[数量关系] 数字推理30种解题技巧

合集下载

行测数量关系之数字推理的多种解法

行测数量关系之数字推理的多种解法

行测数量关系之数字推理的多种解法数量关系主要考查考生对数量关系的理解、计算和判断推理的能力。

该项测验不仅仅是数学知识的测验,还是一种基本能力的测验,是测查考生的个体抽象思维能力。

数量关系具有测试考生速度与难度的双重性质。

在难度方面,涉及的数学知识或原理都不超过中学水平,着重考察应试者对规律的发现、把握能力和抽象思维能力。

在速度方面要求应试者反应灵活,思维敏捷,考生平均每分钟必须答完一题并保证准确。

数量关系包括数字推理和数学运算两部分。

数字推理概述:数字推理:给一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

数字推理类似于数学智力游戏,主要考察考生对数字的敏感性。

数字推理各年所占比重:数字推理题共五种基本类型:等差等比数列及其变式,和差积商数列,幂次数列、平方立方数列,双重数列,分数、根式数列。

拿到数列后先对其所属的类型和基本形式作出估计和判断,寻找问题突破口,再进行解答。

下面对各种类型分别作以介绍。

重点掌握:基础数列(等差、等比、质数、平方、立方、和、周期、二级等差…)一、等差等比数列及其变式等差数列:在一个数列中后一项减前一项的差值为定值,这个数列叫做等差数列,这个定值叫做公差。

做差:二级等差数列:2,6,12,20,30,()A. 38B. 42C. 48D. 5632,27,23,20,18,()A. 14B. 15C. 16D. 17-2,1,7,16,(),43A. 25B. 28C. 31D. 35做一次差出现基础数列:20,22,25,30,37,()A. 39B. 45C. 48D. 51等比数列:在一个数列中后一项除以前一项的商值为定值,这个数列叫做等比数列,这个定值叫做公比。

如:2,4,8,16,32公比为2。

4,5,7,11,19,()A. 27B. 31C. 35D. 473 ,4 ,7 ,16 ()A.23B.27C.39D.431,2,6,15,31,()A. 53B. 56C. 62D. 876 12 19 27 33 ( ) 48A.39 B.40 C.41 D.42三级等差数列:(三角公差法)0,4,18,48,100,()A. 140B. 160C. 180D. 2200 , 4, 16, 40, 80, ( )A. 160B. 128C. 136D. 1401,10,31,70,133,( )A.136B.186C.226D.256做两次差出现基础数列:0,1,3,8,22,63,()A. 163B. 174C. 185D. 196-8, 15, 39, 65, 94, 128, 170, ( )A. 180B. 210C. 225D. 256做商:做一次商出现基础数列:1,1,2,6,()A. 21B. 22C. 23D. 242,4,12,48,()A. 96B. 120C. 240D. 48016 , 8, 8, 12, 24,60,()A.90 B.120 C.180 D.2401,2,6,30,210,()A. 2420B. 630C. 1890D. 23101,1,2,8,64,()A. 1024B. 1068C. 1126D. 11863, 9, 6, 9, 27,(), 27A. 15B. 18C. 20D. 30做两次商出现基础数列:1,1/2,1/4,1/4,1,()A. 10B. 11C. 32D. 64注意:1、做差做商顺序2、三个数字以上确定规律3、周期数列四个数字以上4、何时做商总结:等差、等比数列及其变式非常重要,多次在考试中出现,应该作为重点掌握。

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

数字推理题的解题技巧大全(有答案详解)

数字推理题的解题技巧大全(有答案详解)

目录:单击进入相应的页面☺目录:F ···············错误!未定义书签。

第一部分:数字推理题的解题技巧·错误!未定义书签。

第二部分:数学运算题型及讲解错误!未定义书签。

第三部分: 数字推理题的各种规律·错误!未定义书签。

第四部分:数字推理题典!!·错误!未定义书签。

(数字的整除特性)错误!未定义书签。

继续题典····错误!未定义书签。

本题典说明如下:本题典的所有题都适用!1)题目部分用黑体字2)解答部分用红体字3)先给出的是题目,解答在题目后。

4)如果一个题目有多种思路,一并写出. 5)由于制作仓促,题目可能有错的地方,请谅解ts_ljm 06-3-7中午第一部分:数字推理题的解题技巧行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。

如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。

并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。

应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。

如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。

数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

2一、解题前的准备1.熟记各种数字的运算关系。

行测-数字推理题的解题技巧大全(不下不要后悔哦)

行测-数字推理题的解题技巧大全(不下不要后悔哦)

目录:F .....错误!未定义书签。

第一部分:数字推理题的解题技巧 (2)第二部分:数学运算题型及讲解 (6)第三部分: 数字推理题的各种规律 (8)第四部分:数字推理题典!! (16)(数字的整除特性) (62)继续题典 (65)本题典说明如下:本题典的所有题都适用!1)题目部分用黑体字2)解答部分用红体字3)先给出的是题目,解答在题目后。

4)如果一个题目有多种思路,一并写出. 5)由于制作仓促,题目可能有错的地方,请谅解!!!2011.8.4第一部分:数字推理题的解题技巧行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。

如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。

并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。

应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。

如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。

数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

数字推理常用解题方法 数字推理解题技巧

数字推理常用解题方法 数字推理解题技巧

数字推理常用解题方法数字推理解题技巧想要巧妙解答行测考试中数字推理题的方法很多,下面本人为大家带来行测数字推理常用解题方法,供各位考生练习。

数字推理常用解题方法一、逐差法逐差法是指对原数列相邻两项逐级做差,进而推出数列规律。

对于数列特征明显单调,倍数关系不明显的数列,应当优先采用逐差法。

数列的单调性的主要表现为数列完全单调和绝对值单调两种形式。

二、逐商法逐商法是指原数列相邻两项逐级做商,进而推出数列规律的方法。

对于单调性明显,倍数关系明显或者增幅较大的数列,应当优先采用逐商法。

根据其表现形式的不同可以分为如下四种情况:商同、余同,商同、余不同,商不同、余同和商不同、余不同。

三、加和法加和法是指对原数列进行求和,从而得到数列规律的方法。

对于(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大的数列;应该优先使用加和法。

四、构造法构造法,主要包括数列元素构造和基础数列组合构造两种情况。

五、联想法对于一道数字推理题目,如果用以上其中方法均不能找出数字之间的联系,则需要考生从数字背后所隐藏的共同性质角度进行挖掘,发挥想象力、运用发散性思维来进行求解。

六、累积法累积法是指求取原数列各项的乘积,进而得到数列规律的方法。

对于(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向的数列;应该优先采用累积法。

七、拆分法拆分法是指将数列的每一项分解成两部分或者多部分的乘积或加和的形貌,根据分解后的各部分对应元素之间的规律来寻求数列关系的方法。

八、分组法分组法,顾名思义,就是讲原数列按照一定的分组方式分为两部分或多部分,根据分组后各部分之间的关系来推求数列关系的一种方法。

行测考试数字推理例题1. 4736,3728,3225,2722,2219,( )A.1514B.1532C.1915D.15622. 1.01,1.02,1.03,( ),1.08,1.13A.1.04B.1.05C.1.06D.1.073. 22,24,39,28,( ),16A.14B.11C.30D.154. 448,516,639,347,178,( )。

数量关系解题技巧

数量关系解题技巧

数量关系解题技巧1、不定方程式:未知数的个数大于独立方程的个数,这样的方程叫做不定方程。

三大方法,分别是:奇偶性;尾数法;特值法。

例1:50x+20y=320。

首先利用两数相乘的奇偶性可知,20y 是一个偶数;其次利用两数相加的奇偶性可知,偶+偶=偶,50x 是一个偶数,所以 x 是一个偶数。

x=4,y=6,x+y=10。

例2:12x+5y=99。

首先因 12x 为偶,99 为奇,利用奇偶性,偶+奇=奇可得,5y 为奇; 再结合尾数可知,99 尾数为 9,5y 尾数为 5,则 12x 尾数为 4,x=2,y=15,所以 y-x=13。

例3:2x+4y=10,4x+8z=22。

可利用特值,假设 z=0,则x=5.5,y=-0.25,则x+y+z=5.25。

2、行程问题:S=vt,v=s/t,t=s/v;S相遇=(v1+v2)t相遇;S追及=(v2-v1)t追及;环形上的多次相遇(同一起点反向行驶):第 n 次相遇时,相遇路程=n 圈。

环形上的多次追及(同一起点同向行驶):第 n 次追及时,追及路程=n 圈。

3、牛吃草问题牛吃草长:M=(N-X)*T,当N≤X 时,草永远吃不完。

要想草场上的草永远吃不完,最多可供 X 头牛吃。

牛吃草枯:M=(N+X)*T。

4、利润问题若题目存在简单关系,直接列式求解即可,会使得题目变得很简单,如果存在着明显的等量关系,且存在未知量,可将未知量设为特值,从而根据等量关系建立等式。

5、利用整除关系解不定方程适用环境:当未知数的系数中除一项外含有共同因子的时候。

例如: 6x+7y+9z=60(x、y、z 都是正整数)。

此时例子当中未知数 x、y、z 的系数分别是 6、7、9,除了 7 之外其他两个系数含有公约数 3,此时这一个不定方程是可以使用整除法进行求解的。

具体解释来说:6 和 9 都是 3 的倍数,再分别乘以一个整数之后所得的结果依然也是 3 的倍数,因此说明原式中 6x、9z 都是 3 的倍数,两个 3 的倍数加上一个数之后所得的最终加和是 60,也是 3 的倍数,说明 7y 一定也是 3 的倍数,既然 7 不是 3 的倍数,那么能够是 3 的倍数的只能是 y 了,因此可以判断出 y 一定是 3 的倍数,结合选项即可选出正确结果了。

公务员考试行测数字推理必知的30个规律

公务员考试行测数字推理必知的30个规律

公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。

数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。

在数字推理中,有很多规律需要掌握。

本文将介绍公务员考试行测数字推理必知的30个规律。

一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。

常见的数字序列规律有等差数列、等比数列、斐波那契数列等。

2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。

常见的数字排列规律有逆序、顺序、交替等。

3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。

常见的数字替换规律有加减乘除、平方、开方等。

4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。

常见的数字组合规律有排列组合、加减乘除等。

二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。

常见的图形旋转规律有顺时针旋转、逆时针旋转等。

6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。

常见的图形翻转规律有水平翻转、垂直翻转等。

7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。

常见的图形平移规律有水平平移、垂直平移等。

8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。

常见的图形缩放规律有放大、缩小等。

9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。

常见的图形填充规律有交替填充、渐变填充等。

三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。

常见的文字替换规律有字母替换、数字替换等。

文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。

常见的文字排列规律有逆序、顺序、交替等。

12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。

文职数量关系题型和解题技巧

文职数量关系题型和解题技巧

文职数量关系题型和解题技巧一、文职数量关系题型1. 数字推理基础数列。

这就像数学世界里的小积木块,像等差数列,就像1,3,5,7,9这样,相邻数字之间差个2。

等比数列呢,比如2,4,8,16,后一个数是前一个数的2倍。

还有质数数列,像2,3,5,7,11这些只能被1和它自己整除的数组成的数列。

多级数列。

这有点像升级打怪。

先对数列中的数字做差或者做商,比如数列1,3,6,10,15,相邻数字做差得到2,3,4,5,这样就发现规律啦。

递推数列。

这个就很有趣,前几个数字通过一定的运算得出后面的数字。

像数列1,1,2,3,5,8,就是前面两个数字相加得到后面的数字,1 + 1 = 2,1+2 = 3,2 + 3 = 5等等。

2. 数学运算工程问题。

想象一下盖房子,甲、乙、丙不同的人或者机器干活效率不一样。

比如甲一天能砌10块砖,乙一天能砌15块砖,一起干的话,效率就相加,然后根据总的工作量来算时间。

行程问题。

这就像我们出去旅行。

有相遇问题,就像两个人从不同地方相向而行,速度相加乘以相遇时间就是总路程。

还有追及问题,快的追慢的,速度差乘以追及时间等于路程差。

利润问题。

去商店买东西就会涉及到这个。

成本、售价、利润之间的关系。

售价减去成本就是利润,利润率就是利润除以成本。

比如说一件衣服成本80元,卖100元,利润就是20元,利润率就是20÷80 = 0.25,也就是25%。

二、解题技巧1. 数字推理解题技巧观察法。

拿到数列先整体看看,是递增、递减还是忽大忽小。

如果是递增或者递减很规律,可能是等差或者等比数列。

要是数字变化特别大,可能是幂次数列或者递推数列。

试错法。

先按照常见的规律去试,做差不行就做商,还不行就看看是不是幂次关系。

比如说看到1,4,9,16,就可以想到是1²,2²,3²,4²这样的幂次数列。

2. 数学运算解题技巧代入排除法。

有些题可以把选项代入到题目条件里去试。

数量关系题型及解题技巧

数量关系题型及解题技巧

数量关系测验题型及解题技巧—数字推理(上)数字推理题主要有以下几种题型:1.等差数列及其变式例题:1,4,7,10,13,()A.14B.15C.16D.17答案为C。

我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。

等差数列是数字推理测验中排列数字的常见规律之一。

例题:3,4,6,9,(),18A.11B.12C.13D.14答案为C。

仔细观察,本题中的相邻两项之差构成一个等差数列1,2,3,4,5.……,因此很快可以推算出括号内的数字应为13,象这种相邻项之差虽不是一个常数,但有着明显的规律性,可以把它看作等差数列的变式。

2.“两项之和等于第三项”型例题:34,35,69,104,()A.138B.139C.173D.179答案为C。

观察数字的前三项,发现第一项与第二项相加等于第三项,3435=69,在把这假设在下一数字中检验,3569=104,得到验证,因此类推,得出答案为173。

前几项或后几项的和等于后一项是数字排列的又一重要规律。

3.等比数列及其变式例题:3,9,27,81,()A.243B.342C.433D.135答案为A。

这是最一种基本的排列方式,等比数列。

其特点为相邻两项数字之间的商是一个常数。

例题:8,8,12,24,60,()A.90B.120C.180D.240答案为C。

虽然此题中相邻项的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5,3,因此答案应为60×3=180,象这种题可视作等比数列的变式。

4.平方型及其变式例题:1,4,9,(),25,36A.10B.14C.20D.16答案为D。

这道试题考生一眼就可以看出第一项是1的平方,第二项是2的平方,依此类推,得出第四项为4的平方16。

对于这种题,考生应熟练掌握一些数字的平方得数。

如:10的平方=100 11的平方=121 12的平方=144 13的平方=169 14的平方=196 15的平方=225 例题:66,83,102,123,()A.144B.145C.146D.147答案为C。

2013年国家公务员考试行测指导:30种数字推理解题技巧

2013年国家公务员考试行测指导:30种数字推理解题技巧

2013年国家公务员考试行测指导:30种数字推理解题技巧国家公务员考试行测指导:30种数字推理解题技巧一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。

【例】1、4、3、1、1/5、1/36、()A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。

【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。

【例】33、32、34、31、35、30、36、29、()A. 33B. 37C. 39D. 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。

取尾数列一般具有相加取尾、相乘取尾两种形式。

【例】6、7、3、0、3、3、6、9、5、()A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。

【例】448、516、639、347、178、( )A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。

对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。

【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。

【例】118、60、32、20、( )A.10B.16C.18D.20八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。

数字推理之解题技巧

数字推理之解题技巧

数字推理之解题技巧数字推理之解题技巧》1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)2)深一层次的,①各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)3)看各数的大小组合规律,作出合理的分组。

如7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 ,74*74-40=5436,这就是规律。

4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。

公务员行测:数字推理解题技巧

公务员行测:数字推理解题技巧

公务员⾏测:数字推理解题技巧 公务员考试《⾏政职业能⼒测验》数量关系中数字推理题是给出⼀数列,但其中缺少⼀项,要求仔细观察数列,找出其中的排列规律,然后从四个供选择的选项中选出你认为最合适、合理的⼀项,来填补空缺项,使之符合原数列的排列规律。

公务员考试中有个别地⽅及个别题还出现了图形形式的数字推理题,我们也应当有所了解。

总的来说,解答数字推理题有以下四⼤技巧: (1)快速扫描已给出的⼏个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,⼤胆提出假设,并迅速将这种假设延伸到下⾯的数,如果能得到验证,即说明找出规律,问题即迎刃⽽解,如果假设被否定,⽴即改变思考⾓度,提出另外⼀种假设,直到找出规律为⽌。

(2)推导规律时,往往需要简单计算,为节省时间,尽量⽤⼼算,少⽤笔算或不⽤笔算。

(3)空缺项在最后的,从前往后推;空缺项在最前的,从后往前推;空缺项在中间的,可以两边同时推导。

(4)若⼀时难以找出规律,可⽤常见的规律来“对号⼊座”加以验证。

常见规律为奇、偶数规律,等差,等⽐,⼆级等差,⼆级等⽐,递推规律;幂次数,混合型规律等等。

下⽂将通过历年公务员考试真题来阐述各类解题技巧的运⽤。

上海市公务员考试《⾏政职业能⼒测验》数量关系——数字推理练习 1.8,6,2,-6,()[2009年上海市公务员考试⾏政职业能⼒测验真题-1题] A.-8 B.-10 C.-20 D.-22 【答案】D 【解析】⼆级等⽐数列。

2. 【答案】C 【解析】原数列可化为:。

【注释】这是⼀道带根号的题⽬,⼀般带根号的题⽬都⽐较简单,我们不要被根号所迷惑。

3.(), A.-1 D.1 【答案】C 【解析】原数列可化为() 4.0,6,6,20,(),42 [2009年上海市公务员考试⾏政职业能⼒测验真题-4题] A.20 B.21 C.26 D.28 【答案】A 【解析】原数列可化为12-1,22+2,32-3,42+4,(52-5),62+6。

广东《行测》数量关系之数字推理解题技巧

广东《行测》数量关系之数字推理解题技巧

广东《行测》数量关系之数字推理解题技巧数字推理是公务员考试行政能力测试的必考题形之一,主要考察考生对数字和基本数列的敏感程度,也是反映考生基本思维能力的重要手段。

增加这方面的练习也能有效的锻炼考生正确的思维方式,对图形推理和类比推理等一些题型的深度把握也有重要的意义。

下面广东公务员考试网(/)专家提供一系列数字推理解题方法,供考生参考:一、数字推理三种思维模式1、横向递推的思维模式横向递推的思维模式是指在一组数列中,由数字的前几项,经过一定的线性组合,得到下一项的思维模式。

举个例子说明一下:5,1,23,47,()根据横向递推的思维模式,思考方向是如何从5得到11,会想到乘2再加1,按照这样的思路继续向下推,发现,每一项都是前一项的2倍再加1,于是找出规律,这里应该填95。

2、纵向延伸的思维模式相较于横向递推思维模式,稍为复杂的就是纵向延伸的思维模式。

他不再是简单的考虑数列本身,而是把数列当中的每一个数,都表示为另外一种形式,从中找到新的规律。

举例说明一下:1/9,1,7,36,()注意这样一个数列,如果我们把36换成35的话,我们会发现,前后项之间会出现微妙的倍数变化关系,即后向除前项得到数列9 7 5 3,这里可以填上105。

但这里时36的话就没有这样的倍数变化关系了。

那么我们可以用纵向延伸的思维模式,把数列中每一个数字都用另外一种形式来表述,即9-1,80,71,62,53。

这里可以填125。

3、构造网络的思维模式对于一个古典型数字推理来讲,横向与纵向只是其中最简单的最基本的位置关系,相对较为复杂的,是网状的位置关系,也就是我们接下来要谈到的,构造网络的思维模式。

请大家看这样一个例题:2,12,6,30,25,100,()我们先来观察一下这个题目,通过观察,可以很容易的看出,这里面每两项之间都有一个明显的倍数关系,我们可以根据这样的规律把原来的数列变成2 12 6 30 25 100 ()6 5 4实际上,如果后面有两个数需要我们填的话我们可以确定,它们之间应该是3倍的关系,但现在只需要我们写出下一个数字是多少。

公务员录用考试行测:数量关系之数字推理解题技巧

公务员录用考试行测:数量关系之数字推理解题技巧

公务员录用考试行测:数量关系之数字推理解题技巧【华图网校】“单数字发散”概念定义:即从题目中所给的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。

“单数字发散”基本思路:从“基准数字”发散并牢记具有典型数字特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思路;“因数分解”发散牢记具有典型意义的数字的“因数分散”,在答题时通过分解这些典型数字的因子,从而达到解题的目的。

常用幂次数平方数底数1 2 3 4 5 6 7 8 9 10平方1 4 9 16 25 36 49 64 91 100底数11 12 13 14 15 16 17 18 19 20平方121 144 169 196 225 256 289 324 361 400底数21 22 23 24 25 26 27 28 29 30平方441 484 529 576 625 676 729 784 841 300底数1 2 3 4 5 6 7 8 9 10立方1 8 27 64 125 216 343 512 729 1000多次方数指数底数1 2 3 4 5 6 7 8 9 102 2 4 8 16 32 64 12821651210243 3 9 27 81 243 7294 4 16 64 256 10245 5 25 125 6256 6 36 216 1296常用幂次数记忆1.对于常用的幂次数字,考生务必将其牢记在心,这不仅仅对于数字推理的解题很重要,对数学运算乃至资料分析试题的迅速、准确解答都有着至关重要的作用。

2.很多数字的幂次数都是相通的,比如729=93=36=272,256=28=44=162等。

3.“21~29”的平方数是相联系的,以25为中心,24与26、23与27、22与28、21与29,它们的平方数分别相差100、200、300、400。

常用阶乘数(定义:n的阶乘写作n!。

公务员考试之数字推理类(解题规律总结)

公务员考试之数字推理类(解题规律总结)

公务员考试之数字推理类(解题规律总结)本文包括以下两部分:一、数量关系测验类(一)、考点分析(二)、解题技巧及规律总结(三)、题型分析二、数学题快速获得答案方法之-----十字相乘法一、数量关系测验类(一)、考点分析数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。

在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。

数量关系测验含有速度与难度的双重性质。

在速度方面,要求考生反应灵活活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。

如果时间充足,获得正确答案是不成问题的。

但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。

可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。

因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。

1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。

一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。

两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。

只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。

行测数量关系技巧:数字推理常考考点总结

行测数量关系技巧:数字推理常考考点总结

行测数量关系技巧:数字推理常考考点总结1500字数量关系是行测考试中的一大常考考点,主要内容包括数字推理和数量关系推理。

在数字推理部分,常考的题型包括数字组合、数字运算、数字排列等。

下面是关于数字推理的一些常考考点总结:一、数字组合:1. 数字组合:给定一组数字,按照一定规律组合后求出结果。

常见的规律有数字之和、数字之差、数字之积等。

2. 数字替换:给定一组数字,将其中某几个数字替换为其他数字,求替换后的结果。

常见的规律有数字之和、数字之差、数字之积等。

二、数字运算:1. 加减乘除:根据给定的加减乘除法则,求解表达式的结果。

2. 数字计算:根据给定的数字以及计算规则,计算最终结果。

常见的规则有数字之和、数字之差、数字之积等。

三、数字排列:1. 数字排序:根据给定的排列规则,求出待排序数字的顺序。

常见的规则有从小到大排列、从大到小排列等。

2. 数字替换:将给定数字按照一定规则进行排列后,将某几个数字替换为其他数字,求替换后的结果。

在数量关系推理部分,常考的题型包括数量比较、数量关系、数量推理等。

下面是关于数量关系推理的一些常考考点总结:一、数量比较:1. 大小比较:根据给定的数值大小进行比较,求出最大值或最小值。

常见的比较方法有大小排列、数值相加、数值相减等。

2. 数量关系:根据给定的数值关系进行推理,求出符合要求的数值。

常见的关系有倍数关系、百分比关系、比例关系等。

二、数量关系:1. 数量变化:根据给定的数量变化规律,推断出下一个数值。

常见的变化规律有线性关系、指数关系、循环关系等。

2. 数量比例:根据给定的数量比例,求出未知的数量。

常见的比例关系有百分比、比例尺、三角函数等。

三、数量推理:1. 数列推理:根据给定的数列规律,推断出下一个数列。

常见的规律有等差数列、等比数列、斐波那契数列等。

2. 数字推理:根据给定的数字规则,推断出满足规则的数字。

常见的规则有数字之和、数字之差、数字之积等。

以上是关于数量关系推理的一些常考考点总结,希望对大家的行测备考有所帮助。

《公务员行测考试数量关系测验解题技巧》

《公务员行测考试数量关系测验解题技巧》

一、数字推理数字推理题解题技巧:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。

如果能得到验证,即说明找到规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设并予以验证,直到找出规律。

(做题的过程即试误的过程)。

推导规律时往往需要简单计算,为节省时间,要尽量用速算、心算。

空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;如空缺项在中间,则可以两边同时推导。

(一)等差数列题1:1,4,7,10,13,16,( 19 )解析:公差为3的等差数列。

(二)等差数列的变式(二级等差)题2:3/5,1,7/5,(9/5 )。

解析:1=5/5,分母均为5,分子是为3,5,7的等差数列。

(三)等比数列题3:1,4,16,64,(256 )。

解析:公比为4的等比数列。

(四)等比数列的变式(二级等比数列)题4:7,16,34,70,(142 )解析:(16-2)/7=2,(34-2)/16=2,(70-2)/34=2,(142-2)/70=2。

(五)等差与等比数列混合题5:5,4,10,8,15,16,(20 ),(32 )解析:奇数项是以5为首项、公差为5的等差数列,偶数项是以4为首项、公比为2的等比数列。

(六)加法数列题6:4,3,1,12,9,3,17,5,( 12 )解析:三个数字为一组,每组中,第一个数字是后两个数字之和,即4=3+1,12=9+3→17-5=12。

(七)减法数列题7:19,4,18,3,16,1,17,( 2 )解析:19-4=15,18-3=15,16-1=15→17-15=2。

(八)乘法(除法)数列题8:12,2,2,3,14,2,7,1,18,3,2,3,40,10,( 1 ),4解析:每组四个数字,第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=3,14÷2÷7=1,18÷3÷2=3,括号内数字应是40÷10÷4=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[数量关系]数字推理30种解题技巧一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。

【例】1、4、3、1、1/5、1/36、()A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。

【例】1/16 2/13 2/5 8/7 4 ()A.19/3B.8C.39D.32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。

【例】33、32、34、31、35、30、36、29、()A. 33B. 37C. 39D. 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。

取尾数列一般具有相加取尾、相乘取尾两种形式。

【例】6、7、3、0、3、3、6、9、5、()A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。

【例】448、516、639、347、178、()A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。

对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。

【例】0、9、26、65、124、()A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。

【例】118、60、32、20、()A.10B.16C.18D.20八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。

【例】0、6、24、60、120、()A.180B.210C.220D.240九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。

【例】3、7、16、107、()A.1707B.1704C.1086D.1072十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。

当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。

【例】2、13、40、61、()A.46.75B.82C. 88.25D.121十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。

【例】2、7、14、21、294、()A.28B.35C.273D.315十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。

【例】1.01、1.02、2.03、3.05、5.08、()A. 8.13B. 8.013C. 7.12D. 7.012十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。

三角形数列的规律主要是:中间=(左角+右角-上角)×N、中间=(左角-右角)×上角;圆圈推理和正方形推理的运算顺序是:先观察对角线成规律,然后再观察上下半部和左右半部成规律;九宫格则是每行或每列成规律。

十四、注意数字组合、逆推(还原)等问题中“直接代入法”的应用。

【例】一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数是原数的3倍少39。

求这个三位数?A. 196B. 348C. 267D. 429十五、注意数学运算中命题人的基本逻辑,优先考虑是否可以排除部分干扰选项,尤其要注意正确答案往往在相似选项中。

【例】两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3∶1,另一个瓶子中酒精与水的体积比是4∶1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?A.31∶9B.7∶2C.31∶40D.20∶11十六、当题目中出现几比几、几分之几等分数时,谨记倍数关系的应用,关键是:前面的数是分子的倍数,后面的数是分母的倍数。

譬如:A=B×5/13,则前面的数A是分子的倍数(即5的倍数),后面的数B是分母的倍数(即13的倍数),A与B的和A+B则是5+13=18的倍数,A与B的差A-B则是13-5=8的倍数。

【例】某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?A.18.6万B.15.6万C.21.8万D.22.3万十七、当题目中出现了好几次比例的变化时,记得特例法的应用。

如果是加水,则溶液是稀释的,且减少幅度是递减的;如果是蒸发水,则溶液是变浓的,且增加幅度是递增的。

【例】一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?A.8%B.9%C.10%D.11%十八、当数学运算题目中出现了甲、乙、丙、丁的“多角关系”时,往往是方程整体代换思想的应用。

对于不定方程,我们可以假设其中一个比较复杂的未知数等于0,使不定方程转化为定方程,则方程可解。

【例】甲、乙、丙、丁四人做纸花,已知甲、乙、丙三人平均每人做了37朵,乙、丙、丁三人平均每人做了39朵,已知丁做了41朵,问甲做了多少朵?A.35朵B.36朵C.37朵D.38朵十九、注意余数相关问题,余数的范围(0≤余数≤除数)及同余问题的核心口诀,“余同加余,和同加和,差同减差,除数的最小公倍数作周期”。

【例】自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。

如果:100A.不存在B.1个C.2个D.3个二十、在工程问题中,要注意特例法的应用,当出现了甲、乙、丙轮班工作现象时,假设甲、乙、丙同时工作,找到将完成工程总量的临界点。

【例】完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。

现按甲、乙、丙的顺序轮班工作,每人工作一小时换班。

当工程完工时,乙总共干了多少小时?A.8小时B.7小时44分C.7小时D.6小时48分二十一、当出现两种比例混合为总体比例时,注意十字交叉法的应用,且注意分母的一致性,谨记减完后的差之比是原来的质量(人数)之比。

【例】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口多少万?A.30万B.31.2万C.40万D.41.6万二十二、重点掌握行程问题中的追及与相遇公式,相遇时间=路程和/速度和、追击时间=路程差/速度差;唤醒运动中的:异向而行的跑到周长/速度和、同向而行的跑到周长/速度差;钟面问题的T/(1±1/12)。

【例】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B 地,问A、B两地相距多少米?A.1350米B.1080米C.900米D.720米二十三、流水行船问题中谨记两个公式,船速=(顺水速+逆水速)/2 、水速=(顺水速-逆水速)/2【例】一只船沿河顺水而行的航速为30千米/小时,已知按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为?A. 1千米B. 2千米C. 3千米D. 6千米二十四、题目所提问题中出现“最多”、“最少”、“至少”等字眼时,往往是构造类和抽屉原理的考核,注意条件限制及最不利原则的应用。

【例】四年级一班选班长,每人投票从甲、乙、丙三个候选人中选一人,已知全班共有52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票。

如果得票最多的候选人将成为班长,甲最少得多少张票就能够保证当选?A.1张B.2张C.4张D.8张二十五、在排列组合问题中,排列、组合公式的熟练,及分类(加法原理)与分步(乘法原理)思想的应用。

并同概率问题联系起来,总体概率=满足条件的各种情况概率之和,分步概率=满足条件的每个步骤概率之积。

【例】盒中有4个白球6个红球,无放回地每次抽取1个,则第二次取到白球的概率是?A. 2/15B. 4/15C.2/5D.3/5二十六、重点掌握容斥原理,两个集合容斥用公式:满足条件1的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数,并注意两个集合容斥的倍数应用变形。

三个集合容斥文字型题目用画图解决,三个图形容斥用公式解决:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C二十七、注意“多1”、“少1”问题的融会贯通,数数问题、爬楼梯问题、乘电梯问题、植树问题、截钢筋问题等。

【例】把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?A.32 分钟B.38分钟C.40分钟D.152分钟二十八、注意几何问题中的一些关键结论,两边之和大于第三边,两边之差小于第三边;周长相同的平面图形中,圆的面积最大;表面积相同的立体图形中,球的体积最大;无论是堆放正方体还是挖正方体,堆放或者挖一次都是多四个侧面;另外谨记“切一刀多两面”。

【例】若一个边长为20厘米的正方体表面上挖一个边长为10厘米的正方体洞,问大正方体的表面积增加了多少?A.100cm2B.400cm2C.500cm2D.600cm2二十九、看到“若用12个注水管注水,9小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用多少小时注满水池?”等类似排比句的出现,直接代入牛吃草问题公式,原有量=(牛数-变量)×时间,且注意牛吃草量“1”及变量X的变化形式。

【例】在春运高峰时,某客运中心售票大厅站满等待买票的旅客,为保证售票大厅的旅客安全,大厅入口处旅客排队以等速度进入大厅按次序等待买票,买好票的旅客及时离开大厅。

按照这种安排,如果开10个售票窗口,5小时可使大厅内所有旅客买到票;如果开12个售票窗口,3小时可使大厅内所有旅客买到票,假设每个窗口售票速度相同。

由于售票大厅入口处旅客速度增加到原速度的1.5倍,为了在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为多少个?A.15B.16C.18D.19。

相关文档
最新文档