沪教版(五四制)九年级数学下统计初步

合集下载

难点详解沪教版(上海)九年级数学第二学期第二十八章统计初步章节练习试题(含详细解析)

难点详解沪教版(上海)九年级数学第二学期第二十八章统计初步章节练习试题(含详细解析)

九年级数学第二学期第二十八章统计初步章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题正确的是( )A .数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称2、下列说法中,正确的是( )A .若a b =,0c ≠,则a c b c +=-B .90′=1.5°C .过六边形的每一个顶点有4条对角线D .疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查3、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )A .此次调查的总体是600名学生B .此次调查属于全面调查C.此次调查的个体是被抽取的学生D.样本容量是504、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是()A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.45、下列说法正确的是()A.“买中奖率为110的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定6、小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差7、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A.200名学生的视力是总体的一个样本B.200名学生是总体C.200名学生是总体的一个个体D.样本容量是1200名8、读书能积累语言,丰富知识,陶冶情操,提高文化底蕴.某中学八年级一班统计今年1~8月“书香校园”读书活动中全班同学的课外阅读数量(单位:本),并绘制了如图所示的折线统计图,下列说法正确的是().八年级一班学生1~8月课外阅读数量折线统计图A.课外阅读数量最少的月份是1月份B.课外阅读数量比前一个月增加的月份共有4个月C.平均每月课外阅读数量大于58本D.阅读数量超过45本的月份共有4个月9、下列说法中正确的是()A.样本7,7,6,5,4的众数是2B.样本2,2,3,4,5,6的中位数是4C.样本39,41,45,45不存在众数D.5,4,5,7,5的众数和中位数相等10、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.1月份生产量最大B.这七个月中,每月的生产量不断增加C .1﹣6月生产量逐月减少D .这七个月中,生产量有增加有减少第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于三个数a ,b ,c ,用{,,}M a b c 表示这三个数的平均数,用min{,,}a b c 表示这三个,数中最小的数.例如:1234{1,2,3}33M -++-==,min{1,2,3}1-=-,如果{3,21,1}min{3,7,25}M x x x x +-=-++,那么x =__________.2、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.3、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.4、小明某学期的数学平时成绩80分,期中考试90分,期末考试86分,若计算学期总评成绩的方法如下:平时:期中:期末2:3:5=,则小明总评成绩是________分.5、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.三、解答题(5小题,每小题10分,共计50分)1、为深入开展青少年毒品预防教育工作,增强学生禁毒意识,某校联合禁毒办组织开展了“2021青少年禁毒知识竞赛”活动,并随即抽查了部分同学的成绩,整理并制作成图表如下:根据以上图表提供的信息,回答下列问题:(1)抽查的人数为______人,n ______;(2)请补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优秀”,请你估计该校2400名学生中竞赛成绩是“优秀”的有多少名?2、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为A、B、C、D四类,其中A表示“出行节约0﹣10分钟”,B表示“出行节约10﹣30分钟”,C表示“出行节约30分钟以上”,D表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.(1)求这次调查的总人数.(2)补全条形统计图.(3)在图②的扇形统计图中,求A类所对应的扇形圆心角的度数.3、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:(1)直接写出随机抽取学生的人数为______人;(2)直接补全频数直方图;(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数.4、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg 的有多少只.5、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x 表示,分为A 、B 、C 、D 、E 五个等级(A :90100x <≤;B :8090x <≤;C :7080x <≤;D :6070x <≤;E :60x ≤),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分.乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学生成绩数据统计表根据以上信息,解答下列问题:a,b=,c=;(1)直接写出上述图表中a、b、c的值:=(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?-参考答案-一、单选题1、D【分析】根据数轴上的点与实数一一对应即可判断A;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B;根据三角形的外角与内角的关系即可判断C;根据关于x轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x 轴对称的点的坐标特征,掌握以上知识是解题的关键.2、B【分析】由等式的基本性质可判断A ,由160,'︒= 可判断B ,由过n 边形的一个顶点可作()3n -条对角线可判断C ,由全面调查与抽样调查的含义可判断D ,从而可得答案.【详解】解:若a b =,则,a c b c +=+故A 不符合题意; 90′=90 1.5,60⎛⎫︒=︒ ⎪⎝⎭故B 符合题意; 过六边形的每一个顶点有3条对角线,故C 不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D 不符合题意;故选:B .【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.3、D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;B、此次调查属于抽样调查,故本选项不合题意;C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;D、样本容量是50.故本选项符合题意.故选:D.【点睛】本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.4、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.5、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为110的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.6、B【分析】根据中位数的定义解答即可.【详解】解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响.故选:B.【点睛】本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.7、A【分析】根据总体,样本,个体,样本容量的定义,即可得出结论.【详解】解:A.200名学生的视力是总体的一个样本,故本选项正确;B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;D.样本容量是1200,故本选项错误.故选:A.【点睛】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.8、B【分析】根据折线统计图的信息依次进行判断即可.【详解】解:A、课外阅读数量最少的月份是6月份,选项错误,不符合题意;B、课外阅读数量比前一个月增加的月份分别是2,5,7,8,共有4个月,选项正确,符合题意;C、每月阅读数量的平均数是1(3670584258287883)56.625⨯+++++++=小于58,选项错误,不符合题8意;D、阅读数量超过45本的月份有2、3、5、7、8,共有5个月,选项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,解题的关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况.9、D【分析】根据众数定义和中位数定义对各选项进行一一分析判定即可.【详解】A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是343.52+=,故选项B不正确;C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.故选D.【点睛】本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.10、B【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、2或-4【分析】依据定义分别求出{3,21,1}M x x +-和min{3,7,25}x x -++,再分三种情况讨论,即可得到x 的值.【详解】3211{3,21,1}13x x M x x x +++-+-==+ 当min{3,7,25}3x x -++=时,73253x x -+≥⎧⎨+≥⎩,解得14x -≤≤, ∵{3,21,1}min{3,7,25}M x x x x +-=-++∴13x +=,解得2x =,符合条件;当min{3,7,25}7x x x -++=-+时,37257x x x ≥-+⎧⎨+≥-+⎩,解得4x ≥, ∵{3,21,1}min{3,7,25}M x x x x +-=-++∴17x x +=-+,解得3x =,不符合条件;当min{3,7,25}25x x x -++=+时,325725x x x ≥+⎧⎨-+≥+⎩,解得1x ≤-, ∵{3,21,1}min{3,7,25}M x x x x +-=-++∴125x x +=+,解得4x =-,符合条件;综上所述:2x =或4x =-故答案为:2或-4【点睛】本题考查了算术平均数、一元一次方程的应用、解一元一次不等式组.解题的关键是弄清新定义运算的法则,并分情况讨论.需要考虑每种情况下x的取值范围2、88【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:53292+80+90=88⨯⨯⨯(分),5+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.3、46.8°【分析】利用占总体的百分比是13%,则这部分的圆心角是360度的13%,即可求出结果.【详解】︒⨯=︒.解:该部分所对扇形圆心角为:36013%46.8故答案为:46.8︒.【点睛】本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.4、86【分析】利用加权平均数计算即可.【详解】 总评成绩23580908686101010=⨯+⨯+⨯=(分) 故答案为:86.【点睛】本题考查加权平均数,掌握加权平均数的定义是解答本题的关键.5、1【分析】 先求“阅读”所占的圆心角,再用360阅读所占圆心角×24,即可得出结果. 【详解】解:360o -(60o +30o +120o +135o )=15o ,15360×24=1(小时), 故答案为:1.【点睛】本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.三、解答题1、(1)300,0.3;(2)见解析;(3)1440名【分析】(1)样本容量=60÷0.2=300,90÷300=n ;(2)计算300×0.4=12,补图即可;(3)用优秀率×2400,计算即可.【详解】解:(1)根据题意,得:60÷0.2=300(人),∴90÷300=n =0.3;故答案为:300, 0.3;(2)∵300×0.4=120(人),∴补图如下:(3)根据题意,优秀率为0.4+0.2,∴()24000.40.21440⨯+=(人),答:该校2400名学生中竞赛成绩为“优秀”的有1440名.【点睛】本题考查了频数分布直方图,样本估计整体,正确理解样本容量,频数,频率之间的关系是解题的关键.2、(1)50人;(2)见解析;(3)108°【分析】(1)利用B 类的人数除以B 类所占百分比,即可求解;(2)求出“出行节约30分钟以上”的人数,即可求解;(3)用360°乘以A类所占的百分比,即可求解.【详解】解:(1)调查的总人数是:1836%50÷=(人).(2)“出行节约30分钟以上”的人数有501518710---=(人),补全图形,如图所示:(3)A类所对应的扇形圆心角的度数是1536010850︒⨯=︒.【点睛】本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.3、(1)50;(2)补全频数直方图见解析;(3)B部分所对应的百分比20%;F部分扇形圆心角的度数为36︒;(4)180人.【分析】(1)用A组频数除以频率,即可求得抽取人数为50人;(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.【详解】(1)3÷6%=50,故答案为:50;(2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;(3)B部分所对应的百分比1050100%20%÷⨯=,F部分扇形圆心角的度数为53603650⨯︒=︒;(4)45100018050+⨯=(人),答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.【点睛】本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.4、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.【详解】解:(1)抽取兔子的数量是1530%50÷=,则质量在“C ”部分的兔子数量是506915812----=(只).补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg 的大约有8600096050⨯=(只). 【点睛】 本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图.5、(1)40a =,81b =,82c =;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B 等的人数=20-20×(1000+1000+3500)-1=8, 于是800100400020⨯=,可以确定a 值;先将数据排序,计算第10个,11个数据的平均数即可得到b ;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有34206320⨯=人,乙校约有45010%45⨯=人,求和即可. 【详解】(1)∵B 等的人数=20-20×(1000+1000+3500)-1=8,∴800100400020⨯=, ∴a =40;∵第10个,11个数据是80,82,∴b =8082812+=; ∵82出现次数最多,是5次,∴众数c =82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)由题意,甲校约有34206320⨯=人,乙校约有45010%45⨯=人, ∴两校共约有63+45=108人的成绩达到A 级.【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.。

2022年最新沪教版(上海)九年级数学第二学期第二十八章统计初步综合训练练习题

2022年最新沪教版(上海)九年级数学第二学期第二十八章统计初步综合训练练习题

九年级数学第二学期第二十八章统计初步综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查中,适合进行全面调查的是()A.《新闻联播》电视栏目的收视率B.全国中小学生喜欢上数学课的人数C.某班学生的身高情况D.市场上某种食品的色素含量是否符合国家标准2、某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多B.组距为10C.人数最少的得分段的频数为2 D.得分及格(≥60)的有12人3、下列调查中,适合采用全面调查(普查)方式的是()A.了解江西省中小学生的视力情况B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C.了解全国快递包裹产生包装垃圾的数量D.了解抚州市市民对社会主义核心价值观的内容的了解情况4、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分5、下列调查中,最适合采用全面调查(普查)方式的是()A.检测生产的鞋底能承受的弯折次数B.了解某批扫地机器人平均使用时长C.选出短跑最快的学生参加全市比赛D.了解某省初一学生周体育锻炼时长6、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.927、下列说法正确的是()A.2 的相反数是2B .各边都相等的多边形叫正多边形C .了解一沓钞票中有没有假钞,应采用普查的形式D .若线段AB BC =,则点B 是线段AC 的中点8、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )A .1月份生产量最大B .这七个月中,每月的生产量不断增加C .1﹣6月生产量逐月减少D .这七个月中,生产量有增加有减少9、如图是某中学学生上学方式的统计图,如果骑车的人有840人,那么乘地铁的人数有()A .2000个B .420个C .840个D .740个10、下列说法中,正确的是( )A .若a b =,0c ≠,则a c b c +=-B .90′=1.5°C.过六边形的每一个顶点有4条对角线D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数x(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.2、某招聘考试分笔试和面试两项,笔试成绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是______分.3、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、小明某学期的数学平时成绩80分,期中考试90分,期末考试86分,若计算学期总评成绩的方法如,则小明总评成绩是________分.下:平时:期中:期末2:3:5三、解答题(5小题,每小题10分,共计50分)1、黔西南州山川秀美、景色迷人,是中国西部一个黄金旅游区.为了奖励员工,某公司计划组织一次旅游活动,有以下四个地点供选择:A.花江铁索桥;B.马玲河峡谷;C.二十四道拐;D.万峰林.现随机调查了部分员工最想去的旅游地点,并根据调查结果绘制了如下两幅不完整的统计图.请你根据统计图中的信息,解决下列问题:(1)这次调查一共抽取了名员工;扇形统计图中,旅游地点D所对应的扇形圆心角的度数为.(2)请补全条形统计图.(3)在选择旅游地点C的员工中,甲、乙、丙、丁4人表现最为积极,现打算从这4人中任选2人作为本次旅游活动的策划员,请用列表或画树状图的方法求出恰好选中甲和乙的概率.2、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷,随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______︒;(2)请将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?(4)根据上图, 你可以获得什么信息?3、某台风给香港造成了重大的损失,某中学开展爱心捐助活动,根据预备年级的捐款情况绘制统计图.请根据统计图给出得信息回答下列问题:(1)本次活动中预备年级共有______名同学捐款?(2)本次活动种捐款20元以上(不包括捐款20元的)人数占预备年级捐款总人数的几分之几?(写出过程)4、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x 小时,将所得数据分为5组(A :10x ≥;B :910x ≤<;C :89x ≤<;D :78x ≤<;E :7x <),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?5、社会主义核心价值观是社会主义核心价值体系最核心的体现,践行社会主义核心价值观也是每一名中学生的责任.某校开展了社会主义核心价值观演讲比赛,学校在演讲比赛活动中,对全校学生用A、B、C、D四个等级进行评分,现从中随机抽取m名学生进行调查,绘制出了如下两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)m ;(2)将图甲中的条形统计图补充完整;(3)图乙中A等级所占圆心角的度数为.-参考答案-一、单选题1、C【详解】解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;故选:C.【点睛】本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.2、D【分析】根据统计图中各分数的人数最大判断A正确,由横轴的数据差判断B正确,由各分数的人数最少判断C正确,由及格的人数相加判断D错误.【详解】解:A. 得分在70~80分的人数最多,故该项不符合题意;B. 组距为10,故该项不符合题意;C. 人数最少的得分段的频数为2,故该项不符合题意;D. 得分及格(≥60)的有12+14+8+2=36人,故该项符合题意;故选:D.【点睛】此题考查了条形统计图,正确理解横轴及纵轴的意义,掌握各分数的对应人数是解题的关键.3、B【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.5、C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.7、C【分析】根据相反数、正多边形、抽样调查、中点的相关定义逐项判断即可.【详解】解:A. 2-的相反数是-2,原选项不正确,不符合题意;B. 各边都相等,各角都相等的多边形叫正多边形,原选项不正确,不符合题意;C. 了解一沓钞票中有没有假钞,应采用普查的形式,原选项正确,符合题意;,则点B是线段AC的中点,Am、B、C三点不共线时,则说D. A、B、C三点共线时,若线段AB BC法不成立,原选项不正确,不符合题意;故选:C.【点睛】本题考查了相反数、正多边形、全面调查和线段的中点,解题关键是熟记相关知识,准确进行判断.8、B【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9、D【分析】根据扇形统计图中的数据,可以计算出本次调查的总人数,然后即可计算出乘地铁的人数.【详解】解:由统计图可得,调查的总人数为:840÷42%=2000,乘地铁的人数有:2000×(1-42%-21%)=2000×37%=740,故选:D.【点睛】此题考查扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.10、B【分析】由等式的基本性质可判断A ,由160,'︒= 可判断B ,由过n 边形的一个顶点可作()3n -条对角线可判断C ,由全面调查与抽样调查的含义可判断D ,从而可得答案.【详解】解:若a b =,则,a c b c +=+故A 不符合题意; 90′=90 1.5,60⎛⎫︒=︒ ⎪⎝⎭故B 符合题意; 过六边形的每一个顶点有3条对角线,故C 不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D 不符合题意;故选:B .【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.二、填空题1、乙【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又乙的方差比甲小,所以乙的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.2、87【分析】按照加权平均数的计算公式计算即可.【详解】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.解:小明的平均成绩是:85390232⨯+⨯+=87(分).故答案为:87.【点睛】本题考查了加权平均数的应用,掌握加权平均数的意义及计算是关键.3、540【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:901800(130%15%100%)360⨯---⨯180030%=⨯540=(人).答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、86【分析】利用加权平均数计算即可.【详解】总评成绩23580908686101010=⨯+⨯+⨯=(分)故答案为:86.【点睛】本题考查加权平均数,掌握加权平均数的定义是解答本题的关键.三、解答题1、(1)50,108°;(2)见解析;(3)1 6【分析】(1)先用旅游地点B的人数除以百分比得到总人数,再利用360度×旅游地点D的百分比即可得到其圆心角度数;(2)先求出旅游地点C的人数,然后补全统计图即可;(3)画出树状图得到所有的等可能性的结果,然后找到恰好选中甲和乙的结果数,最后利用概率公式求解即可.【详解】解:(1)由题意得:这次调查一共抽取了1326%=50÷名员工,∴旅游地点D所对应的扇形圆心角的度数为15360=10850︒⨯︒,故答案为:50,108°;(2)由(1)得最想去旅游地点C的人数=50-13-15-4=18人,∴补全统计图如下所示:(3)画树状图如下所示:由树状图可知一共有12种等可能性的结果数,其中恰好选中甲和乙的结果数有两种,∴P恰好选中甲和乙=21 126 ==.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,画树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.2、(1)200;81;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付;采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)()60451200630200+⨯=名. 答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.3、(1)190(2)捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数938【分析】(1)把捐每种款项的人数相加即是预备年级共有的学生人数,列式解答即可得到答案;(2)用捐款20元以上(不包括捐款20元的)的人数除以预备年级捐款总人数,列式解答即可得到答案.(1)25705016254190+++++=(人) 本次活动中预备年级共有190个同学捐款;故答案为:190;(2)()9 162541904519038 ++÷=÷=,答:捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数为9 38【点睛】本题主要考查条形统计图,解答此题的关键是确定预备年级捐款总人数,然后再列式解答即可.4、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为750(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:2310023%=(人),∴D组所占的比例为:8100%8% 100⨯=,∴a的值为8;(2)C组频数为:10023528215----=,补全统计图如图所示:(3)不少于9个小时的只有A、B两个组,总数为:235275+=,所占比例为:75100%75% 100⨯=,∴估计符合要求的人数为:100075%750⨯=(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.5、(1)50;(2)见详解;(3)108°.【分析】(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,即可把条形统计图补充完整;(3)用360°乘以A等级所占的百分比即可得到A等级所占圆心角的度数;【详解】解:(1)10÷20%=50,∴50m=,所以抽取了50个学生进行调查;故答案为:50;(2)B等级的人数=50-15-10-5=20(人),补全统计图如下:(3)图乙中A等级所占圆心角的度数=360°×1550=108°;故答案为:108°.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.。

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28.4表示一组数据波动程度的量练习一和参考答案数学九年级下第二十八章:统计初步28.4 表示一组数据波动程度的量一、选择题1.在统计中,样本的标准差可以反映这组数据的(C)离散程度。

2.数学老师对XXX在参加中考前的 5 次数学模拟考试成绩进行统计分析,判断XXX的数学成绩是否稳定,于是老师需要知道XXX这 5 次数学成绩的(A)平均数或中位数。

3.若一组数据 2,1,x,5,4 的平均数是 3,则这组数据的方差是(B)4.4.已知一组数据 x1,x2,x3,x4,x5 的平均数是 2,方差为,那么另一组数据 2x1-1,2x2-1,2x3-1,2x4-1,2x5-1 的平均数和方差分别是(B)2,2.5.某车间 7 月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这 10 天中该车间生产零件的次品数的(A)众数是 0 个。

6.甲、乙两名学生在参加今年体育中考前作了 5 次立定跳远测试,两人平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20m,2.30m,2.30m,2.40m,2.30m,那么甲、乙的成绩比较(B)乙的成绩更稳定。

二、填空题7.已知数据 x1,x2,…,xn,则平均数为,方差为,标准差为。

8.已知数据 2,3,4,5,6,7,8 的平均数为,方差为。

标准差为。

9.已知数据 91,92,93,94,95,96,97 的平均数为,方差为。

标准差为。

10.把 2,3,4,5,6,7,8 这组数据中的每个数按 3x+2计算后,可得到新的数据为;则新的数据的平均数为,方差为。

标准差为。

11.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。

则数据 2x1+3,2x2+3,…,2xn+3 的平均数为,方差为。

标准差为。

12.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。

九年级数学下册 第二十八章 统计初步练习 沪教版五四制

九年级数学下册 第二十八章 统计初步练习 沪教版五四制

统计初步一、填空题1、数据收集常用的方式有普查和 两种.2、要想估计池塘里鱼的条数,先捞出50条作上记号后放回池塘,过一段时间后再捞出100条鱼,有记号的鱼正好10条,问池塘里原来大约有 条鱼.3、一组数据25、80、84、90、95、96中,25通常叫做 ,描述这组数据的一般水平用 比较合适,这个值是 .4、一组数据按大小顺序排列后为x 1 , x 2 , x 3…x 29 , 则其中位数是 ,若数据中再增加一个x 1 ,其中位数是 ,若数据中再增加一个x 29 ,其中位数是5、一个样本的容量为50 ,一组的频数为18,则这组的频率为 .6、一组数据中,各组数据的频率之和等于 .7、101、99、97、102、100、96、105、99、103、98的平均数为 . 8、已知一组数据x 、-1、0、1、-2的平均数是0,那么x=9、一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ; 10、某校对初三学生进行政治学习情况的测试, 从中随机抽取了40份试卷, 这40份试卷中80分及以上有16人,由此可估计全校200名初三学生80分及以上有 人,优良率为_________%,二、选择题1、某工厂对一个生产小组的零件进行抽样调查。

在10天中,这个生产小组每天出的次品数如下(单位:个)0, 2, 0, 2, 3, 0, 2, 3, 1, 2在这10天中,该生产小组生产零件所出的次品数平均数为 ( ) (A )2 (B )3 (C )1.5 (D )1.23、从一组数据中取出a 个x 1,b 个x 2,c 个x 3,组成一个样本,那么这个样本的平均数是( )。

(A )3321x x x ++(B )3cb a ++(C )3321cx bx ax ++(D )cb a cx bx ax ++++3214、某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是 ( )(A )这1000名考生是总体的一个样本 (B )每位考生的数学成绩是个体 (C )7万名考生是总体 (D )1000名考生是样本容量5、有甲、乙两种产品,抽查每批产品的合格产品数后,计算出样本方差分别为2甲S =11,2乙S =3.4,由此可以估计( )(A )甲产品比乙产品稳定 (B )乙产品比甲产品稳定(C )两种产品稳定程度相同 (D )甲、乙两种产品稳定程度不能比较三、解答题 1、(本题6分)为了了解某地区初三女生的身高情况,以200名女生的身高(单位:cm )作为样本,将她们的身高整理、分组,列成下表:(每组数据含最小值,不含最大值) 分组(cm ) 150-155 155-160 160-165 165-170 170-175 175-180 频数 10 30 n 60 m 频率 0.09 0.01 填空:(1)表中的m =________,n =_________;(2)200名女生的身高的中位数落在_________ 小组内;(3)样本中身高不到160cm 的女生占了百分之几?答:占_________。

最新沪教版(上海)九年级数学第二学期第二十八章统计初步定向练习试卷(含答案详解)

最新沪教版(上海)九年级数学第二学期第二十八章统计初步定向练习试卷(含答案详解)

九年级数学第二学期第二十八章统计初步定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查中,最适合采用抽样调查的是()A.调查一批防疫口罩的质量B.调查某校九年级学生的视力C.对乘坐某班次飞机的乘客进行安检D.国务院于2020年11月1日开展的第七次全国人口调查2、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是()A.该调查是普查B.2000名学生的体重是总体的一个样本C.75000名学生是总体D.每名学生是总体的一个个体3、水果店内的5个苹果,其质量(单位:g)分别是:200,300,200,240,260关于这组数据,下列说法正确的是()A.平均数是240 B.中位数是200C.众数是300 D.以上三个选项均不正确4、下列调查中,适合进行全面调查的是()A .《新闻联播》电视栏目的收视率B .全国中小学生喜欢上数学课的人数C .某班学生的身高情况D .市场上某种食品的色素含量是否符合国家标准5、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是( )A .7,7B .6,7C .6.5,7D .5,66、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是( )A .这10名同学的体育成绩的方差为50B .这10名同学的体育成绩的众数为50分C .这10名同学的体育成绩的中位数为48分D .这10名同学的体育成绩的平均数为48分7、数据a ,a ,b ,c ,a ,c ,d 的平均数是( )A .7a b c d+++ B .327a b c d+++C .4a b c d+++ D .324a b c d+++8、如图是某超市2017~2021年的销售额及其增长率的统计图,下面说法中正确的是()A.这5年中,销售额先增后减再增B.这5年中,增长率先变大后变小C.这5年中,销售额一直增加D.这5年中,2021年的增长率最大9、下列调查中最适合采用全面调查的是()A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”10、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:①2013~2017年,某市研究与试验经费支出连年增高;②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.2、小明上学期数学平时成绩、期中成绩、期末成绩分别为93分、87分、90分,若将平时成绩、期中成绩、期末成绩按3:3:4的比例计算综合得分,则小明上学期数学综合得分为_____分.3、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m ).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)4、已知一组数据12345,,,,x x x x x 的平均数是5,极差为3,方差为2,则另一组新数组1234521,21,21,21,21x x x x x +++++的平均数是________,极差是________,方差是________.5、小明某学期数学平时成绩为90分,期中考试成绩为80分,期末成绩为90分,计算学期总评成绩的方法:平时占20%,期中占30%,期末占50%,则小明这学期的总评成绩是______分.三、解答题(5小题,每小题10分,共计50分)1、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?2、某校想了解学生每周的课外阅读时间情况,随机抽取了部分学生进行调查,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据以上信息,解答下列问题:(1)本次调查共随机抽取了_____________名学生,并补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)在该校3000名学生中,每周的课外阅读时间不小于6小时的学生约有________________名.3、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:(1)求本次抽取的学生的人数.(2)请根据以上信息直接在答题卡中补全条形统计图.(3)求扇形统计图中a的值.(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.4、深圳某中学全校学生参加了“庆祝中国共产党成立100周年”知识竞赛,为了解全校学生竞赛成B x<;绩的情况,随机抽取了一部分学生的成绩,分成四组:A:70分以下(不包括70);:7080D x,并绘制出不完整的统计图.:8090C x<;:90100(1)被抽取的学生成绩在C组的有______人,请补全条形统计图;(2)被抽取的学生成绩在A组的对应扇形圆心角的度数是______;(3)若该中学全校共有2400人,则成绩在B组的大约有多少人?5、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?-参考答案-一、单选题1、A【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【分析】根据抽样调查、全面调查、总体、个体、样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.【详解】解:根据题意可得:该调查为抽样调查,不是普查,A选项错误,不符合题意;2000名学生的体重是总体的一个样本,B 选项正确,符合题意;75000名学生的体重情况是总体,C选项错误,不符合题意;每名学生的体重是总体的一个个体,D选项错误,不符合题意;故选B.【点睛】本题考查了抽样调查、全面调查、总体、个体、样本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).3、A【分析】根据平均数、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】A、平均数是:15×(200+300+200+240+260)=240(g),故本选项正确,符合题意;B、把这些数从小到大排列为:200,200,240,260,300,中位数是240g,故本选项错误,不符合题意;C、众数是200g,故本选项错误,不符合题意;D、以上三个选项A选项正确,故本选项错误,不符合题意;故选:A.【点睛】此题考查了平均数、中位数和众数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、C【详解】解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;故选:C.【点睛】本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.5、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C.【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.7、B【分析】根据加权平均数的计算公式,列出算式,计算即可求解.【详解】解:∵数据:a,b,c,d的权数分别是3,1,2,1∴这组数据的加权平均数是23231217a b c d a b c d⨯++⨯++++=+++.故选B.【点睛】本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.8、C【分析】根据统计图中增长率及销售额的变化逐一判断即可得答案.【详解】A.这5年中,销售额连续增长,故该选项错误,B.这5年中,增长率先变大后变小再变大,故该选项错误,C.这5年中,销售额一直增加,故该选项正确,D.这5年中,2018年的增长率最大,故该选项错误,故选:C.【点睛】本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键.9、D根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【分析】根据题意可得:由中位数的概念,可知7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,故应知道自己的成绩和中位数.故选:C.【点睛】本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.二、填空题【分析】根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.【详解】<<<<,解:因为1185.01268.81384.01484.61595.3所以2013~2017年,某市研究与试验经费支出连年增高,①正确;-=(亿元),2014年比2013年实际增长量为1268.8118583.8-=(亿元),2015年比2014年实际增长量为13841268.8115.2-=(亿元),2016年比2015年实际增长量为1484.61384100.6-=(亿元),2017年比2016年实际增长量为1595.31484.6110.7由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;因为115.2>100.6,所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;综上,正确的有①③,故答案为:①③.【点睛】本题考查了统计图,读懂统计图是解题关键.2、90【分析】由题意直接根据加权平均数的计算方法列式进行计算即可得解.【详解】解:933873904334⨯+⨯+⨯++ =27926136010++ =90010 =90(分).故小明上学期数学综合得分为90分.故答案为:90.【点睛】本题考查加权平均数的求法,要注意乘以各自的权,直接相加除以3是错误的求法.3、变大【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.4、11 6 8【分析】根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.【详解】解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,极差为2×3=6,方差为2×22=8,故答案为:11、6、8.【点睛】此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.5、87【分析】根据加权平均数的计算公式即可求解.【详解】解:90×20%+80×30%+90×50%=18+24+45=87(分).故答案为87.【点睛】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.加权平均数公式为:1122......n nx x w x w x w=+++(其中w1、w2、……、w n分别为x1、x2、……、x n的权).三、解答题1、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,本次调查人数为:5445%120÷=(人);(2)∵艺术:12018541236---=(人),∴补全的条形统计图如下图所示:“其他”所对应的圆心角度数为1236036120⨯︒=︒; (3)样本中选择阅读的人数为18人,占样本的百分比为18100%=15%120⨯, 该校学生总人数为840人,估计选择阅读的学生有:84015%126⨯=(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.2、(1)100,图见解析(2)40,14.4︒(3)870【分析】(1)A 组人数A ÷组所占百分比=被调查总人数,将总人数D ⨯组所占百分比D =组人数;(2)m C =组人数÷调查总人数100⨯,E 组对应的圆心角度数E =组占调查人数比例360⨯︒;(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.(1)解:(1)随机调查学生数为:1010%100÷=(人),课外阅读时间在68-小时之间的人数为:10025%25⨯=(人),补全图形如下:故答案是:100;(2)解:4010040100m=⨯=,E组对应的圆心角为:436014.4 100⨯︒=︒;(3)解:3000(25%4%)870⨯+=(人).估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人,故答案是:870.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)200人;(2)图见解析;(3)20;(4)144︒.【分析】(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;(3)利用喜欢艺术学生的人数除以调查的总人数即可得;(4)利用喜欢器乐的学生人数所占百分比乘以360︒即可得.【详解】÷=(人),解:(1)3015%200答:本次抽取的学生有200人;⨯=(人),(2)喜欢书画的学生人数为20025%50由此补全条形统计图如下:÷⨯=,(3)40200100%20%a=;则20÷⨯⨯︒=︒,(4)80200100%360144答:喜欢器乐的学生人数所对应圆心角的度数为144︒.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.4、(1)24,图见解析;(2)36°;(3)480人【分析】(1)由D组人数及其所占百分比求出被调查总人数,总人数减去A、B、D组人数即可求出C组人数,从而补全图形;(2)用360°乘以A组人数所占比例即可;(3)用总人数乘以样本中B组人数所占比例即可.【详解】解:(1)∵被抽取的总人数为18÷30%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:故答案为:24(2)被抽取的学生成绩在A组的对应扇形圆心角的度数为360°×660=36°,故答案为:36°;(3)成绩在B组的大约有2400×1260=480(人).【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)1050%20÷=(组),2023105---=(组),=⨯=5%100%25%20m , 统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,21201220⨯=(组), ∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.。

沪教版数学九年级下册28.2《基本统计量》教学设计1

沪教版数学九年级下册28.2《基本统计量》教学设计1

沪教版数学九年级下册28.2《基本统计量》教学设计1一. 教材分析《基本统计量》是沪教版数学九年级下册第28章第2节的内容,主要介绍了平均数、中位数、众数等基本统计量的计算方法及其应用。

这部分内容是整个初中数学统计学习的重点和难点,也是学生进一步学习高中统计与概率知识的基础。

通过本节课的学习,使学生了解基本统计量的概念,掌握它们的计算方法,并能够运用基本统计量解决实际问题。

二. 学情分析九年级的学生已经具备了一定的统计基础,对统计学的一些概念和图表有初步的认识。

但学生在计算和应用基本统计量方面还存在一定的困难,特别是对于中位数、众数的理解及计算方法。

因此,在教学过程中,需要教师引导学生通过实际问题来理解和掌握基本统计量的计算方法,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:使学生了解平均数、中位数、众数等基本统计量的概念,掌握它们的计算方法,能运用基本统计量解决实际问题。

2.过程与方法:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观:激发学生对统计学科的兴趣,培养学生运用统计方法分析问题和解决问题的意识。

四. 教学重难点1.重点:平均数、中位数、众数的计算方法及应用。

2.难点:中位数、众数在实际问题中的运用。

五. 教学方法1.情境教学法:通过生活实例引入基本统计量的概念,使学生能够直观地理解和掌握。

2.小组合作学习:引导学生分组讨论和解决问题,培养学生的团队协作能力。

3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣和探究欲望。

4.实践操作:让学生通过实际问题进行计算和分析,提高学生的动手能力。

六. 教学准备1.教学课件:制作课件,展示基本统计量的计算方法和实际应用。

2.练习题:准备一些有关基本统计量的练习题,用于巩固所学知识。

3.小组讨论材料:准备一些实际问题,供学生分组讨论和解决。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入基本统计量的概念,如“某班级有30名学生,他们的身高分别为160cm、165cm、170cm…,请计算该班级身高的平均数、中位数、众数。

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步章节练习试题(含答案解析)

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步章节练习试题(含答案解析)

九年级数学第二学期第二十八章统计初步章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是2S甲=1.2,2S乙=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.乙比甲稳定B.甲比乙稳定C.甲和乙一样稳定D.甲、乙稳定性没法对比2、下列说法中正确的是()A.样本7,7,6,5,4的众数是2B.样本2,2,3,4,5,6的中位数是4C.样本39,41,45,45不存在众数D.5,4,5,7,5的众数和中位数相等3、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为()A.84分B.85分C.86分D.87分4、下列命题正确的是()A .数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称5、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A .甲B .乙C .丙D .无法确定6、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是( )A .7,7B .6,7C .6.5,7D .5,67、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的( )A .平均数B .中位数C .众数D .方差8、下列调查中,适合用全面调查的方式收集数据的是( )A .对某市中小学生每天完成作业时间的调查B .对全国中学生节水意识的调查C .对某班全体学生新冠疫苗接种情况的调查D .对某批次灯泡使用寿命的调查9、下列采用的调查方式中,不合适的是( )A .了解一批灯泡的使用寿命,采用普查B .了解神舟十二号零部件的质量情况,采用普查C .了解单县中学生睡眠时间,采用抽样调查D .了解中央电视台《开学第一课》的收视率,采用抽样调查10、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______.2、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.3、一组数据:2,2,3,3,2,4,2,5,1,1,它们的众数为_____.4、一组数据7,2,1,3的极差为______.5、小丽的笔试成绩为90分,面试成绩为95分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 _______分.三、解答题(5小题,每小题10分,共计50分)1、为了传承传统文化,让学生陶冶情操,提升古诗文的理解水平及语文素养,营造朝气蓬勃、积极向上的校园文化氛围,我校初2020级在本学期开展了一次“背诵小达人”活动.该年级在“背通小达人”活动中,对全年级学生用A(五星级)、B(四星级)、C(三星级)、D(二星级)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该年级1000名学生中有多少名学生获得A等级或B等级.2、萌萌同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生都只选择了一门课程).将获得的数据整理绘制了两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生;(2)请根据以上信息补全条形统计图;(3)扇形统计图中,“语文”所对应的圆心角度数是度;(4)若该校九年级共有1200名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对物理感兴趣.3、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)直接在图①中补全条形统计图;(2)图②中其它类课程所对应扇形的圆心角是度(直接填空);(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?4、某校气象兴趣小组的同学们想预估一下泰安市某区域明年9月份日平均气温状况.他们收集了该区域近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估区域明年9月份日平均气温为“舒适温度”的天数.5、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:(1)直接写出随机抽取学生的人数为______人;(2)直接补全频数直方图;(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数.-参考答案-一、单选题1、A【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是2S甲=1.2,2S乙=1.1,∴乙比甲稳定,故选:A.【点睛】此题考查了方差的性质:方差越小越稳定.2、D【分析】根据众数定义和中位数定义对各选项进行一一分析判定即可.【详解】A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是343.52+=,故选项B不正确;C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.故选D .【点睛】本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.3、D【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:86×50%+90×40%+80×10%=43+36+8=87(分).故选:D .【点睛】本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均数,对平均数的理解不正确.4、D【分析】根据数轴上的点与实数一一对应即可判断A ;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B ;根据三角形的外角与内角的关系即可判断C ;根据关于x 轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x 轴对称的点的坐标特征,掌握以上知识是解题的关键.5、C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵2206S =甲,2198S =乙,2156S =丙,∴222S S S >>甲乙丙,∴成绩波动最小的班级是:丙班.故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.6、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C.【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7、B【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数.故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、C【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;B、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;C、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;D、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.二、填空题1、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,甲的方差小于乙的方差,∴最合适的运动员是甲.故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、0.4【分析】先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;【详解】由题可知:第四小组的频数()502815520=-+++=,频率=频数÷样本容量20500.4=÷=;故答案是0.4.【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键.3、2【分析】根据“一组数据出现次数最多的叫做众数”可直接进行求解.【详解】解:由题意得:数据2出现了4次,数据1、3出现了2次,数据4、5出现1次;∴它们的众数为2;故答案为2.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.4、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为716-=,故答案为:6.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.5、92【分析】根据加权平均数的定义和计算公式计算可得.【详解】解:小丽的平均成绩是90695464⨯+⨯+=92(分).故答案为:92.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的定义和计算公式.三、解答题1、(1)100(2)见详解(3)18°(4)850【分析】(1)用C等级的人数除以C等级的人数占总人数的百分比,即可求解;(2)求出B等级的人数,即可求解;(3)用360°乘以D等级的人数占总人数的百分比,即可求解;(4)用1000乘以获得A等级或B等级的人数占总人数的百分比,即可求解.(1)解:1010%100÷=名;(2)B等级的人数为1005010535---=名,补全图形,如下图:(3)D等级所对应的扇形圆心角的度数为536018100⨯=︒;(4)获得A等级或B等级的人数为5035 1000850100+⨯=名.【点睛】本题主要考查了扇形统计图和条形统计图,能从统计图中获取准确信息是解题的关键.2、(1)50;(2)见解析;(3)64.8;(4)192.【分析】(1)用喜欢化学的人数除以它所占的百分比得到调查的总人数;(2)先计算出对数学感兴趣的人数,然后补全条形统计图;(3)用对语文感兴趣的人数的百分比乘以360°即可;(4)用1200乘以样本中对物理感兴趣的人数的百分比即可.【详解】解:(1)10÷20%=50,所以在这次调查中一共抽取了50名学生,故答案为:50;(2)对数学感兴趣的人数为50﹣9﹣5﹣8﹣10﹣3=15(人),补全条形统计图为:(3)扇形统计图中,“语文”所对应的圆心角度数为360°×950=64.8°,故答案为:64.8;(4)1200×850=192,所以估计该校九年级学生中有192名学生对物理感兴趣.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)见解析;(2)36;(3)450【分析】(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.【详解】(1)调查的总人数是80÷40%=200(人),参加艺术社团的人数是200×20%=40(人),参加其它社团的人数200−80−40−60=20(人),∴补全条形统计图如下:(2)它类课程在扇形统计图中所占圆心角的度数是2036036200,故答案为:36;(3)601500450200⨯=(人),∴估计该校喜欢文学类课程的学生450人.【点睛】此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.4、(1)20℃,19℃(2)20.6℃(3)18天【分析】(1)根据中位数和众数的概念求解即可;(2)根据加权平均数的定义列式计算即可;(3)用样本中气温在18℃~21℃的范围内的天数所占比例乘以今年9月份的天数即可.(1)解:∵共有60个数,∴中位数是第30、31个数的平均数,∴该组数据的中位数是(20+20)÷2=20℃;众数为19℃;故答案为:20℃,19℃;(2)解:这60天的日平均气温的平均数为1741810191220921522423524625226320.660x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==(℃); (3) 解:∵101295301860+++⨯=(天), ∴估计该区域明年9月份日平均气温为“舒适温度”的天数约为18天.【点睛】本题主要考查众数和中位数、加权平均数、样本估计总体,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、(1)50;(2)补全频数直方图见解析;(3)B 部分所对应的百分比20%;F 部分扇形圆心角的度数为36︒;(4)180人.【分析】(1)用A组频数除以频率,即可求得抽取人数为50人;(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.【详解】(1)3÷6%=50,故答案为:50;(2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;(3)B部分所对应的百分比1050100%20%÷⨯=,F部分扇形圆心角的度数为53603650⨯︒=︒;(4)45100018050+⨯=(人),答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.【点睛】本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.。

2021-2022学年沪教版(上海)九年级数学第二学期第二十八章统计初步综合练习练习题(精选)

2021-2022学年沪教版(上海)九年级数学第二学期第二十八章统计初步综合练习练习题(精选)

九年级数学第二学期第二十八章统计初步综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.91 D.922、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少3、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指()A.100 B.被抽取的100名学生C.900名学生的体重D.被抽取的100名学生的体重4、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是()A.这600名学生的“中华经典诵读”大赛成绩的全体是总体B.50名学生是总体的一个样本C.每个学生是个体D.样本容量是50名5、下列调查中最适合采用全面调查的是()A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”6、下列调查中,适合采用全面调查(普查)方式的是()A.了解江西省中小学生的视力情况B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C.了解全国快递包裹产生包装垃圾的数量D.了解抚州市市民对社会主义核心价值观的内容的了解情况7、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数8、一组数据2,9,5,5,8,5,8的中位数是()A .2B .5C .8D .99、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是( )A .0.125B .0.30C .0.45D .1.2510、要调查下列问题,适合采用普查的是( )A .中央电视台《开学第一课》的收视率B .某城市居民6月份人均网上购物的次数C .即将发射的气象卫星的零部件质量D .银川市中小学生的视力情况第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为纪念中国人民抗日战争的胜利,9月3日,某校开展中国人民抗日战争胜利纪念日征文活动.为了解学生参加活动情况,从全校6000名学生中,随机抽取了120名学生进行调查.在这次抽样调查中,样本容量是____.2、圆周率π≈3.141592653589793,数字5出现的频数是____.3、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.4、某校有3000名学生,随机抽取了300名学生进行体重调查.该问题中样本是_______________.5、小丽的笔试成绩为90分,面试成绩为95分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 _______分.三、解答题(5小题,每小题10分,共计50分)1、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为A 、B 、C 、D 四类,其中A 表示“出行节约0﹣10分钟”,B 表示“出行节约10﹣30分钟”,C 表示“出行节约30分钟以上”,D 表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.(1)求这次调查的总人数.(2)补全条形统计图.(3)在图②的扇形统计图中,求A类所对应的扇形圆心角的度数.2、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购买10元以上的商品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品.下表所示的是活动进行中的一组数据:(1)请估计当m很大时,落在“牙膏”区域的频率将会接近多少?(精确到0.1)(2)假如你去转动转盘一次,你获得洗衣液的概率大约是多少?(精确到0.1)(3)在该转盘中,标有“牙膏”区域的扇形圆心角大约是多少度?(精确到1)3、长沙作为新晋的网红城市,旅游业快速发展,岳麓区共有A、B、C、D、E等网红景点,区旅游部门统计绘制出2021年“国庆”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2021年“国庆”长假期间,岳麓区旅游景点共接待游客万人.并补全条形统计图;(2)在等可能性的情况下,甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.4、某校对学生“一周课外阅读时间”的情况进行随机抽样调查,调查结果如图所示:(图中条形图形代表的是:例如阅读时间1至2小时的人数为14人,并且在时间上含前一个边界值1,不含后一个边界值2,以此类推…)(1)随机抽样调查的总人数是多少?(2)用扇形统计图表示随机抽样调查的情况;(3)若该校有1500名学生,则根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数是多少?5、某中学九年级学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩(单位:个)经统计发现两班5名学生踢毽子的总个数相等,此时有学生建议,可以通过考查数据中的其他信息为参考,请你回答下列问题:(1)甲班比赛数据的中位数为,乙班比赛数据的平均数为;(2)计算两班比赛数据的方差;(3)根据以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.-参考答案-一、单选题1、B【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.2、B【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、D【分析】根据样本的定义进行判断即可.【详解】样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.故选:D.【点睛】本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.4、A【分析】根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.【详解】解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;C、每个学生的成绩是个体,故本选项错误,不符合题意;D、样本容量是50,故本选项错误,不符合题意;故选A.【点睛】本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.5、D【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【分析】由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.【详解】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,故选B【点睛】本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.【分析】先将数据按从小到大排列,取中间位置的数,即为中位数.【详解】解:将改组数据从小到大排列得:2,5,5,5,8,8,9,中间位置的数为:5,所以中位数为5.故选:B.【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.9、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).10、C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.【详解】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、120【分析】由题意根据样本容量是样本中包含的个体的数目进行分析可得答案.【详解】解:本次调查的样本是被随机抽取的120名学生,所以样本容量是120.故答案为:120.【点睛】本题主要考查样本容量,注意掌握样本容量只是个数字,没有单位.2、3【分析】π≈数5出现的次数即可得出答案.从 3.141592653589793【详解】π≈中,5出现了3次,在 3.141592653589793∴数字5出现的频数是3.故答案为:3.【点睛】本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.3、8 9【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…x n的平均数是2,∴数据3x1+2,3x2+2,…+3x n+2的平均数是3×2+2=8;∵数据x1,x2,…x n的方差为1,∴数据3x1,3x2,3x3,……,3x n的方差是1×32=9,∴数据3x1+2,3x2+2,…+3x n+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.4、300名学生的体重【分析】根据样本就是从总体中抽取出一部分个体即可得出答案.【详解】解:某校有3000名学生,随机抽取了300名学生进行体重调查,该问题中,300名学生的体重是调查的样本.故答案为:300名学生的体重.【点睛】本题考查样本的定义,即从总体中抽取的一部分个叫做总体的一个样本,用样本的特征去估计总体的特征,是常用的统计思想方法.5、92【分析】根据加权平均数的定义和计算公式计算可得.【详解】解:小丽的平均成绩是90695464⨯+⨯+=92(分).故答案为:92.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的定义和计算公式.三、解答题1、(1)50人;(2)见解析;(3)108°【分析】(1)利用B类的人数除以B类所占百分比,即可求解;(2)求出“出行节约30分钟以上”的人数,即可求解;(3)用360°乘以A类所占的百分比,即可求解.【详解】解:(1)调查的总人数是:1836%50÷=(人).(2)“出行节约30分钟以上”的人数有501518710---=(人),补全图形,如图所示:(3)A类所对应的扇形圆心角的度数是15︒⨯=︒.36010850【点睛】本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.2、(1)0.7;(2)0.3;(3)252°.【分析】(1)根据频率的定义,可得当m很大时,频率将会接近其概率;(2)根据概率的求法计算即可;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.【详解】解:(1)当m很大时,频率将会接近0.7;(2)获得洗衣液的概率大约是1-0.70=0.3;(3)扇形的圆心角约是0.7×360°=252°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:频率=所求情况数与总情况数之比.3、(1)50,见解析;(2)14,见解析【分析】(1)由A类景区有15万人,占比30%,从而可得游客的总人数,再由总人数乘以B类的占比得到B 类的人数,再补全图形即可;(2)先画树状图得到选择的所有的等可能的结果数16种,同时得到选择同一景区的等可能的结果数有4种,再利用概率公式计算即可.【详解】解:(1)岳麓区旅游景点共接待游客15÷30%=50(万人),B景点的人数为50×24%=12(万人),补全条形图如下:(2)画树状图如图所示:∵共有16种等可能出现的结果,其中甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的结果有4种,∴甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率=41 164.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图,利用列表法或画树状图求简单随机事件的概率,熟练的掌握统计与概率中的基础知识是解题的关键.4、(1)100人;(2)见解析;(3)990人【分析】(1)由条形统计图的数据直接相加,即可得到答案;(2)由题意,分别求出每个时间段的百分比,然后画出扇形统计图即可;(3)用1500乘以超过3小时的百分比,即可得到答案;【详解】解:(1)随机抽样调查的总人数是:14+20+35+25+6=100人;(2)根据题意,则1至2小时的百分比为:14100%14% 100⨯=;2至3小时的百分比为:20100%20% 100⨯=;3至4小时的百分比为:35100%35% 100⨯=;4至5小时的百分比为:25100%25% 100⨯=;5至6小时的百分比为:6100%6% 100⨯=;用扇形统计图表示随机抽样调查的情况;(3)该校学生“一周课外阅读时间”超过3小时的人数是:1500×(6% + 25% + 35%)=990(人);答:根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数大约是990人;【点睛】本题考查了条形统计图以及扇形统计图,解题的关键是从条形图上可以清楚地看出各部分数量,从而进行计算.5、(1)100,100(2)246.8S =甲,256S =乙(3)应该把团体第一名的奖状给甲班,因为甲班和乙班的平均数相同,甲班的方差比乙班低,甲班比较稳定,综合评定甲班比较好【解析】(1)解:甲班的成绩重新排列为:89,98,100,103,110,故中位数为100, 乙班成绩的平均数为5001005 , 故答案为:100,100;(2)甲的平均数为:500÷5=100(个),S甲2=[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]÷5=46.8;乙的平均数为:500÷5=100(个),S乙2=[(90﹣100)2+(97﹣100)2+(101﹣100)2+(113﹣100)2+(99﹣100)2]÷5=56;(3)应该把团体第一名的奖状给甲班,理由如下:因为甲班和乙班的平均数相同,甲班的方差比乙班低,甲班比较稳定,综合评定甲班比较好.【点睛】此题考查了统计计算,正确掌握中位数的定义,平均数的计算公式,方差的计算公式,利用方差做决策是解题的关键.。

第28章 统计初步【复习课件】 九年级数学下册单元复习(沪教版)

第28章 统计初步【复习课件】 九年级数学下册单元复习(沪教版)

fk
叫做这n个数据的加权
数 平均数,其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.
平均 一般地,当将一组数据按大小顺序排列后,位于正中间的一个数据(当数据的个数
数 是奇数时)或正中间两个数据的 平均数(当数据的个数是偶数时)叫做这组数
据的中位数.
众数
最多
一组数据中出现次数
的数据叫做这组数据的众数. 众数的不唯一性
A.这组数据的众数是4;
两组并
B.这组数据的中位数是3; 列的情况
C.这组数据的平均数是4;
下,两组数 都是众数.
D.这组数据的极差是3.
考点
数据代表
方差
设一组数据是x1,x2,…,xn,它们的平均数是,我们
概念 用
来衡量这
组数据的离散程度,并把它叫做这组数据的方差.
一组数据方差越大,其离散程度也越大,数据越不稳定 意义
第二十八章统计初步 全章复习
知识体系
统 计 思 想 方 法
平均数 众数 中位数
极差 方差
数据集 中趋势
数据波 动大小
样本 特征
总体相 应特性
频数分布
数据分 布状况
考点
数据的收集
数据收集的方式有两种:全面调查和抽样调查.

概念

优点
缺点
全 面 调 查
对 全体对象 进行的 调查叫做全面调查,也
叫做普查.
如取第一个分点为13.5,把分数分成:13.5~23.5 , 23.5~33.5 , … , 73.5~83.5这7组.
(4)列频数分布表:
频数 数据总算
频率
小长方形的面积
组距
频数 组距
频数

3沪教版初三下册.《统计初步》全章复习与巩固 巩固练习

3沪教版初三下册.《统计初步》全章复习与巩固 巩固练习

沪教版初三数学下册知识点梳理重点题型(常考知识点)巩固练习《统计初步》全章复习与巩固【巩固练习】一.选择题1. 为了了解某校七年级1300名学生的视力情况,从各班分别随机抽取了10名学生进行了解,这次对每班抽取的10名学生进行了解的作用是().A.样本B.用样本估计总体C.抽样D.以上都不对2.小明家上个月支出共计800元,各项支出如图所示,其中用于教育上的支出是().A.80元B.160元C.200元D.232元3. 我国五座名山的海拔高度如下表:若想根据表中的数据做统计图,以便更清楚地对几座山的高度进行比较应选用().A.条形统计图B.折线统计图C.扇形统计图D.都可以4.(2017•罗平县一模)某校九年级数学模拟测试中,六名学生的数学成绩如下(单位:分):110,106,109,111,108,110,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.极差是65.从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B.甲、乙一样 C.乙比甲高 D.不能确定6. 10名同学分成甲、乙两队进行篮球化赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为,身高的方差依次为,,则下列关系中完全正确的是( ).A., B.,C., D.,7. 随着经济的发展,人们的生活水平不断提高.如图所示分别是某景点2010~2012年游客总人数和旅游收入年增长率统计图.已知该景点2011年旅游收入4500万元.下列说法:①三年中该景点2012年旅游收入最高;②与2010年相比,该景点2012年的旅游收入增加了[4500×(1+29%)-4500×(1-33%)]万元;③若按2012年游客人数的年增长率计算,2013年该景点游客总人数将达到280×万人次.其中正确的个数是( ). A.0 B.1 C.2 D 38. 某次考试中,某班级的数学成绩统计图如图所示,下列说法错误的是().A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是26二.填空题9. 在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.10.如图所示,是甲、乙两地5月下旬的日平均气温统计图,则甲、乙两地这10天日平均气温的方差大小关系为: ________.11.在一节综合实践课上,五名同学手工作品的数量(单位:件)分别是:3,8,5,3,4,则这组数据的中位数是________件.12.13.如图,统计了四年级(1)班的一次数学测验的成绩,并画出了频数分布直方图,则落在60~70小组内的频数是_____________,90~100小组的组中值为_____________.14.如图所示是一组数据的折线统计图,这组数据的最大值与最小值的差是________,平均数是________.15.(2015•巴中)有一组数据:5,4,3,6,7,则这组数据的方差是.16.在一次测验中,A组有10人,数学平均成绩是84分,B组有20人,数学平均成绩是78分,如果把A、B两组合并,那么合并后的数学平均成绩是________分.三.解答题17. (2016•曲靖)根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.18.(2015•庆阳)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为;(2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?19.为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在校实习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件的相关数据依次如图所示(单位:mm).根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些.(2)计算出的大小,考虑平均数与方差,说明谁的成绩好些.(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.20.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如图所示的统计图.甲同学计算出前两组的频率和是0.12.同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频率比为4:17:15.结合统计图回答下列问题.(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?【答案与解析】一.选择题1.【答案】B;2.【答案】C;【解析】800×25%=200(元)3.【答案】A;【解析】条形统计图容易很清楚地看到各组数据的区别.4.【答案】A.【解析】∵110出现的次数最多,有2次,∴众数为110,故A正确;这组数据的平均数为=109,故C错误;则方差为×[(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=,故B错误;极差为111﹣106=5,故D错误;故选:A.5.【答案】B;【解析】,.故从平均数评价甲、乙两人的射击水平可知,甲、乙一样.6.【答案】B;【解析】因为,,所以,,所以.7.【答案】C;【解析】从旅游收入年增长率统计图中得到2011年收入比2010年收入增长33%,2012年收入比2011年收入增长29%,故2012年旅游收入最高,①正确.2012年收入为4500(1+29%)万元,2010年收入为[4500÷(1+33%)]万元,则②错误.2012年旅游人数增长率为,则2013年该景点人数为万人次,则③正确.故其中正确的个数是2.8.【答案】D;【解析】观察统计图可得得分在70~80分的人数最多,是14;该班总人数为4+12+14+8+2=40;得分在90~100分的人数最少,是2;及格(≥60分)的人数是12+14+8+2=36,不是26,故D项错误.二.填空题9.【答案】31.2;【解析】.10.【答案】>【解析】方差是用来衡量一组数据的波动大小的量,方差较大的波动也较大,本题中两组数据的个数相同,明显甲组数据的波动大于乙组数据,又无需写出计算过程,因此可通过分析得出答案.11.【答案】4;12.【答案】9;【解析】9分的人数最多.13.【答案】4;95;14.【答案】31;46.5;【解析】最大值与最小值的差是59-28=31;平均数.15.【答案】2;【解析】==5,S2=×[(5﹣5)2+(4﹣5)2+(3﹣5)2+(6﹣5)2+(7﹣5)2]=2,故答案为:2.16.【答案】80;【解析】.三.解答题17.【解析】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A:=10,B:=30;C:=50;D:=70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.18.【解析】解:(1)根据题意得:360°×(1﹣40%﹣25%﹣20%)=54°;故答案为:54°;(2)根据题意得:30000×=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.19.【解析】解:(1)B(2),又,在平均数相同的情况下,因,即B的波动性小些,所以B的成绩好些.(3)从图中折线走势可知,尽管A前面的成绩起伏较大,但后来的成绩逐渐稳定,误差在逐渐减小,在竞赛加工零件数远远超过10个的情况下,预测A的潜力较大,可选派A去参赛.20.【解析】解:(1)第一小组的频率为1-0.96=0.04,第二小组的频率为0.12-0.04=0.08,∴ (人),∴这次共抽调了150人.(2)第一小组人数为150×0.04=6(人),第二小组人数为150×0.08=12(人),由于第二、三、四小组的频率比为4:17:15,故第三、四小组人数分别为51人和45人.这次测试的优秀率为.(3)成绩为120次的学生至少有7人.。

2022年沪教版(上海)九年级数学第二学期第二十八章统计初步定向练习试题(含详解)

2022年沪教版(上海)九年级数学第二学期第二十八章统计初步定向练习试题(含详解)

九年级数学第二学期第二十八章统计初步定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是()A.36.3和36.2 B.36.2和36.3 C.36.3和36.3 D.36.2和36.12、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是()A.甲B.乙C.丙D.丁3、甲、乙、丙、丁四人将进行射击测试,已知每人平时10次射击成绩的平均数都是8.8环,方差分别是2 0.4s =甲,2 0.62s =乙,2 0.55s =丙,20.50s =丁,则射击成绩最稳定的是( )A .甲B .乙C .丙D .丁4、某电器商城统计了近五年销售的某种品牌的电冰箱销量,为了清楚地反应该品牌销量的增减变化情况,应选择使用的统计图是( ) A .条形统计图 B .扇形统计图 C .折线统计图D .以上都可以5、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ). A .9B .8C .7D .66、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是( ) A .0.125B .0.30C .0.45D .1.257、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( ) A .平均数B .众数C .中位数D .方差8、若一组数据3,x ,4,5,7的平均数为5,则这组数据中x 的值和方差为( ) A .3和2B .4和3C .5和2D .6 和29、下列做法正确的是( )A .在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查B .本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图C .为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本D .绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度 10、下列说法中正确的个数是( )个. ①a 表示负数;②若|x |=x ,则x 为正数;③单项式229xy π-的系数是29-;④多项式﹣3a 2b +7a 2b 2﹣2ab ﹣1的次数是4; ⑤了解全市中小学生每天的零花钱适合抽样调查;⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查. A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会_____(填“变大”、“变小”、“不变”或“不能确定”).2、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为 13x =甲, 13x =乙,2 4s =甲,23.8s =乙则小麦长势比较整齐的试验田是__________. 3、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:x 甲=84, x 乙=83.2,2S 甲=13.2, 2S 乙 =26.36,由此学校决定让甲去参加比赛,理由是_______.4、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是21.4S =甲,20.85S =乙,则在本次训练中,运动员__________的成绩更稳定. 5、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:(1)全班同学最感兴趣的课外活动项目是______;(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.三、解答题(5小题,每小题10分,共计50分)1、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.2、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;(2)求本次所抽取学生九月份“读书量”的平均数.3、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)请将条形统计图补充完整;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)你觉得哪一类礼盒销售最快,请说明理由.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有人;(2)扇形统计图中表示D选项的扇形圆心角的度数是,并把条形统计图补充完整;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.-参考答案-一、单选题 1、C 【分析】根据中位数、众数的意义求解即可. 【详解】解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7, 该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3, 将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3, 故选:C . 【点睛】本题考查中位数、众数,理解中位数、众数的意义是解题的关键. 2、D 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】解:∵x x x x =<=乙丙甲丁, ∴从丙和丁中选择一人参加比赛, ∵S 丙2>S 丁2,∴选择丁参赛,故选:D.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.3、A【分析】由平均数和方差对成绩结果的影响比较即可【详解】∵甲乙丙丁四人平均数相等,2s<甲2s<丁2s<丙2s乙∴甲射击成绩最稳定故选:A.【点睛】本题考查了方差的作用.方差能够反映所有数据的信息,因而在刻画数据波动情况时比极差更准确.方差越大,数据波动越大;方差越小,数据波动越小,越稳定.只有当两组数据的平均数相等或接近时,才能用方差比较它们波动的大小.4、C【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.【详解】解:∵为了清楚地反应该品牌销量的增减变化情况,∴结合统计图各自的特点,应选择折线统计图.故选:C.【点睛】本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.5、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.6、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).7、C【分析】根据题意可得:由中位数的概念,可知7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,故应知道自己的成绩和中位数.故选:C.【点睛】本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.8、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得345755x++++=,解得x=6,∴这组数据的方差是()()()()()22222 356545557525-+-+-+-+-=.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.9、D【分析】根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.故选:D【点睛】本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.10、B【分析】直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.【详解】解:①a表示一个正数、0或者负数,故原说法不正确;②若|x|=x,则x为正数或0,故原说法不正确;③单项式﹣229xyπ的系数是﹣29π,故原说法不正确;④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.正确的个数为2个,【点睛】本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.二、填空题1、变小【分析】求出去掉一个最高分和一个最低分后的数据的方差,通过方差大小比较,即可得出答案.【详解】去掉一个最高分和一个最低分后为88,90,92, 平均数为889099023++= 方差为()()()22218889090909290 2.6733⎡⎤-+-+-=≈⎣⎦ ∵5.2>2.67,∴去掉一个最高分和一个最低分后,方差变小了,故答案为:变小.【点睛】本题考查了方差、算数平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解.2、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】解:∵13x =甲,13x =乙, ∴x x =甲乙,∵3.8<4,∴S 乙2<S 甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.3、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】 ∵x 甲=84, x 乙=83.2,2S 甲=13.2, 2S 乙 =26.36, ∴x x >甲乙 ,2S <甲2S 乙,∴甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵2 1.4S =甲,20.85S =乙, ∴22S S >甲乙,∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、体育运动 10 20%【分析】(1)从统计表中直接通过比较即可得到.(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.【详解】解:从统计表分析人数可得到结论.由表可得:(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=20%.故答案为:(1)体育运动;(2)10,20%【点睛】本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.三、解答题1、(1)16,17.5;(2)90;(3)3 5【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【详解】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.2、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.【分析】(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.【详解】解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,∴众数为:3;抽取的学生总数为:3182112660++++=人,第30、31人“读书量”均为3本,∴中位数为:3;故答案为:3;3;(2)学生“读书量”的总数为:3118221312465180⨯+⨯+⨯+⨯+⨯=(本),抽取的学生总数由(1)可得:60人,平均数为:180360=(本),∴本次所抽取学生九月份“读书量”的平均数为3本.【点睛】题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.3、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析【分析】(1)求出销售的C类礼盒的数量,即可补全条形统计图;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:(2)360°×(1-35%-25%-20%)=72°,故答案为:72;(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.4、(1)见解析;(2)B;(3)1620人.【分析】(1)先由A组人数及其所占百分比求出总人数,总人数乘以B组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A、B组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)100;(2)144°,见解析;(3)见解析,1 6【分析】(1)根据器乐的占比和人数进行求解即可;(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.【详解】解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)表示D选项的扇形圆心角的度数是40360=144100︒⨯︒,喜欢B类项目的人数有:100-30-10-40=20(人),补全条形统计图如图1所示:故答案为:144°;(3)画树形图如图2所示:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是21 126=.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.。

沪教版(五四制)九年级数学下册 第十讲 统计初步 讲义(无答案)

沪教版(五四制)九年级数学下册 第十讲  统计初步  讲义(无答案)

P(A)=事件A 包含的可能结果数所有的可能结果总数=k n用来表示某事件发生的可能性大小的数叫做这个事件的概率概率的计算概率的定义概率的意义在一定条件下,可能发生也可能不发生的事件在一定条件下,一定不发生的事件在一定条件下,一定发生的事件随机事件不可能事件必然事件事件概率普 查选择合适的统计图,利用合适的数据,分析问题实际问题的决策方差、标准差数据波动程度平均数、中位数、众数数据平均水平分 析数据分析、决策统计表频数分布直方统计图扇形统计图折线统计图抽样调查(全面调查)整 理收 集数据收集、整理统计第十讲 统计初步数据整理和表示☆为了研究问题,就要通过调查收集数据总体:要考察的全体对象...个体:组成总体的每一个考察对象...样本:在总体中被抽取..出来的实际调查的个体组成一个样本.样本容量:样本中个体的数目...随机样本:具有代表性的样本☆收集数据的方法一般有两种:普查(全面调查)和抽样调查普查⑴普查(全面调查)是通过调查总体..来收集数据;⑵普查收集的数据全面精确....,但花费大量的时间、人力与物力.............;⑶对于下列情况需要用普查:①每个个体都要有具体的数据;②总体小(比如国家的人口普查)抽样调查⑴抽样调查是通过调查样本来收集数据;⑵抽样调查省时省力....,但数据没有普查那样精确..........;⑶对于下列情况需要用抽样调查:①总体过大,普查不具可行性,也不要求要有每个个体的数据;②调查时带有破坏性和危险性,一般用抽样调查.☆常用统计图条形图:有利于比较数据的差异折线图:可以直观地反映出数据变化的趋势扇形图:凸显了由数据所体现出来的部分与整体的关系※频数分布直方图:能够显示各组频数分布的情况、易于显示各组之间频数的差别【例题1】1、为了检查一批零件的长度,从中取50个进行检测,在这个问题中,个体是()A.零件的长度的全体B.50C.每个零件的长度D.50个零件2、为了了解一批冰箱的功能,从中抽出20台进行检查试验,在这个问题中,数目20是()A.总体B.个体C.样本D.样本容量3、为了了解10000台某种型号的风扇的使用寿命,从中抽取了10台风扇进行试验,对于这个问题,下述判断中正确的是()A.每台风扇的使用寿命是个体B.10000台风扇是总体C.10台风扇是总体的一个样本D.10台是样本容量【例题2】 1、在2018年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集和处理的问题,下列说法正确的是( ).A .调查的方式是普查B .本地区只有85个成年人不吸烟C .样本是15个吸烟的成年人D .本地区约有15%的成年人吸烟2、下列调查中,适合用全面调查方式的( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命C .了解一批炮弹的杀伤半径D .了解一批袋装食品是否含有防腐剂3、某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是( )A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况【例题3】 1、小明调查了本班同学最喜欢的一种球类运动情况,并作出了统计图,从图中你可以看出( )A .全班总人数B .喜欢足球运动的人数最多C .喜欢各种球类运动的具体人数D .喜欢各种球类运动人数的百分比2、美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房、种草、栽树、修建公园等措施,使城区绿化面积不断增加,如图,根据图中所提供的信息,回答下列问题。

2022年最新沪教版(上海)九年级数学第二学期第二十八章统计初步同步练习练习题

2022年最新沪教版(上海)九年级数学第二学期第二十八章统计初步同步练习练习题

九年级数学第二学期第二十八章统计初步同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.922、某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多B.组距为10C.人数最少的得分段的频数为2 D.得分及格(≥60)的有12人3、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A .1月份生产量最大B .这七个月中,每月的生产量不断增加C .1﹣6月生产量逐月减少D .这七个月中,生产量有增加有减少4、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A .频率是0.5B .频率是0.6C .频率是0.3D .频率是0.45、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生羊的只数是( )A .180B .140C .120D .1106、甲、乙、丙、丁四名同学进行立定跳远测试,每人10次立定跳远成绩的平均数都是2.25米,方差分别是20.72S =甲,20.75S =乙,20.68S =丙,20.61S =丁,则这四名同学立定跳远成绩最稳定的是().A.甲B.乙C.丙D.丁7、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.88、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A.200名学生的视力是总体的一个样本B.200名学生是总体C.200名学生是总体的一个个体D.样本容量是1200名9、小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差10、如图是某中学学生上学方式的统计图,如果骑车的人有840人,那么乘地铁的人数有()A.2000个B.420个C.840个D.740个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据4,3,6,x的平均数是4,则这组数据的方差是_________.3、2021年12月02日是“世界完全对称日”,人们在数字“20211202”中感受到了对称之美,下一个“世界完全对称日”将是2030年03月02日.在数字“20211202”中,数字“2”出现的频率是______.4、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.5、1995年,联合国教科文组织宣布4月23日为“世界读书日”.2021年世界读书日当天,中国新闻出版研究院发布了第18次全国国民阅读调查结果,其中2020年我国14至17周岁青少年课外读书的人均阅读量是13.07本.某中学课外阅读小组的5位成员在2020年的课外阅读量如表:则这5位成员在2020年的平均课外阅读量为______本.三、解答题(5小题,每小题10分,共计50分)1、某台风给香港造成了重大的损失,某中学开展爱心捐助活动,根据预备年级的捐款情况绘制统计图.请根据统计图给出得信息回答下列问题:(1)本次活动中预备年级共有______名同学捐款?(2)本次活动种捐款20元以上(不包括捐款20元的)人数占预备年级捐款总人数的几分之几?(写出过程)2、甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:10,7,8,7,8,8乙:5,6,10,8,9,10(1)甲成绩的众数_________,乙成绩的中位数_________.(2)计算乙成绩的平均数和方差;(3)已知甲成绩的方差是1环2,则_________的射击成绩离散程度较小.(填“甲”或“乙”)3、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.4、甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.答辩、笔试成绩统计表根据以上信息,请解答下列问题.(1)参加投票的共有________人,乙的得票率是________.(2)补全条形统计图.(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.5、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:(1)求本次抽取的学生的人数.(2)请根据以上信息直接在答题卡中补全条形统计图.(3)求扇形统计图中a的值.(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.-参考答案-一、单选题1、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.2、D【分析】根据统计图中各分数的人数最大判断A正确,由横轴的数据差判断B正确,由各分数的人数最少判断C正确,由及格的人数相加判断D错误.【详解】解:A. 得分在70~80分的人数最多,故该项不符合题意;B. 组距为10,故该项不符合题意;C. 人数最少的得分段的频数为2,故该项不符合题意;D. 得分及格(≥60)的有12+14+8+2=36人,故该项符合题意;故选:D.此题考查了条形统计图,正确理解横轴及纵轴的意义,掌握各分数的对应人数是解题的关键.3、B【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.5、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.解:由直方图可得,质量在77.5kg 及以上的生猪:90+30+20=140(头),故选B .【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.6、D【分析】平均数相同,方差值越小越稳定,比较四名同学方差值的大小即可.【详解】解:∵2222S S S S >>>乙甲丁丙∴丁同学的成绩最稳定故选D .【点睛】本题考查了方差.解题的关键在于理解方差值越小的数据越稳定.7、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.8、A【分析】根据总体,样本,个体,样本容量的定义,即可得出结论.【详解】解:A .200名学生的视力是总体的一个样本,故本选项正确;B .学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;C .学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;D .样本容量是1200,故本选项错误.故选:A .【点睛】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.9、B【分析】根据中位数的定义解答即可.【详解】解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响.故选:B.【点睛】本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.10、D【分析】根据扇形统计图中的数据,可以计算出本次调查的总人数,然后即可计算出乘地铁的人数.【详解】解:由统计图可得,调查的总人数为:840÷42%=2000,乘地铁的人数有:2000×(1-42%-21%)=2000×37%=740,故选:D.【点睛】此题考查扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,成活的鱼的总数为:25000.82000⨯=条,则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、32【分析】先根据平均数的定义求出x 的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x 的平均数是4, 可得:43644x+++=,解得:x =3, 方差为:22221(44)(34)(64)(34)4⎡⎤-+-+-+-⎣⎦=32, 故答案为:32.【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.3、12【分析】根据数字“20211202”中,数字“2”出现了4次,即可求数字“2”出现的频率.【详解】解:在数字“20211202”中,数字“2”出现了4次,∴数字“2”出现的频率=48=12.故答案为:12.【点睛】此题考查了频率,掌握频率=频数÷样本容量是解答此题的关键.4、108°【分析】先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:90100%30%300⨯=,利用360°×30%计算即可.【详解】解:统计的人数为:60+90+150=300人,骑自行车的人数为:90人,骑自行车的人数所占百分比为:90100%30% 300⨯=,∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.故答案为:108°.【点睛】本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.5、15【分析】根据求平均数的公式计算即可.【详解】1314141618155++++=(本). 所以这5位成员在2020年的平均课外阅读量为15本.故答案为:15.【点睛】本题考查求平均数.掌握求平均数的公式是解答本题的关键.三、解答题1、(1)190(2)捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数938【分析】(1)把捐每种款项的人数相加即是预备年级共有的学生人数,列式解答即可得到答案;(2)用捐款20元以上(不包括捐款20元的)的人数除以预备年级捐款总人数,列式解答即可得到答案.(1)25705016254190+++++=(人) 本次活动中预备年级共有190个同学捐款;故答案为:190;(2)()9162541904519038++÷=÷=, 答:捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数为938 【点睛】本题主要考查条形统计图,解答此题的关键是确定预备年级捐款总人数,然后再列式解答即可.2、(1)8,8.5;(2)乙的平均数8=,方差113=;(3)甲 【分析】(1)根据众数的定义可得甲成绩的众数,将乙成绩重新排列,再根据中位数的定义求解即可;(2)根据算术平均数和方差的定义求解即可;(3)比较甲乙成绩的方差,比较大小后,依据方差的意义可得答案.【详解】解:(1)甲打靶的成绩中8环出现3次,次数最多,所以甲成绩的众数是8环;将乙打靶的成绩重新排列为5、6、8、9、10、10, 所以乙成绩的中位数为898.52+=, 故答案为:8、8.5;(2)乙成绩的平均数为5689101086+++++=, 方差为22222111[(58)(68)(88)(98)2(108)]63⨯-+-+-+-+⨯-=; (3)甲成绩的方差为1环2,乙成绩的方差为113环2, ∴甲成绩的方差小于乙,∴甲的射击成绩离散程度较小. 【点睛】本题主要考查方差,解题的关键是掌握算术平均数、众数、中位数及方差的意义.3、(1)16,17.5;(2)90;(3)35【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【详解】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.4、(1)600;36%;(2)见解析;(3)乙当选【分析】(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;(2)求出丙的人数,补全图(2)的条形统计图;(3)由题意可分别求得三人的得分,比较得出结论.【详解】=÷=,解:(1)参加投票的人数20434%600=--=.乙的得票率134%30%36%故答案为:600;36%;=--=,补全的条形统计图见下图所示:(2)丙的得票数600204216180(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:x=⨯+⨯+⨯=950.4800.42040.2110.8(分);甲x=⨯+⨯+⨯=880.4860.42160.2112.8(分);乙860.4900.41800.2106.4x=⨯+⨯+⨯=(分).丙>>,所以乙当选.因为112.8110.8106.4【点睛】本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键.5、(1)200人;(2)图见解析;(3)20;(4)144︒.【分析】(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;(3)利用喜欢艺术学生的人数除以调查的总人数即可得;(4)利用喜欢器乐的学生人数所占百分比乘以360︒即可得.【详解】÷=(人),解:(1)3015%200答:本次抽取的学生有200人;⨯=(人),(2)喜欢书画的学生人数为20025%50由此补全条形统计图如下:÷⨯=,(3)40200100%20%a=;则20÷⨯⨯︒=︒,(4)80200100%360144答:喜欢器乐的学生人数所对应圆心角的度数为144︒.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.。

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28.2统计的意义练习一和参考答案数学九年级下第二十八章统计初步28.2统计的意义(1)本文主要介绍了统计学中的基本概念和调查方式。

以下是本文的选择题和填空题解析。

一、选择题1.适合采用“抽样调查”方式的调查是:B.调查某班学生对“母亲节”的知晓率。

因为这是一个相对较小的样本,适合采用抽样调查方式。

2.采用了“普查”方式的调查是:A.调查XXX所有校友每天上网的时间。

因为这是一个较大的总体,需要对所有校友进行全面调查。

3.具有代表性的样本是:B.在公园内调查老年人的健康状况。

因为在公园内调查可以涵盖不同年龄段的老年人,更具有代表性。

4.正确的说法是:A.这2000名考生是总体的一个样本。

因为这2000名考生是从总体中抽取的一部分,用于代表整个总体。

5.这个问题的样本是:C.抽取的100台电视机的使用寿命。

因为这100台电视机是从总体中抽取的一部分,用于代表整个总体的使用寿命情况。

6.根据提供的数据估计这周全班同学各家总共丢弃塑料袋的数量约为:B.1260.因为六名同学记录的数据可以代表全班同学的情况,所以可以将这六个数值相加后乘以班级人数得出答案。

二、填空题7.全面调查叫做普查。

8.针对特定目的的调查叫做抽样调查。

9.调查的对象叫做总体,组成总体的个体叫做个体。

10.从总体中抽取的一部分个体叫做样本,样本中个体的数量叫做样本容量。

11.在这个问题中的总体是保温瓶,样本是抽取的10只保温瓶,样本容量是10.12.为了了解某市七年级学生的平均身高,可以进行普查或者抽样调查。

如果对全市七年级学生进行调查,这是普查;如果对其中的1000名学生进行调查,这是抽样调查。

其中,全体七年级学生的身高是总体,每个七年级学生的身高是个体,样本是抽取的1000名学生,其中1000是样本容量。

13.对于了解我国九年级学生的视力情况,合适的调查方式是抽样调查。

可以从不同地区、不同学校、不同年级中抽取一定数量的学生进行调查,以代表全国九年级学生的视力情况。

难点详解沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析试题(含答案及详细解析)

难点详解沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析试题(含答案及详细解析)

九年级数学第二学期第二十八章统计初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.32、下列调查中,适合采用全面调查的是()A.了解一批电灯泡的使用寿命B.调查榆林市中学生的视力情况C.了解榆林市居民节约用水的情况D.调查“天问一号”火星探测器零部件的的质量3、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是48分C.该班学生这次考试成绩的中位数是47分D.该班学生这次考试成绩的平均数是46分4、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.对于小强做引体向上的个数,下列说法错误的是()A.平均数是12 B.众数是13C.中位数是12.5 D.方差是8 75、下列调查中,适合用全面调查的方式收集数据的是()A.对某市中小学生每天完成作业时间的调查B.对全国中学生节水意识的调查C.对某班全体学生新冠疫苗接种情况的调查D.对某批次灯泡使用寿命的调查6、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差7、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A.一,二B.二,一C.一,一D.二,二8、下列调查中,最适合采用普查方式的是()A.调查一批电脑的使用寿命B.调查某航班的乘客是否都持有“绿色健康码”C.了解我市初中生的视力情况D.调查河南卫视“中秋奇妙游”节目的收视率9、下列调查中,最适合采用全面调查(普查)方式的是()A.对兰州市初中生每天阅读时间的调查B.对市场上大米质量情况的调查C.对华为某批次手机防水功能的调查D.对某班学生肺活量情况的调查10、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于30%的区县有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.2、八年级(1)、(2)两班人数相同,在同一次数学单元测试中,班级平均分和方差如下:22S S x===18,80,24则成绩较为稳定的班级是___.甲乙3、某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会_____(填“变大”、“变小”、“不变”或“不能确定”).4、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.5、已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.三、解答题(5小题,每小题10分,共计50分)1、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:填空:a=,b=,c=;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.2、2021年央视春晩,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次接受调查的学生人数.(2)求扇形统计图中D所在扇形的圆心角度数.(3)将条形统计图补充完整.3、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)请将条形统计图补充完整;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)你觉得哪一类礼盒销售最快,请说明理由.4、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?5、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.-参考答案-一、单选题1、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.2、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.【详解】解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、D由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.【详解】解:该班一共有:2+5+6+7+8+7+5=40(人),得48分的人数最多,众数是48分,第20和21名同学的成绩的平均值为中位数,中位数为4648472+=(分), 平均数是362405436467484(8507545)4046.⨯+⨯+⨯++÷=⨯⨯+⨯+⨯(分),故A 、B 、C 正确,D 错误,故选:D .【点睛】本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.4、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:11121013131312127x ++++++==,故选项A 不符合题意; ∵13出现的次数最多,∴众数是13,故B 选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C 选项符合题意; 方差:()()()()222221810121112212123131277s ⎡⎤=-+-+⨯-+⨯-=⎣⎦,故D 选项不符合题意; 故选C .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.5、C【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.7、A【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.故选A.【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.8、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查一批电脑的使用寿命,适合采用抽样调查的方式,故本选项不合题意;B.调查某航班的乘客是否都持有“绿色健康码”,适合采用普查的方式,故本选项符合题意;C.了解我市初中生的视力情况,适合采用抽样调查的方式,故本选项不合题意;D.调查央视“五一晚会”的收视率,适合采用抽样调查的方式,故本选项不合题意.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;D、对某班学生肺活量情况的调查,人数较少,适合普查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【分析】根据直方图即可求解.【详解】由图可得森林覆盖率低于30%的区县有新津县、青白江,共2个故选B .【点睛】此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于30%的区县,进而求解.二、填空题1、一般水平 波动大小【分析】根据平均数和方差的意义进行回答即可.【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键.2、甲班【分析】根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论.【详解】解:∵两班的平均成绩相同,221880S S ==甲乙<,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,∴成绩较为稳定的班级是甲班,故答案为甲班.【点睛】本题考查平均数与方差,掌握平均数的求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键.3、变小【分析】求出去掉一个最高分和一个最低分后的数据的方差,通过方差大小比较,即可得出答案.【详解】去掉一个最高分和一个最低分后为88,90,92, 平均数为889099023++= 方差为()()()22218889090909290 2.6733⎡⎤-+-+-=≈⎣⎦ ∵5.2>2.67,∴去掉一个最高分和一个最低分后,方差变小了,故答案为:变小.【点睛】本题考查了方差、算数平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解. 4、0.4【分析】先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;【详解】由题可知:第四小组的频数()502815520=-+++=,频率=频数÷样本容量20500.4=÷=;故答案是0.4.【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键.5、16.5,17【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将18,17,13,15,17,16,14,17从小到大排列为:13,14,15,16,17,17,17,18其中17出现的次数最多,则众数为17,中位数为:161716.52+=.故答案为:16.5;17【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.三、解答题1、(1)7,7.5,1.2;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论. 【详解】解:(1)由频数直方图可得:甲的成绩如下:5,6,6,7,7,7,7,8,8,9,其中7环出现了4次,所以众数是7a =环,7x =甲环()()()()()222221572674772879710c ⎡⎤∴=-+⨯-+⨯-+⨯-+-⎣⎦ 1=12=1.2.10⨯ 由折线统计图可得:按从小到大排序为:3,4,6,7,7,8,8,8,9,10,所以中位数为:7+8=7.52b =. 故答案为:7,7.5,1.2;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.2、(1)50人;(2)36°;(3)见解析【分析】(1)根据B 的人数除以所占的百分比得到接受调查的学生人数;(2)先求出D 所占百分比,然后用360°×它所占百分比即可;(3)先求出C 所占百分比,再求出C 的人数,进而得出C 中男生人数;用总人数乘A 占的百分比得出A 的人数进而得出A 中女生人数,然后补全条形统计图即可;【详解】解:(1)根据题意得:()12840%50+÷=(人)答:本次接受调查的人数是50人;(2)D占的百分比32100%10% 50+⨯=,D所在的扇形圆心角的度数为36010%36︒⨯=︒;(3)C占的百分比为1-(20%+40%+10%)=30%,C的人数为50×30%=15(人),即C中男生为15-8=7(人);A的人数为50×20%=10(人),A中女生人数为10-6=4(人),补全条形统计图,如图所示:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析【分析】(1)求出销售的C类礼盒的数量,即可补全条形统计图;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:(2)360°×(1-35%-25%-20%)=72°,故答案为:72;(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.4、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,÷=(人);本次调查人数为:5445%120---=(人),(2)∵艺术:12018541236∴补全的条形统计图如下图所示:“其他”所对应的圆心角度数为1236036 120⨯︒=︒;(3)样本中选择阅读的人数为18人,占样本的百分比为18100%=15% 120⨯,该校学生总人数为840人,估计选择阅读的学生有:84015%126⨯=(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.5、(1)40;(2)补图见解析;(3)117°;(4)40人.【分析】(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:512.5%40÷=(人),故答案为:40;(2)C等级的人数有:402513812----=(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:1336011740︒⨯=︒,故答案为:117°;(4)估计该校A等级的学生人数有:28004040⨯=(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.。

沪教版(上海)九年级数学第二学期第二十八章统计初步必考点解析试题(含解析)

沪教版(上海)九年级数学第二学期第二十八章统计初步必考点解析试题(含解析)

九年级数学第二学期第二十八章统计初步必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了解甲、乙、丙、丁四位选手射击水平,随机让四人各射击10次,计算四人10次射击命中环数平均数都是9.3环,方差(环2)如下表.则这四位选手成绩最稳定的是()A.甲B.乙C.丙D.丁2、下列调查中,适合采用全面调查的是()A.了解一批电灯泡的使用寿命B.调查榆林市中学生的视力情况C.了解榆林市居民节约用水的情况D.调查“天问一号”火星探测器零部件的的质量3、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是()A.这600名学生的“中华经典诵读”大赛成绩的全体是总体B.50名学生是总体的一个样本C.每个学生是个体D.样本容量是50名4、下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解神舟十二号零部件的质量情况,采用普查C.了解单县中学生睡眠时间,采用抽样调查D.了解中央电视台《开学第一课》的收视率,采用抽样调查5、下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率6、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是()A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.47、下列说法正确的是()A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定8、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,69、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )A .11B .10C .9D .810、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x x =甲丙=13,x x =乙丁=15:2S 甲=2S 丁=3.6,2S 乙=2S 丙=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao ”,其中字母“o ”出现的频率为__________.2、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a ,b ,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a ,b 之间的关系是_____3、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.4、我区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为95分,面试成绩为85分,那么吴老师的总成绩为__________分.5、已知一组数据12345,,,,x x x x x 的平均数是5,极差为3,方差为2,则另一组新数组1234521,21,21,21,21x x x x x +++++的平均数是________,极差是________,方差是________.三、解答题(5小题,每小题10分,共计50分)1、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)直接在图①中补全条形统计图;(2)图②中其它类课程所对应扇形的圆心角是度(直接填空);(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?2、贵州省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?3、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:该排球社团一共有名女同学,a=.(2)把频数分布直方图补充完整.(3)随机抽取1名学生,估计这名学生身高高于160cm的概率.4、某校想了解学生每周的课外阅读时间情况,随机抽取了部分学生进行调查,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据以上信息,解答下列问题:(1)本次调查共随机抽取了_____________名学生,并补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)在该校3000名学生中,每周的课外阅读时间不小于6小时的学生约有________________名.5、至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?-参考答案-一、单选题1、B【分析】根据方差越小越稳定,比较后,选择即可.【详解】∵乙的方差最小,∴乙最稳定,故选B.【点睛】本题考查了方差的意义,正确理解方差越小越稳定是解题的关键.2、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.【详解】解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、A【分析】根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.【详解】解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;C、每个学生的成绩是个体,故本选项错误,不符合题意;D、样本容量是50,故本选项错误,不符合题意;故选A.【点睛】本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.4、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;B、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;C、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;D、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【分析】根据普查和抽样调查的定义进行逐一判断即可.【详解】解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;故选D.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.7、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.8、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C.【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.10、D【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.【详解】 解:x x x x =>=乙丁甲丙,∴乙、丁的麦苗比甲、丙要高,2222s s s s =<=乙甲丁丙,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D .【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.二、填空题1、417【分析】用字母“o ”出现的个数除以总的字母个数即可得出答案.【详解】解:∵字母“o ”出现的次数为4,∴该英语中字母“o”出现的频率为417;故答案为:417.【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数÷数据总数.2、a>1.5b【分析】先表示甲乙的加权平均分,再根据甲被录取列不等式即可.【详解】甲的加权平均分为:90a+80b乙的加权平均分为:84a+89b∵甲被录取∴甲的分数>乙的分数∴90a+80b>84a+89b,解得a>1.5b,故答案为:a>1.5b.【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.3、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、91【分析】根据笔试和面试所占的百分比以及吴老师的笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:吴老师的总成绩为95×60%+85×40%=57+34=91(分).故答案是91.【点睛】本题主要题考查了加权平均数,根据加权平均数的计算公式列出算式是解答本题的关键.5、11 6 8【分析】根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.【详解】解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,极差为2×3=6,方差为2×22=8,故答案为:11、6、8.【点睛】此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.三、解答题1、(1)见解析;(2)36;(3)450【分析】(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.【详解】(1)调查的总人数是80÷40%=200(人),参加艺术社团的人数是200×20%=40(人),参加其它社团的人数200−80−40−60=20(人),∴补全条形统计图如下:(2)它类课程在扇形统计图中所占圆心角的度数是2036036200,故答案为:36;(3)601500450200⨯=(人),∴估计该校喜欢文学类课程的学生450人.【点睛】此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.2、 (1) 120(名);(2) 补全统计图见详解(3)855(名).【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.【详解】解:(1)抽样调查的学生人数为6÷5%=120(名);(2)A的百分比:36120×100%=30%,B的百分比:54×100%=45%,120C组的人数:120×20%=24名;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1900×45%=855(名).【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量.3、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中A组的人数除以扇形统计图中A组的所占百分比即可求得总人数,根据A C D E组的人数即可求得B组的人数,除以总人数即可求得a的值;总人数减去,,,(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:1515%100÷=;----=B组的人数为100153515530÷⨯=30100100%30%故答案为:10030,(2)如图,(3)总人数为100,身高高于160cm 为3515555++=∴随机抽取1名学生,估计这名学生身高高于160cm 的概率为550.55100= 【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键. 4、(1)100,图见解析(2)40,14.4︒(3)870【分析】(1)A 组人数A ÷组所占百分比=被调查总人数,将总人数D ⨯组所占百分比D =组人数;(2)m C =组人数÷调查总人数100⨯,E 组对应的圆心角度数E =组占调查人数比例360⨯︒;(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.(1)解:(1)随机调查学生数为:1010%100÷=(人),课外阅读时间在68-小时之间的人数为:10025%25⨯=(人),补全图形如下:故答案是:100;(2) 解:4010040100m =⨯=, E 组对应的圆心角为:436014.4100⨯︒=︒; (3)解:3000(25%4%)870⨯+=(人).估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人,故答案是:870.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5、(1) 2.75-;(2)最高分116,最低分52;(3)83.25分;(4)没有达到,低15分【分析】(1)用小丽的数学成绩减去平均分即可得出小丽的离均差;(2)①用班平均分加上离均差得出数学成绩,即可得出数学成绩的最高分与最低分;②把这组同学的离均差相加除以8,再加上班平均分即可得出这组同学的平均分;③用班平均分与组平均分作比较,作差即可得出答案.【详解】(1)小丽数学成绩的离均差为:8284.75 2.75-=-;(2)①这组同学数学成绩的最高分为:84.7531.25116+=,+-=;最低分为:84.75(32.75)52+-+++-+-+-+-÷+②[10.25(8.75)31.2515.25( 3.75)(12.75)(10.75)(32.75)]884.75=(分),83.25∴这组同学数学成绩的平均分为83.25;③∵83.2584.75<,∴该组数学成绩的平均分没有达到班平均分,-=,84.7583.25 1.5∴低了1.5分.【点睛】本题考查有理数的加减运算,掌握运算法则是解题的关键.。

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28.6统计实习练习一和参考答案数学九年级下第二十八章统计初步28.6 统计实(1)一、选择题1.下列收集数据的方法中,不是依靠媒体信息的是(。

) A。

翻阅报纸B。

听广播C。

发调查问卷D。

上网查询2.以下调查中,适合作抽样调查的有()①了解一批灯泡的使用寿命;②对我市市民实施低碳生活情况的调查;③对全国中学生心理健康现状的调查;④调查人们的环保意识A。

1种B。

2种C。

3种D。

4种3.要能清楚地表示各部分在总体中所占的百分比,应选择()A。

条形统计图B。

扇形统计图C。

折线统计图D。

表格统计4.数据-1,-2,1,0,2的标准差是()A.2B.2C.1D.5.以下特征集中能反映一些数据波动大小的是(。

)A.众数B.标准差C.平均数D.中位数6.在扇形统计图中,占圆面积20%的扇形的圆心角的度数是()A.52°B.62°C.72°D.82°二、填空题7.为了知道一锅汤的味道,妈妈从锅里舀了一小勺汤尝尝,这种调查方式是:抽样,总体是锅里的汤,个体是一小勺汤。

8.数据3,5,7,9的平均数是6,方差是4,标准差是2.9.数据0.2.0.1.0.5.0.2.0.3的众数是0.2.10.-1.-2,1,1的中位数是0.11.在股市交易上,为了让股民清楚、直观看出某种股票的涨跌情况,使用的统计图是K线图。

12.一次考试中,甲组12人的平均分为70分,乙组8人的平均分为80分,那么这两组20人的平均分为74分。

13.开晚会前,班长对全班同学爱吃哪种水果作了民意调查,最终买什么水果,该由调查数据的结果决定。

14.检查一个人的血型需要抽取血样,这时,总体是这个人的血液,个体是抽取的一份血样。

15.检查一批奶粉的质量,从中抽取50包进行检查,这个样本的容量为50.16.XXX同学数学成绩为:平时70分,期中80分,期末90分,若按平时:期中:期末=2:3:5权重,则他的总评成绩为82分。

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步章节训练练习题(含详解)

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步章节训练练习题(含详解)

九年级数学第二学期第二十八章统计初步章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,四人的方差分别是S甲2=0.63,S乙2=2.56,S丙2=0.49,S丁2=0.46,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁2、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差3、下列做法正确的是()A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度4、下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是2005、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A.一,二B.二,一C.一,一D.二,二6、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是()A.2 B.11.1% C.18 D.2 187、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,38、下列说法正确的是()A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定9、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指()A.100 B.被抽取的100名学生C.900名学生的体重D.被抽取的100名学生的体重10、下列调查中,适合采用全面调查的是()A.了解一批电灯泡的使用寿命B.调查榆林市中学生的视力情况C.了解榆林市居民节约用水的情况D.调查“天问一号”火星探测器零部件的的质量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某招聘考试分笔试和面试两项,笔试成绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是______分.2、已知一组按大小排列的整数数据1,2,2,x,3,4,5,7的众数是2,则这组数据的平均数是_______.3、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:x甲=84,x乙=83.2,2S甲=13.2,2S乙=26.36,由此学校决定让甲去参加比赛,理由是_______.4、一组数据7,2,1,3的极差为______.5、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_______kg.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、某校组织1002名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机抽取一些学生在评比中的成绩制成的统计图表如表:频数分布表根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a=,b=;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数.3、戴头盔对保护骑电动车人的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为.(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?4、某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表:(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为______分、_______分.(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的最后成绩,若按此成绩在甲、乙两人中录用高分的一个,谁将被录用?5、至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?-参考答案-一、单选题1、D【分析】根据方差的意义即可得.【详解】解:22220.63, 2.56,0.49,0.46S S S S ====甲乙丁丙,且0.460.490.63 2.56<<<,∴射箭成绩最稳定的是丁(方差越小,成绩越稳定),故选:D .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.2、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.3、D【分析】根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.【详解】解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.故选:D【点睛】本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.4、D【分析】根据全面调查、抽样调查、样本和样本容量判断即可.【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A 错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D【点睛】本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.5、A【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.故选A.【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.6、A【分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选A.【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.7、A【分析】根据众数、中位数的定义解答.【详解】解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,故选:A.【点睛】此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.8、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.9、D根据样本的定义进行判断即可.【详解】样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.故选:D.【点睛】本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.10、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.【详解】解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、87按照加权平均数的计算公式计算即可.【详解】根据加权平均数的计算公式列出算式,再进行计算即可得出答案. 解:小明的平均成绩是:85390232⨯+⨯+=87(分). 故答案为:87.【点睛】本题考查了加权平均数的应用,掌握加权平均数的意义及计算是关键.2、3.25【分析】根据题意得2x = ,然后用所有数的和除以8,即可求解.【详解】解:∵一组按大小排列的整数数据1,2,2,x ,3,4,5,7的众数是2,∴2x = , ∴这组数据的平均数是()112223457 3.258+++++++= . 故答案为:3.25【点睛】本题主要考查了求平均数,众数,根据题意得到2x =是解题的关键.3、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.∵x 甲=84, x 乙=83.2,2S 甲=13.2, 2S 乙 =26.36, ∴x x >甲乙 ,2S <甲2S 乙,∴甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为716-=,故答案为:6.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.5、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg 种子中大约有多少kg 种子是发芽的即可.【详解】解:∵大量重复试验发芽率逐渐稳定在0.85左右,∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850.【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.三、解答题1、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)40,40%(2)见解析(3)100人【分析】(1)首先求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)根据上题求得的数据补全统计图即可;(3)用总人数乘以获得一等奖的百分率即可求得获得一等奖的人数.【小题1】解:∵抽查的学生总数为:60÷30%=200(人),∴a=200-80-60-20=40;b=80200×100%=40%.【小题2】成绩在95≤x<100的学生人数所占百分比为:20200×100%=10%,故频数分布表为:频数分布直方图为:【小题3】1000×10%=100(人),答:该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,读图时要全面细致,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.掌握好频率、中位数的概念.3、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为129.6 ;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【分析】(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;(2)用(1)中求出的样本总人数减去“很少戴头盔”、“常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.【详解】(1)由扇形统计图和条形统计图可得,“常常戴头盔”的人数为64人,所占的百分比为32%,∴调查的样本总人数=6432%200÷=,∴样本容量为200,故答案为:200;(2)“有时戴头盔”的人数=20024647240---=(人),补全条形统计图如下:“总是戴头盔”的人数所占圆心角=72 360129.6200︒⨯=︒;(3)2412014.4200⨯=(万人),∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【点睛】此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.4、(1)84;85;(2)甲将被录用.【分析】(1)由题意根据平均数的计算公式分别进行计算即可;(2)由题意根据加权平均数的计算公式分别进行解答即可.【详解】解:(1)甲的平均成绩为(93+86+73)÷3=84(分),乙的平均成绩为(95+81+79)÷3=85(分).(2)依题意,得:甲的成绩为:93386573285.5352⨯+⨯+⨯=++(分), 乙的成绩为:95381579284.8352⨯+⨯+⨯=++(分), ∵85.5>84.8,∴甲将被录用.【点睛】本题考查加权平均数和算术平均数的知识,注意掌握利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、(1) 2.75-;(2)最高分116,最低分52;(3)83.25分;(4)没有达到,低15分【分析】(1)用小丽的数学成绩减去平均分即可得出小丽的离均差;(2)①用班平均分加上离均差得出数学成绩,即可得出数学成绩的最高分与最低分;②把这组同学的离均差相加除以8,再加上班平均分即可得出这组同学的平均分;③用班平均分与组平均分作比较,作差即可得出答案.【详解】(1)小丽数学成绩的离均差为:8284.75 2.75-=-;(2)①这组同学数学成绩的最高分为:84.7531.25116+=,+-=;最低分为:84.75(32.75)52+-+++-+-+-+-÷+②[10.25(8.75)31.2515.25( 3.75)(12.75)(10.75)(32.75)]884.75 =(分),83.25∴这组同学数学成绩的平均分为83.25;③∵83.2584.75<,∴该组数学成绩的平均分没有达到班平均分,-=,84.7583.25 1.5∴低了1.5分.【点睛】本题考查有理数的加减运算,掌握运算法则是解题的关键.。

2021-2022学年最新沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析试卷(精选)

2021-2022学年最新沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析试卷(精选)

九年级数学第二学期第二十八章统计初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是某超市2017~2021年的销售额及其增长率的统计图,下面说法中正确的是()A.这5年中,销售额先增后减再增B.这5年中,增长率先变大后变小C.这5年中,销售额一直增加D.这5年中,2021年的增长率最大2、下列调查中,适合用全面调查的方式收集数据的是()A.对某市中小学生每天完成作业时间的调查B.对全国中学生节水意识的调查C.对某班全体学生新冠疫苗接种情况的调查D.对某批次灯泡使用寿命的调查3、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指()A.100 B.被抽取的100名学生C.900名学生的体重D.被抽取的100名学生的体重4、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环5、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少6、下列调查中,最适合采用普查方式的是()A.调查一批电脑的使用寿命B.调查某航班的乘客是否都持有“绿色健康码”C.了解我市初中生的视力情况D.调查河南卫视“中秋奇妙游”节目的收视率7、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是()A.甲B.乙C.丙D.丁8、下列调查中最适合采用全面调查的是()A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”9、某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是()A.0.1 B.0.25 C.0.3 D.0.4510、下列调查中,最适合采用抽样调查的是( )A .调查一批防疫口罩的质量B .调查某校九年级学生的视力C .对乘坐某班次飞机的乘客进行安检D .国务院于2020年11月1日开展的第七次全国人口调查第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是2 1.4S =甲,20.85S =乙,则在本次训练中,运动员__________的成绩更稳定.2、已知一组数据1,2,3,.n 它们的平均数是2,则n =______,这一组数据的方差为______.3、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.4、已知某校学生来自A 、B 、C 三个地区,这三个地区的学生人数比是1:3:2,如图所示的扇形图表示上述分布情况,则代表C 地区的扇形圆心角是_____°.5、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:将笔试成绩,面试成绩按6:4的比例计入总成绩,则该应聘者的总成绩是______分.三、解答题(5小题,每小题10分,共计50分)1、某校了解学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了________名学生;(2)补全条形统计图;(3)若该校共有1800名,估计爱好运动的学生有________人.2、戴头盔对保护骑电动车人的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为.(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a=,b=,c=,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a=,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数.5、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:(1)直接写出随机抽取学生的人数为______人;(2)直接补全频数直方图;(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数.-参考答案-一、单选题1、C【分析】根据统计图中增长率及销售额的变化逐一判断即可得答案.【详解】A.这5年中,销售额连续增长,故该选项错误,B.这5年中,增长率先变大后变小再变大,故该选项错误,C.这5年中,销售额一直增加,故该选项正确,D.这5年中,2018年的增长率最大,故该选项错误,故选:C.【点睛】本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键.2、C【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、D【分析】根据样本的定义进行判断即可.【详解】样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.【点睛】本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.4、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5、B【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A .调查一批电脑的使用寿命,适合采用抽样调查的方式,故本选项不合题意;B .调查某航班的乘客是否都持有“绿色健康码”,适合采用普查的方式,故本选项符合题意;C .了解我市初中生的视力情况,适合采用抽样调查的方式,故本选项不合题意;D .调查央视“五一晚会”的收视率,适合采用抽样调查的方式,故本选项不合题意.故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 解:∵x x x x =<=乙丙甲丁,∴从丙和丁中选择一人参加比赛,∵S丙2>S丁2,∴选择丁参赛,故选:D.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.8、D【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、B【分析】用步行到校学生的频数除以学生总数即可求解.【详解】解:75÷300=0.25,故选B .【点睛】本题考查了频率的计算方法,熟练掌握频率=频数÷总数是解答本题的关键.10、A【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A .调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B .调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C .对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D .国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意; 故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵2 1.4S =甲,20.85S =乙,∴22S S >甲乙,∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、2, 12【分析】先根据平均数的定义确定出n 的值,再根据方差的计算公式计算即可.【详解】 解:数据 123n ,,,的平均数是2, 12342n ∴+++÷=(),2n ∴=,∴这组数据的方差是:2222111222322242⎡⎤-+-+-+-=⎣⎦()()()(), 故答案为:2,12.【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.3、78【分析】由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式431728096888⨯+⨯+⨯,即可得到答案.【详解】解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩∴431728096888⨯+⨯+⨯=78(分).则该应聘者的总成绩是78分.故答案为:78【点睛】本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.4、120【分析】根据三个地区的学生人数比求出扇形图上三个地区对应扇形的圆心角度数的比,进而可求出C地区的扇形圆心角.【详解】解:∵A、B、C三个地区的学生人数比是1:3:2.∴A、B、C三个地区对应扇形的圆心角度数的比是1:3:2.∴C地区的扇形圆心角为2360120132︒⨯=︒++.故答案为:120.【点睛】本题考查扇形统计图的圆心角,熟练掌握该知识点是解题关键.5、84【分析】根据求加权平均数的方法求解即可【详解】 解:6480904836841010⨯+⨯=+= 故答案为:84【点睛】 本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 三、解答题1、(1)100;(2)见解析;(3)720【分析】(1)根据爱好娱乐人数的百分比,以及娱乐人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数、运动人数、以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好娱乐的人数为15,所占百分比为15%,∴共调查人数为:15÷15%=100.故填:100.(2)爱好上网人数为:100×10%=10,爱好运动人数为:100×40%=40,爱好阅读人数为:100-15-10-40=35,补全条形统计图,如图所示:(3)爱好运动的学生人数所占的百分比为40%,则:该校共有学生大约有:1800×40%=720人;所以,若该校共有1800名,估计爱好运动的学生有720人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,会从图标中获取有用信息.2、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为129.6 ;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【分析】(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;(2)用(1)中求出的样本总人数减去“很少戴头盔”、“常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.【详解】(1)由扇形统计图和条形统计图可得,“常常戴头盔”的人数为64人,所占的百分比为32%,∴调查的样本总人数=6432%200÷=,∴样本容量为200,故答案为:200;(2)“有时戴头盔”的人数=20024647240---=(人),补全条形统计图如下:“总是戴头盔”的人数所占圆心角=72 360129.6200︒⨯=︒;(3)2412014.4200⨯=(万人),∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【点睛】此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,∴a=2182302+=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,∴c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×211400=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据9095x ≤<的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a 值,用80除以样本容量即可求得b 值;(2)用20除以样本容量即可求得95100x ≤<的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:6030%200÷=(人),∴20080602040a =---=;80100%40%200b =⨯=, 故答案为:40;40%;(2)成绩在95100x ≤<的学生人数所占百分比为:20100%10%200⨯=, 故频数分布表为:频数分布直方图为:⨯=(人),(3)该校参加此次活动获得一等奖的人数为:100010%100答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.5、(1)50;(2)补全频数直方图见解析;(3)B部分所对应的百分比20%;F部分扇形圆心角的度数为36︒;(4)180人.【分析】(1)用A组频数除以频率,即可求得抽取人数为50人;(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.【详解】(1)3÷6%=50,故答案为:50;(2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;(3)B部分所对应的百分比1050100%20%÷⨯=,F部分扇形圆心角的度数为53603650⨯︒=︒;(4)45100018050+⨯=(人),答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.【点睛】本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28、统计初步
一、填空题
1、数据收集常用的方式有普查和 两种.
2、要想估计池塘里鱼的条数,先捞出50条作上记号后放回池塘,过一段时间后再捞出100条鱼,有记号的鱼正好10条,问池塘里原来大约有 条鱼.
3、一组数据25、80、8
4、90、9
5、96中,25通常叫做 ,描述这组数据的一般水平用 比较合适,这个值是 .
4、一组数据按大小顺序排列后为x 1 , x 2 , x 3…x 29 , 则其中位数是 ,若数据中再增加一个x 1 ,其中位数是 ,若数据中再增加一个x 29 ,其中位数是
5、一个样本的容量为50 ,一组的频数为18,则这组的频率为 .
6、一组数据中,各组数据的频率之和等于 .
7、101、99、97、102、100、96、105、99、103、98的平均数为 .
8、已知一组数据x 、-1、0、1、-2的平均数是0,那么x=
9、一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ;
10、某校对初三学生进行政治学习情况的测试, 从中随机抽取了40份试卷, 这40份试卷中80分及以上有16人,由此可估计全校200名初三学生80分及以上有 人,优良率为_________%,
二、选择题
1、某工厂对一个生产小组的零件进行抽样调查。

在10天中,这个生产小组每天出的次品数如下(单位:个)0, 2, 0, 2, 3, 0, 2, 3, 1, 2
在这10天中,该生产小组生产零件所出的次品数平均数为 ( )
(A )2 (B )3 (C )1.5 (D )1.2
3、从一组数据中取出a 个x 1,b 个x 2,c 个x 3,组成一个样本,那么这个样本的平均数是( )。

(A )3321x x x ++(B )3c b a ++(C )3321cx bx ax ++(D )c
b a cx bx ax ++++321 4、某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了1000名考生的数学成。

相关文档
最新文档