新北师大版八年级下册《三角形的证明》
北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。
最新北师大版八年级数学下册《直角三角形》精品教学课件
∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
北师大版八年级数学下册课件.1直角三角形的性质与判定课件
1.2 直角三角形
第1课时 直角三角形的性质与判定
教学目标
1.了解直角三角形两锐角互余及互逆命题的转化 2.运用勾股定理逆定理判定直角三角形
重难点
1.熟练掌握勾股定理逆定理的证明方法 2.互逆命题的真假性判定
提出问题,导入新课
问题1 直角三角形的定义是什么? 有一个是直角的三角形叫直角三角形.
归纳新知
勾股定理:直角三角形两条直角边的平方和等于 斜边的平方.
定理:如果一个三角形两边的平方和等于第三边 的平方,那么这个三角形是直角三角形.
条件和结论互换
上面两个定理的条件和结论有什么关系吗? 与同伴交流.
探求新知
再视察下面三组命题:
如果两个角是对顶角,那么它们相等; 如果两个角相等,那么它们是对顶角.
知识回顾
勾股定理:直角三角形两条直角边的平方和等于斜边的 平方. 即 a2 + b2 = c2. 勾股定理在西方文献中又称为毕达 哥拉斯定理.
a
c
b
勾
弦
股
提出问题 探求新知
勾股定理是一个真命题,那么把这个命题的条件和结论颠 倒过来,形成一个新的命题:
如果一个三角形两边的平方和等于第三边的平方,那么这 个三角形是直角三角形.
解:(1)多边形是四边形.原命题是真,逆 命题是假.(2)同旁内角互补,两直线平行.原 命题是真,逆命题是真.(3)如果那么 a = 0, b = 0,那么 ab = 0.原命题是假,逆命题是真.
课堂小结
角的性质
直角三 角形
边的性质
定理1:直角三角形的两 个锐角互余 定理2:有两个角互余的 三角形是直角三角形
如果小明患了肺炎,那么他一定会发烧; 如果小明发烧,那么他一定患了肺炎.
新北师大版八年级数学下册知识点总结
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册
【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1
欘
,
∴∠A
= 90°,
∠
B
=
1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.
北师大版数学八年级下册《三角形的证明》课件(共22张)
∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E)
∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F(等量代换)
∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
(1)还记得我们探索过的等腰三角形的性质吗?尽可能回忆出来. (2)你能利用已有的公理和定理证明这些结论吗?
如图,先自己折纸视察探索并写出等腰三角形的性质, 然后再小组交流,互相补偿不足.
作图视察,我们可以发现:等腰三角形两底角的平分 线相等;两腰上的高、中线也分别相等.
我们知道,视察或度量是不够的,感觉不可靠.这 就需要以公理和已证明的定理为基础去证明它,让人们 坚定不移地去承认它,相信它.
下面我们就来证明上面提到的线段中的一种:等腰 三角形两底角的平分线相等.
用心想一想,马到功成
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等).
用心想一想,马到功成
例1. 证明: 等腰三角形两底角的平分线相等. A
已知:如图,在△ABC中, AB=AC,
BD、CE是△ABC的角平分线.
E
D
求证:BD=CE.
3
4
B
C
证明:∵AB=AC,∴∠ABC=∠ACB.
∵∠3=2 1∠ABC,∠4= 21∠ACB, ∴∠3=∠4.
又∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠A=∠B=∠C=60°.
随堂练习 及时巩固
如图,已知△ABC和△BDE都是等边三角形,
求证:AE=CD
A
B EC D
证明: ∵ △ABC和△BDE都是等边三角形
∴AB=BC,∠ABC=∠DBE=60°,BE=BD ∴ △ABE≌△CBD
新北师大版八年级数学下册知识点总结
新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
北师大八年级数学下三角形的证明
(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为 30°. 讲一讲 例 1:已知,Rt△ABC 中,∠ACB=90°,AB=8cm,D 为 AB 中点,DE⊥AC 于 E,∠A=30°,求 BC,CD 和 DE 的长
1/4
北师大八年级数学下三角形的证明 例 1:已知:如图∠B=∠E=90°AC=DF FB=EC 求证:AB=DE.
例 2:已知:如图△ABC 中,BD⊥AC,CE⊥AB,BD、CE 交于 O 点,且 BD=CE。 求证:OB=OC.
例 3:已知:Rt△ABC 中,∠ACB 是直角,D 是 AB 上一点,BD=BC,过 D 作 AB 的垂线交 AC 于 E,求证:BE 垂直平 分 CD。
例如图所示,AC=AD,BC=BD,AB 与 CD 相交于点 E。求证:直线 AB 是线段 CD 的垂直平分线。
A
C
D
E
B
例如图,△ABC 中,AB= AC,P、Q、R 分别在 AB、BC、AC 上,且 BP=CQ,BQ=CR。 求证:点 Q 在 PR 的垂直平分线上。
【角平分线】 角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.
求证:∠B=∠CAF
A
E
B
D
C
F
2/4
北师大八年级数学下三角形的证明
针对性练习: 1、已知: 1)如图,AB=AC=14cm,AB 的垂直平分线交 AB 于点 D,交 AC 于点 E,如果△EBC 的周长是 24cm, 那么 BC=
最好用的新版北师大八年级数学下册三角形的证明
第一章三角形的证明班级座号姓名1、全等三角形(1)性质:全等三角形的对应边、对应角相等。
(2)判定:“SAS”、SSS 、AAS 、ASA 、HL(直角三角形) 。
2、等腰三角形(1)性质:①等腰三角形的两底角相等。
(“等边对等角”)②等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。
(2)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)(3)反证法:先假设命题的结论不成立,然后推导出与已知条件相矛盾的结果命题:由条件和结论组成逆命题:由结论和条件组成3、等边三角形(1)定义:三条边都相等的三角形是等边三角形。
(2)性质:①三个内角都等于60度,三条边都相等②具有等腰三角形的一切性质。
(3)判定:①三个角都相等的三角形是等边三角形②有一个角等于60度的等腰三角形是等边三角形。
4、直角三角形(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(2)定理:在直角三角中,斜边上的中线等于斜边的一半(3)直角三角形的两锐角互余。
有两个角互余的三角形是直角三角形(4)勾股定理;直角三角形两条直角边的平方和等于斜边的平方勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形(5)“斜边、直角边”或“HL”直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等定理的作用:判定两个直角三角形全等5、线段的垂直平分线(1)线段的垂直平分线上的点到这条线段的两个端点的距离相等(2)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上6、角平分线(1)角平分线上的点到这个叫的两边的距离相等(2)在一个角的内部,到角的两边距离相等的点在这个角的平分线上一、选择题1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝ B.9㎝ C.12㎝或者9㎝ D.12㎝2.一个等腰三角形的顶角是40°,则它的底角是()A.40° B.50° C.60° D.70°3.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm24. 如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()°°°°(4题图)(5题图)6. 到三角形三个顶点的距离相等的点是三角形()的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高7. 面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对8.△ABC中,∠A∶∠B∶∠C=1∶2∶3,最小边BC=4 cm,最长边AB的长是() A.5cm B.6 cm C.5cm D.8 cm二、填空题09.如果等腰三角形的有一个角是80°,那么顶角是度.10.“等边对等角”的逆命题是______________________________.11.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是 . 12.已知⊿ABC中,∠A = 090,角平分线BE、CF交于点O,则∠BOC = . 13.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC的度数为.14.Rt⊿ABC中,∠C=90º,∠B=30º,则AC与AB两边的关系是,15.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是。
[北师大版]八年级数学下册《三角形的证明》课件
连接AD,
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD=BD,AD⊥BC,
∴∠DAC=∠ABD=45°,
∴∠DAF=∠DBE=135°.
又AF=BE, ∴△DAF≌△DBE(SAS),
图S1-7
上册第一章复习 ┃ 考点攻略
∴FD=ED,∠FDA=∠EDB, ∴ ∠ EDF = ∠ EDB + ∠ FDB = ∠ FDA + ∠ FDB = ∠ ADB = 90°, ∴△DEF仍为等腰直角三角形.
上册第一章复习 ┃ 考点攻略
[解析] 要证明△DEF为等腰三角形,需要证DE=DF.连接 AD,利用全等可得这一结论.至于在延长线上,可利用同样的 方法.
上册第一章复习 ┃ 考点攻略
解:(1)证明:连接AD,如图S1-6:
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD⊥BC,BD=AD,
∴∠B=∠DAC=45°,
又BE=AF,
∴△BDE≌△ADF(SAS), ∴ED=FD,∠BDE=∠ADF,
图 S1-6
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,
∴△DEF为等腰直角三角形.
上册第一章复习 ┃ 考点攻略
(2)若E,F分别是AB,CA延长线上的点,如图S1-7所示:
上册第一章复习 ┃ 习题讲析
3.在直角三角形中,一条直角边长为a,另一条边长为2a, 那么它的三个内角之比为( D )
A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
上册第一章复习 ┃ 习题讲析 4.如图S1-9,△ABC中,∠ACB=90°,BA的垂直平分
线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个 数为( D )
北师大数学八年级下册第一章三角形的证明
第一章 三角形的证明 学员姓名:【基础知识】知识点1 全等三角形的判定及性质 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理 等腰三角形的两底角相等。
简述为:等边对等角在△ABC 中,若AB=AC ,则∠B=∠C条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC ,AB=AC ,AD ⊥BC ,则AD 是BC 边上的中线,且AD 平分∠BAC条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也死其他两线等腰三角形中的相等线段:1等腰三角形两底角的平分线相等2等腰三角形两腰上的高相等3两腰上的中线相等4底边的中点到两腰的距离相等知识点3 等边三角形的性质定理内容性质定理 等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。
它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC 中,若∠B=∠C 则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读 【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果【当堂训练】1、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为( ) A 、22厘米 B 、17厘米 C 、13厘米 D 、17厘米或22厘米2、下列关于等腰三角形的性质叙述错误的是( ) A 、等腰三角形的两底角相等 B 、等腰三角形是轴对称图形C 、 等腰三角形是轴对称图形D 、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 3、如图1-Z-1所示,在△ABC 中,AC=DC=DB ,∠ACD=100°则∠B 等于( ) A 、50° B 、40° C 、 25° D 、 20°4、如图1-Z-2所示,在△ABC 与△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF , 不能添加的条件是( )A 、∠B=∠E ,BC=EFB 、BC=EF ,AC=DFC 、∠A=∠D ,∠B=∠E , D 、 ∠A=∠D ,BC=EF 5、已知:如图1-Z-3所示,m ∥n ,等边三角形ABC 的顶点B 在直线m 上,边BC 与直线m 所夹的锐角为 20°则∠a 的度数是( )A 、60°B 、30°C 、40°D 、45°6、如图1-Z-4所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于A图1-Z-1CBD DCEBAF图1-Z-2m nAa图1-Z-3BN ,若BM+CN=9,则线段MN 的长为( )A 、6B 、7C 、8D 、97、如图1-Z-5所示,在△ABC 中,CD 平分∠ABC ,∠A=80°,∠ACB=60°,那么∠BDC =( ) A 、80° B 、90° C 、100° D 、110°8、如图1-Z-6所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离 DE=3.8cm ,则线段BC 的长为( )A 、3.8cmB 、7.6cmC 、11.4cmD 、11.2cm9、如图1-Z-7所示,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P 、O 、A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A 、2个B 、3个C 、4个D 、5个【课后巩固】10、 如图1-Z-8所示,已知△ABC 是等边三角形,AD ∥BC ,CD ⊥AD ,垂足为D ,E 为AC 的中点,AD=DE=6cm,, 则∠ACD= °, AC= cm , ∠DAC= °,△ADE 是 三角形11、“两直线平行,内错角相等”的逆命题是CMCENB A图1-Z-4BD图1-Z-5D B EAC图1-Z-6oyx图1-Z-712、如图1-Z-9,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD= °13、 如图1-Z-10是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大的正方形E 的面积是 . 14、等腰三角形的一个角是80°,则它的顶角是 .15、已知:如图,把长方形纸片ABCD 沿EF 折叠后.点D 与点B 重合,点C 落在点C ′的位置上.若∠1=60°,AE=1.(1) 求∠2、∠3的度数;(2) 求长方形纸片ABCD 的面积S .16、已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.17、已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .18、已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.AB D OCE 图1-Z-9ABCDE图1-Z-1019、如图12,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BA C.20、如图,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.【冲击中考】21.(2013•郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°22.(2012•潍坊)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.2523.(2011•贵阳)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.724.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.925.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.526.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.27.(2007•芜湖)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.4。
新北师大版八年级下册《三角形的证明》
【知识点一:全等三角形的判定与性质】1 •判定和性质2 •证题的思路:找夹角(SAS)已知两边找直角(HL)找第三边(SSS)若边为角的对边,则找任意角(AAS)找已知角的另一边(SAS)边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA )已知两角找两角的夹边(ASA )【典型例题】1 •用直尺和圆规作一个角的平分线的示意图如图所示,则能说明/AOC= / BOC的依据是()A • SSSB • ASA /"C • AASD •角平分线上的点到角两边距离相等気"2. 下列说法中,正确的是()o /S7 sA .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等三角形的证明C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3. 如图,△ ABC^A ADE,若/ B= 80 ° / C = 30 ° / DAC = 35 °则/ EAC的度数为()D.A. 40 °B. 35 °C. 30°4. 已知:如图,在△ MPN中,H是高MQ和NR的交点,且MQ = NQ.求证:HN = PM.第1页共20页5.用三角板可按下面方法画角平分线:在已知/ AOB 的两边上,分别取 0M =ON (如图5-7),再分别过点 M 、N作OA 、0B 的垂线,交点为 P ,画射线0P ,贝U OP 平分/ AOB ,请你说出其中的道理.【巩固练习】1 .下列说法正确的是()A . —直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,在△ ABC 中,D 、E 分别是边AC 、BC 上的点,若△ ADB 也△ EDB 也△ EDC ,贝U / C 的度数为( A . 15 °B . 20 °C . 25 °D . 30 °3.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△A ABC BA A'B'C', AD 、A'D'分别是 (1)请证明 AD = A'D';(2)把上述结论用文字叙述出来; (3)你还能得出其他类似的结论吗4.如图4— 9,已知A ABC 和 从'BC 的角平分线.B£ABC 全等的图形是图4 — 95. 如图4—10,在厶ABC中,/ ACB = 90° AC = BC,直线I经过顶点C,过A、B两点分别作I的垂线AE、BF, E、F为垂足.(1)当直线I不与底边AB相交时,求证:EF = AE+ BF .图4—10(2)如图4—11,将直线I绕点C顺时针旋转,使I与底边AB交于点D,请你探究直线I在如下位置时,EF、AE、BF之间的关系.①AD > BD :②AD = BD :③AD V BD .【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1 .等腰三角形的两边长分别为3和6 ,则这个等腰三角形的周长为()A. 12 B . 15 C . 12 或15 D . 182 .等腰三角形的一个角是80 °则它顶角的度数是()A . 80 °B . 80。
北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)
A.HL
B.SAS
C.ASA
D.SSS
2.如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB于点D.若
∠B=28°,则∠AEC=( B )
A.28°
B.59°
C.60°
D.62°
3.如图,在△ABC中,∠BAC=90°,ED⊥BC于点D,AB=
BD,若AC=8,DE=3,则EC的长为 5 .
B.AB=AB
C.∠ABC=∠ABD
D.∠BAC=∠BAD
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若
AC=6 cm,则AE+DE等于( C )
A.4 cm
B.5 cm
C.6 cm
D.7 cm
4.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.
( 1 )若以“SAS”为依据,需添加的一个条件为 AB=CD ;
6.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ
=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当
AP= 5或10 时,△ABC和△PQA全等.
7.【教材P35复习题T13变式】如图,AC⊥BC,AD⊥BD,垂足分别
为点C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证:
= ,
∴Rt△ABC≌Rt△BAD(HL).
∴∠ABC=∠BAD.
3.如图,△ABC和△DEF为直角三角形,∠ABC=∠DEF=90°,边
BC,EF在同一条直线上,斜边AC,DF交于点G,且BF=CE,AC=DF.
求证:GF=GC.
证明:∵BF=CE,∴BF+FC=CE+FC.∴BC=EF.
北师大版八年级数学下册第一章 三角形的证明1第4课时 等边三角形的判定及含30°角的直角三角形的性质
B
∵∠ACB=90°,∠A=30°.
A 30° C
∴ BC = AB.(在直角三角形中, 30° 角所对的直
角边等于斜边的一半)
拓展推论:BC∶AC∶AB =
例2 求证:如果等腰三角形的底角为15°,那么腰上
的高是腰长的一半.
已知:如图,在△ABC 中,AB = AC ,∠B =15°,
CD 是腰 AB 上的高, 求证:CD = 1 AB.
∴ CD= 1 AB. 2
D A
B
C
例3 已知:如图,在△ABC 中,∠ACB=90°,∠A=
30°,CD ⊥ AB 于 D.求证:BD= AB . 4
证明:∵∠A = 30°,CD⊥AB ,∠ACB = 90°
∴ BC = AB, ∠B = 60°. 2
∴∠BCD = 30°. ∴ BD = CB .
且 DF 平分∠CDE.
求证:△ABC 是等边三角形.
证明:∵ AB=BC, ∴△ABC 是等腰三角形, 又∵∠CDE=120°,DF 平分∠CDE, ∴∠EDF=∠FDC=60°. 又∵ DF∥ BA, ∴∠FDC=∠ABC= 60°. ∴△ABC 是等边三角形.
1
求证: BC = 2 AB.
A
分析:突破如何证明“线段的倍、分”问题
30°
30° 30°
转化
B
C
“线段相等”问题
证明:延长 BC 至点 D,使 CD=BC,连接 AD.
∵∠ACB=90°,∠BAC=30°,
A
∴∠ACD=90°,∠B=60°.
∵ AC=AC,
30°
∴△ABC≌△ADC (SAS).
三角形 的证明
新知一览
八年级下册数学教科书北师大版
八年级下册数学教科书北师大版一、三角形的证明。
1. 等腰三角形。
- 性质:- 等腰三角形的两腰相等。
- 等腰三角形的两个底角相等(简称为“等边对等角”)。
- 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”)。
- 判定:- 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)。
2. 直角三角形。
- 性质:- 直角三角形的两个锐角互余。
- 直角三角形斜边上的中线等于斜边的一半。
- 勾股定理:直角三角形两直角边的平方和等于斜边的平方(即a^2+b^2=c^2,其中a、b为直角边,c为斜边)。
- 判定:- 如果一个三角形的两个锐角互余,那么这个三角形是直角三角形。
- 如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形(勾股定理的逆定理)。
3. 线段的垂直平分线。
- 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
- 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4. 角平分线。
- 性质:角平分线上的点到这个角的两边的距离相等。
- 判定:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
二、不等式与不等式组。
1. 不等式的基本性质。
- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式。
- 定义:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式。
- 解法:- 去分母(根据不等式的基本性质2或3)。
- 去括号。
- 移项(根据不等式的基本性质1)。
- 合并同类项。
- 系数化为1(根据不等式的基本性质2或3)。
3. 一元一次不等式组。
- 定义:由几个含有同一个未知数的一元一次不等式组成的不等式组叫做一元一次不等式组。
- 解集:不等式组中所有不等式的解集的公共部分。
最新北师大版初二数学下册第一章 三角形的证明 全单元课件
2、想一想:
(1)把剪出的等腰△ABC沿折痕对折,除两腰重合外 还有没有重合的部分?并指出重合的部分是什么? (2)由这些重合的部分,你能发现等腰三角形的性 质吗?说一说你的猜想。
你发现了什么?
结论:等腰三角形的两底角相等
性质1、等腰三角形的两个底角相等。
(等边对等角)
已知: △ABC 中,AB=AC
A
性
质
两腰相等
C
B
等边对等角 三线合一
轴对称图形
情景导入
一.情景导入,初步认知
问题:在等腰三角形中作出一些线段(如角
平分线、中线、高等),你能发现其中一些相等
的线段吗?
获取新知
二.思考探究,获取新知
探究 1.在等腰三角形中自主作出一些线段(如
角平分线、中线、高等),观察其中有哪些相等的
线段,并尝试给出证明.
求证:∠B=∠C。 证明:作底边BC边上的中线AD。
A
在△ABD与△ACD中:
B
AB=AC(已知) BD=DC(作图) AD=AD(公共边)
∴△ABD≌△ACD(SSS)
D
C
∴∠B=∠C(全等三角形对应角相等)
方法二:作顶角∠BAC的平分线AD。 ∵AD平分∠BAC ∴∠1=∠2 在△ABD与△ACD中 12
A
2.△ABC中,AB=AC,D是BC边上的中点,
DF⊥AC于F DE ⊥ AB 于E .求证:DE=DF。
证明: ∵DE⊥AB,DF⊥AC ∴∠BED=∠CFD
B
E
D
F
C
在△DBE与△DCF中
∠DEB=∠DFC(已证)
∠B=∠C(已证)
又∵D是BC中点(已知)
北师大版八年级下册数学《直角三角形》三角形的证明PPT教学课件
第一章 三角形的证明
直角三角形(第1课时)
讲授新课
一个直角三角形房梁如图所示,其中BC⊥AC, ∠BAC=30°,AB=10 cm,CB1⊥AB,B1C⊥AC1,垂 足分别是B1、C1,那么BC的长是多少? B1C1呢?
解:在R
∴BC=0.5AB=5 cm.
∵CBl⊥AB,∴∠B+∠BCBl=90°
1.在直角三角形中, 如果有一个锐角等于 300,那么它所对的直角边等于斜边的一半. 2.在直角三角形中, 如果一条直角边等于斜边 的一半,那么它所对的锐角等于300.
讲授新课
如果两个角是对顶角,那么这两个角相等. 如果两个角相等,那么这两个角是对顶角.
三角形中相等的边所对的角相等. 三角形中相等角的所对的边相等. 勾股定理:
证明方法: 数方格和割补图形的方法
讲授新课
已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.
求证: a2 b2 c2
A
证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,
连接ED、AE(如图),则△ABC≌△BED.
∴∠BDE=90°,ED=a.
∴四边形ACDE是直角梯形.
请根据这一问题列出方程.(只列不解)
设:竹竿x尺,得
x 42 x 22 x2
讲授新课
直角三角形全等的判定定理及其三种语言
定理:斜边和一条直角边对应相等的两个直角三角形全等 (斜边,直角边或
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵AC=A′C ′, AB=A′B′(已知), ∴R
∴ 因∠此,A=△∠ADB=C9是0°直(全角等三三角角形形.的对应角相等).E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的证明【知识点一:全等三角形的判定与性质】 1.判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法斜边和一条直角边对应相等(HL )性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 【典型例题】1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等2.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC 的度数为( )A .40°B .35°C .30°D .25°4.已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .5.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7【巩固练习】1.下列说确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-95.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F 为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.182.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值围是()A.0<x<3 B.x>3 C.3<x<6 D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【巩固练习】1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6 B.7 C.8 D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC 交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【知识点三:等边三角形的判定与性质】判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形.性质:等边三角形的三边相等,三个角都是60°.【典型例题】1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°3、如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.【变式练习】1.下列命题:①两个全等三角形拼在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线所在直线;③等边三角形一边上的高所在直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.其中错误的有()A.1个B.2个C.3个D.4个2.如图,AC=CD=DA=BC=DE.则∠BAE是∠BAC的()A.4倍B.3倍C.2倍D.1倍3.如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为.4.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是()A.60°B.110°C.120°D.135°5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.646.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立? 若成立,给予证明;若不成立,说明理由.7.如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.【知识点四:反证法】反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【基础练习】1、否定“自然数a、b、c中恰有一个偶数”时的正确反正假设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数2、用反证法证明命题“三角形的角中至少有一个不大于60°”时,反证假设正确的是()A.假设三角都不大于60° B.假设三角都大于60°C.假设三角至多有一个大于60° D.假设三角至多有两个大于60°3、证明:在一个三角形中至少有两个角是锐角.【知识点五:直角三角形】1、直角三角形的有关知识.●勾股定理:直角三角形两条直角边的平方和等于斜边的平方;●勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;●在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.2、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.【典型例题】1、说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁角互补;(3)如果ab=0,那么a=0,b=0;(4)在一个三角形中有两个角相等,那么这两个角所对的边相等2.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B.6 C.5 D.4 4.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.25.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于()A.6 B.4 C.3 D.26.如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.B.C.4 D.37.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE 交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗? 请证明你的结论.8.如图,在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重合.(1)在图中画△BCD ,使△BCD 的面积=△ABC 的面积(点D 在小正方形的顶点上). (2)请直接写出以A 、B 、C 、D 为顶点的四边形的周长.9.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处; (1)求证:B ′E =BF ;(2)设AE =a ,AB =b ,BF =c ,试猜想a ,b ,c 之间的一种关系,并给予证明.【变式练习】1.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是( )A .已知斜边和一锐角B .已知一直角边和一锐角C .已知斜边和一直角边D .已知两个锐角2.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365 B .1225C .94D .43.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方A .30°B .45°C .60°D .不能确定5.已知:如图,在△ABC 中,∠A =30°,∠ACB =90°,M 、D 分别为AB 、MB 的中点.求证:CD ⊥AB .6.如图,在5×5的方格纸中,每一个小正方形的边长都为1,∠BCD是不是直角? 请说明理由.7.正方形网格中的每个小正方形边长都是1.每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(2)在图2中,画△DEF,使△DEF为钝角三角形且面积为2.【提高练习】1.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.62.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.553.老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.4.如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A.3cm B.4cmC.5cm D.6cm56.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC,使△ABC为面积为5的直角三角形;(2)在图2中画一个△ABC,使△ABC为钝角等腰三角形.7.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△AEB≌△CDA;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求BE的长.【知识点六:线段的垂直平分线】●线段垂直平分线上的点到这一条线段两个端点距离相等。