2,┅,xn,用矩阵可表示为:
x1
, X
x2
...
x1 , x2 ,
xn T
xn
③设计空间 每一组设计变量,对应着一
个以坐标原点为起点的矢量,矢
量端点的坐标值,就是这一组设
计变量,一组设计变量代表一个
参数方案,其矢量端点称为设计
悬架系统设计汽车悬架系统设计
![悬架系统设计汽车悬架系统设计](https://img.taocdn.com/s3/m/7a0c466adc36a32d7375a417866fb84ae45cc3ae.png)
装配与涂装
按照工艺流程进行装配,采用 自动化涂装设备,确保产品外
观质量。
检测与试验
对成品进行全面的检测和试验 ,确保产品性能符合设计要求
。
关键工艺参数控制
热处理工艺参数
控制加热温度、保温时间和冷却速度等参数,确 保材料的力学性能和金相组织符合要求。
焊接工艺参数
选择合适的焊接方法和焊接参数,确保焊缝质量 和强度。
解决关键技术难题
在悬架系统设计过程中,攻克了多项关键技术难题,如非线性阻尼特性控制、多自由度振 动解耦等,为悬架系统的研发和应用提供了有力支持。
行业发展趋势预测
智能化悬架系统成为发展热点
随着智能驾驶技术的不断发展,智能化悬架系统将成为未来汽车悬架 系统的重要发展方向,实现与车辆控制系统的高度集成和协同工作。
验证与测试
通过实车试验或台架试验等方式,验证优化后的悬架系统的性能和可 靠性,确保满足设计要求。
05 悬架系统制造工艺与质量 控制
制造工艺流程规划
01
02
03
04
原材料选择与检验
选用高强度、轻量化的材料, 并进行严格的入厂检验,确保
原材料质量。
零部件加工
采用先进的数控机床和加工工 艺,确保零部件的尺寸精度和
稳定性分析
研究车辆和悬架系统在受到外部扰动时的稳定性,包括侧倾稳定 性、俯仰稳定性和横摆稳定性等。
仿真模拟与优化设计
仿真模拟
利用计算机仿真软件,对悬架系统进行动力学仿真模拟,分析系统 的运动学和力学特性,以及车辆的行驶平顺性和操纵稳定性。
优化设计
根据仿真结果和实际需求,对悬架系统的结构参数、刚度和阻尼等 进行优化设计,提高车辆的行驶性能和舒适性。
基于六西格玛的四连杆后悬架车辆动力学性能设计
![基于六西格玛的四连杆后悬架车辆动力学性能设计](https://img.taocdn.com/s3/m/4112b2143c1ec5da50e2705e.png)
基于六西格玛的四连杆后悬架车辆动力学性能设计作者:吴蒙来源:《大东方》2019年第10期摘要:为满足客户需求,提高车型的驾驶乐趣,下一代车型将采用全新的底盘架构。
本文通过运用六西格玛设计方法,结合基于车辆动力学性能分解技术参数优化工具,完成全新四连杆后悬架车辆动力学性能的前期开发,验证前期开发中优化设计结果的有效性。
关键词:六西格玛;四连杆后悬架车;动力性能设计六西格玛设计是信息驱动的六西格玛系统方法,产品早期开发过程通过强带哦缩短设计周期,实现高效能的产品开发过程。
在产品新一代车型的全新底盘架构开发中,为获得更好的市场口碑,运用DFSS方法进行全新底盘架构的四连杆后悬架设计。
DFSS实施包括机会识別,定义要求,概念开发,优化与验证等阶段。
根据收集的客户需求,转化为设计语言,定义新一代车型的设计方案。
在定义要求阶段,将客户需求转化为整车技术要求,实现自上而下的目标定义过程。
使用普氏选择工具,从性能,质量与市场竞争力分析,确定初始布置方案。
运用基于整车动力学性能分解技术多目标优化工具,找到满足设计要求的参数配置,八婆了敏感性分析等重要步骤。
通过虚拟分析优化结果的有效性。
一、六西格玛法简介1.6Σ的概念六西格玛包括DMAIC与DMADV,DMAIC是对低于六西格玛规定的项目进行定义,分析及控制过程,DMADV是对试图达到六西格玛质量的新产品进行定义,分析及验证的过程。
六西格玛可以使营运成本降低,材料浪费减少,顾客满意度增加,要达到六西格玛标准,需要很长长时间才能实现[1]。
2.6Σ的特点六西格玛实施对需要改进的流程进行区分,优先对需改进的流程改进,六西格玛核心是追求零缺陷生产,降低成本,提高市场占有率,6Σ管理着眼于产品质量,关注过程的改进。
为达到6Σ,首先要制定标准,跟踪操作与标准的偏差,最终形成使每个环节不断改进的简单流程标准。
6Σ管理是持续性质量改进方法,具有对顾客需求高度关注,高度依赖统计数据,重视改善业务流程,突破管理,倡导无界限合作等特征。
新能源汽车底盘设计及分析
![新能源汽车底盘设计及分析](https://img.taocdn.com/s3/m/64742aab0875f46527d3240c844769eae109a378.png)
新能源汽车底盘设计及分析一、底盘结构设计底盘结构是整个汽车的骨架,支撑着车身和各种车载设备。
对于新能源汽车来说,底盘结构设计需要考虑的因素更多,如电池的布置位置、电动驱动系统的安装等。
一般来说,新能源汽车的底盘结构设计需要兼顾能量密度和安全性,同时也要考虑到减少车辆的空气动力学阻力。
在底盘结构设计中,需要考虑电气化的因素,因此底盘结构设计需要兼顾汽车的电气化特性。
在车身结构设计中要充分考虑到电池组的密集性,降低电池的重量和体积。
在悬架系统方面,需要考虑到电动汽车相对传统燃油车辆而言更为重要的弹簧刚度、减震器等。
底盘结构设计还要考虑到车辆的动态特性和稳定性,确保汽车在运行时的稳定性和操控性。
二、悬挂系统设计悬挂系统是汽车底盘结构的重要组成部分,对汽车的悬挂性能和舒适性有着非常重要的影响。
对于新能源汽车来说,悬挂系统设计需要兼顾到电池的重量和空间占用,确保车辆的悬挂性能和舒适性。
在新能源汽车悬挂系统设计中,需要考虑到电池组的重量分布对悬挂性能产生的影响。
对于电动汽车来说,需要考虑到高转矩电动机所产生的振动对悬挂系统的影响。
新能源汽车悬挂系统设计需要采用合适的减震器和弹簧,以满足电动汽车的特殊要求。
在悬挂系统设计中,还需要考虑到新能源汽车相对传统燃油汽车而言更为严格的能耗和排放要求。
新能源汽车悬挂系统设计需要采用可调节悬挂系统、轻量化悬挂结构等技术手段,以提升汽车的悬挂性能和舒适性,减少能耗和排放。
三、电池布置新能源汽车的电池布置是影响车辆性能和安全性的重要因素之一。
电池布置不仅影响到车辆的重心位置和行驶稳定性,还会影响到车辆的能量密度和充电效率。
在电池布置方面,需要考虑到电池的重心位置对车辆的动态特性的影响。
电池的重心位置越低,车辆的稳定性就越好,因此在新能源汽车的电池布置中需要尽量将电池组安置在车辆的下部位置。
电池布置还需要兼顾车辆的安全性和通风性。
在电池组的安置位置需要保证电池组在行驶过程中不受外部冲击的影响,同时还需要在电池组的布置中保证电池组的通风和冷却,防止电池组过热引发安全事故。
汽车馈能式悬架结构研究现状及其悬架动力学模型设计
![汽车馈能式悬架结构研究现状及其悬架动力学模型设计](https://img.taocdn.com/s3/m/87e10b9850e2524de4187e47.png)
汽车馈能式悬架结构研究现状及其悬架动力学模型设计作者:张敏尹崇进来源:《科技风》2018年第30期摘要:本文在分析汽车馈能式悬架结构研究现状的基础上,给出了电液式馈能悬架工作原理和悬架动力鞋模型。
本研究为后续的车馈能式悬架结构优化提供一定的研究基础。
关键词:汽车;悬架结构;动力学模型;设计1 汽车悬架结构研究现状汽车悬架系统的主要作用之一就是为了缓和路面不平,汽车加速和刹车等导致的车身的垂直震动。
传统汽车多使用油液减震器来缓和车身震动,振动能量最终使液压油的温度升高并通过筒壁与空气热交换将热量耗散掉。
武汉理工大学的过学迅、张晗等实车验证了车辆在空载、B级路面的行驶情况下,车速达到70km H1时,回收峰值可达264.9W其中提到了重型商用车能量回收潜力更大。
因此,重型商用车筒式减震器的能量回收具有较好的应用前景。
喻凡等将永磁直流无刷电机与滚珠丝杠等机械机构组成新型的主动悬架,滚珠丝杠等机械机构将车身的上下震动转变为电机的旋转震动,实现能量回收。
其工作原理主要是将发电机转子位置传感器产生的驱动信号和悬架动挠度传感器产生的电信号收集到微处理器,经无刷电机换相逻辑、电磁蓄能控制算法和主动悬架控制律处理后,通过驱动及蓄能电路和车载电源电路,实时控制电机作动器的正反转、反接制动或再生制动状态,以主动地缓冲或衰减由路面不平激励引起的、由车轮传导至车身的冲击和振动,同时还将再生制动电能回收再利用。
同时试制了电动悬架的样机并通过整车台架试验检验了电动悬架在随动态下的悬架动力学特征和自馈能特性。
现有的电液式馈能悬架主要有机电类型和电磁类型。
机电类型悬架是将悬架的上下运动转换成发动机的旋转运动,进而实现对电能的存贮。
电磁类型悬架是利用永磁铁和线圈组成的能量回收装置来代替传动液压传动,进而实现对电能的控制。
2 电液式馈能悬架工作原理参考各类型馈能悬架的优缺点可以得出电液式馈能悬架是最优的馈能悬架方案,在查阅了大量国内外文献后设计了一种改进型电液式馈能悬架,分析得出安装48V电机的馈能悬架输出功率会提高,并利用了2个单向阀组成的液压式整流桥可以取代原有的4个单向阀式的整流桥,并将液压蓄能器布置在液压马达的出口端,以减小减震油液对液压元件的冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【 A b s t r a c t 】 T h e d e v e l o p m e n t p r o c e s s o f s u s p e n s i o n s y s t e m d y n a m i c s p e f r o r m a n c e f o r t h e e l e c -
【 关键词】 悬架系统
动力学
电动汽车 舒适性
操控性
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 7 - 4 5 5 4 . 2 0 1 3 . 1 0 . 0 4
0 引 言
本 文所涉 及 的 电动 汽 车 , 在 上一 代 某 车 型 基 础 上进行 设计 , 前悬 架 为 麦弗 逊 类 型 , 后 悬 架 为扭 杆 梁类 型 。 目前 , 这 两 种 悬 架 类 型 因成 本 相 对 较 低 以及 不错 的 性 能 表 现 , 在 市 场 上 占有 绝 大 部 分
悬 架 的影 响 , 也 能单独 考 虑 悬架 本 身 的一 些 特性 , 因此 K & C特 性 仿 真 和测 量 成 为 了悬 架 开 发 和设
1 . 2 整 车级技 术指标 根据 基准 车 型 的市 场 表 现 , 项 目对 该 电动 汽
计 的重要ቤተ መጻሕፍቲ ባይዱ手 段 。本 文 也 主要 针 对 K & C参 数 进 行
研究 , 提 出设 计 和改进 方案 。
车 的操稳 性能 和平顺 性 定 位 与基 准车 大 致 位 于 同
一
水平 。但需 要 改 善 转 向 盘 的 力 感 , 因 为 电动 车
收稿 日期 : 2 0 1 3—0 8— 0 5
・
1 6・
上海汽 车
2 0 1 3 . 1 0
整 车级 技术 指标
距; g为 重 力 加 速 度 ; V为 车 速 ; K u为 不 足 转 向梯
度。
系统 级技 术 指标 子 系统 级技 术指 标
零件 级技 术 指标
标( S S T S ) , 进 而 通 过 多 体 运 动 学 和 有 限 元 分 析
底盘的 K &C特 性 是 影 响 整 车 操 稳 性 的决 定 性 因素 , “ K” 指 悬架 的运 动 学特 性 , 对 悬 架 硬 点 布 置 十分 敏感 ; “ C ” 指 悬 架 的柔 顺 性 , 对 悬 架 零 件 的 衬 套 刚度很 敏感 。而 底盘 特 性 主要 由轮胎 和 悬架
电动 汽 车 悬架 系统 动 力 学 性能 开 发设 计
刘立 刚 谢 骋 舒 进 杨 万安 张秋雁 ( 泛亚汽车技术中心有限公司, 上海 2 0 1 2 0 1 )
【 摘要】 介绍了某电动汽车 悬架系统动力学性能开发过程, 并分析了悬架关键参数对车辆动力学性能
的影 响。使用仿真分析技术 , 建立车辆动力学模型 , 与上一代 车型进行 对 比, 深入研究 了 K & C特性 的差异 。此 外, 分析了仿 真与试验 的相关性 , 用来 验证 悬架参数 是否 达到设计要求 。
( F E A) 等 工程软 件 对零 件 技 术 指标 ( C T S ) 进 行 详
细设 计 , 是 一个 从 整 车 到 零 件 , 由上 至 下 的 过程 。 样车 的性 能验 证 与性 能 开发 是 一 个 相 反 的 过程 ,
自下 至 上 , 如图 1 所示 。
( 包 含 转 向) 特性 决 定 , K &C特 性 综合 考 虑 轮 胎 和
比例 。
1 开 发 流程
1 . 1 开发流 程综 述
悬 架 系统 的动力 学性 能 开发 从整 车 级技 术 指 标( V T S ) 出发 , 参 考竞 争车 型的 K &C特性 、 客观 试 验 以及 主观 评 估 , 制定 总体 的操 稳 性 和平 顺 性 水
平, 然 后分解 出系统级 ( S T S ) 和 子系统 级 的技 术 指