金属晶体金属键堆积方式(市级公开课1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 6
2 3
A C B
5
4
配位数 12 ( 同层 6, 上下层各 3 )
A 此种立方紧密堆积的前视图
铜型(面心立方最密堆积)
C
1 ABC铜型面心立方晶胞的抽取
B
B
A C B A
A C
B
ABC ABC 形式的堆积,
为什么是面心立方堆积?我们
来加以说明。
空间利用率高为74% 。
堆积方式及性质小结
①简单立方堆积 配位数 = 6 空间利用率 = 52.36% ② 体心立方堆积 ——体心立方晶胞 ③ 六方堆积 ——六方晶胞 ④面心立方堆积 ——面心立方晶胞 配位数 = 8 空间利用率 = 68.02% 配位数 = 12 空间利用率 = 74.05% 配位数 = 12 空间利用率 = 74.05%
【总结】非金属单质是原子晶体还是分子晶体的 判断方法 (1)依据组成晶体的粒子和粒子间的作用判断: 原子晶体的粒子是原子,质点间的作用是共价键; 分子晶体的粒子是分子,质点间的作用是范德华力。 (2)记忆常见的、典型的原子晶体。 (3)依据晶体的熔点判断:原子晶体熔、沸点高, 常在1000℃以上;分子晶体熔、沸点低,常在数百 度以下至很低的温度。 (4)依据导电性判断:分子晶体为非导体,但部 分分子晶体溶于水后能导电;原子晶体多数为非导 体,但晶体硅、晶体锗是半导体。 (5)依据硬度和机械性能判断:原子晶体硬度大, 分子晶体硬度小且较脆。
5.下列有关金属元素特性的叙述正确的是 A. 金属原子只有还原性,金属离子只有氧化性 B. 金属元素在化合物中一定显正化合价
B
C. 金属元素在不同化合物中化合价均不相同
D. 金属元素的单质在常温下均为晶体 6. 金属的下列性质与金属键无关的是( C ) A. 金属不透明并具有金属光泽 B. 金属易导电、传热 C. 金属具有较强的还原性 D. 金属具有延展性
第三层的另一种排列 方式,是将球对准第一层 1 6 5 4
2
3

1,3,5
位,不同
于 AB 两层的位置,这是 C 层。
1 6 5
2 3 4
1 6
5
2
3
4
Ⅳ.面心立方 堆积(铜型)
金、银、铜、铝等属于面心立方堆积
A C B
第四层再排 A,于是形成 ABC ABC 三层一个周期。 这种堆积方式可划分出面心 立方晶胞。
金属原子脱落下来的价电子形成遍布整晶体 的“电子气”,被所有原子所共用,从而把所有 的金属原子维系在一起。
(6)键的强弱:阳离子半径;所带电荷
阳离子所带电荷多、半径小----金属键 强,熔沸点高
㈡、金属晶体:
概念:金属阳离子和自由电子通过金属键作 用形成的晶体 组成粒子:金属阳离子和自由电子 作用力:金属离子和自由电子之间的较强作 用—— 金属键(电子气理论)
分子的密堆积
(与CO2分子距离最近的 CO2分子共有12个 )
干冰的晶体结构图
金刚石的晶体结构示意图
109º 28´
共价键
①金刚石中每个C原子以sp3杂化,分别与4个 相邻的C 原子形成4个σ 键,故键角为 109°28′,每个C原子的配位数为4; ②每个C原子均可与相邻的4个C构成实心的正 四面体,向空间无限延伸得到立体网状的金刚 石晶体,在一个小正四面体中平均含有 1+4×1/4 =2个碳原子; ③在金刚石中最小的环是六元环,1个环中平 均含有6×1/12=1/2个C原子,含C-C键数为 6×1/6=1; ④金刚石的晶胞中含有C原子为8个,内含4个 小正四面体,含有C-C键数为16。
2
3
B
A B
于是每两层形成一个 周期,即 AB AB 堆积方 式,形成六方堆积。
A
上图是此种六方 堆积的前视图
配位数 12 ( 同层 6,上下层各 3 )
镁型(AB型六方最密堆积)
B A B A B
B
A
镁型晶胞的抽取
六方晶胞
晶胞内原子数:2
B
配位数:12
A
空间利用率:74%
典型金属:Mg Zn Ti
修高 3二 )化 第学 三( 章选
第三节
金属晶体
Ti
金属样品
Ti
1、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢? 2、金属的结构
㈠、金属键
(1)定义: 金属离子和自由电子之间的相互作用。 (2)成键微粒: 金属阳离子和自由电子 (3)键的存在: 金属单质和合金中 (4)方向性: 无方向性 (5)键的本质: 电子气理论
导电时的状态
导电粒子 升温时 导电能力
⑵、金属晶体结构与金属导热性的关系
【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞, 引起两者能量的交换。当金属某部分受热时, 那个区域里的自由电子能量增加,运动速度加 快,通过碰撞,把能量传给金属离子。
金属容易导热,是由于自由电子运动时与 金属离子碰撞把能量从温度高的部分传到温度 低的部分,从而使整块金属达到相同的温度。
二维平面堆积方式
非密置层
行列对齐,四球一空 非最紧密排列 配位数:4
密置层
行列相错,三球一空 最紧密排列 配位数:6
非密置层的三维堆积方式
Ⅰ.
三维空间堆积方式
简单立方堆积
立方晶胞
晶胞内原子数: 配位数:
1 6 52%
空间利用率:
典型金属:
(钋)Po
Ⅱ. 体心立方堆积(钾型)
Na、K、Cr、Mo、W等 属于体心立方堆积。
Ⅱ. 体心立方堆积(钾型)
这是非密置层另一种堆积方 式,将上层金属填入下层金 属原子形成的凹穴中,得到的 是体心立方堆积。
体心立方晶胞
晶胞内原子数:2 配位数:8 空间利用率:68 % 典型金属: K 、Na、Fe
三维空间堆积方式
密置层的三维堆积方式 第一层 :
第二层 : 对第一层来讲最紧密的堆积方式是将 球对准1,3,5 位。 ( 或对准 2,4,6 位,其情形是一 样的 )
3.下列叙述正确的是( B) A.任何晶体中,若含有阳离子也一定含有阴离子 B.原子晶体中只含有共价键 C.离子化合物中只含有离子键,不含有共价键 D.分子晶体中只存在分子间作用力,不含有其 他化学键 4.下列有关金属键的叙述错误的是 ( B ) A.金属键没有方向性 B.金属键是金属阳离子和自由电子之间存在的强 烈的静电吸引作用 C.金属键中的电子属于整块金属 D.金属的性质和金属固体的形成都与金属键有关
4.金属晶体熔点变化规律
⑴金属晶体熔点变化较大
与金属晶体紧密堆积方式、金属阳离子与自由电子之间 的金属键的强弱有密切关系.
⑵一般情况下,金属晶体熔点由金属键强弱决定:
金属阳离子半径越小,所带电荷越多,自由电子越多,
金属键越强,熔点就相应越高,硬度也越大。 如:K ﹤ ﹤ Mg ﹤Al Na Li﹥ Na ﹥ K ﹥ Rb ﹥ Cs 熔点最低的金属:汞(常温时成液态)
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁 黑色至深钢灰色。质软具滑腻感,可沾污手 指成灰黑色。有金属光泽。六方晶系,成叶 片状、鳞片状和致密块状。密度2.25g/cm3, 化学性质不活泼。具有耐腐蚀性,在空气或 氧气中强热可以燃烧生成二氧化碳。石墨可 用作润滑剂,并用于制造坩锅、电极、铅笔 芯等。
二氧化硅晶体结构示意图
Si O
109º 28´
180º
共价键
①二氧化硅中Si原子均以sp3杂化,分别 与4个O原子成键,每个O原子与2个Si原子 成键; ②晶体中的最小环为十二元环,其中有6 个Si原子和6个O原子,含有12个Si-O键; 每个Si原子被12个十二元环共有,每个O原 子被6个十二元环共有,每个Si-O键被6个 十二元环共有;每个十二元环所拥有的Si 原子数为6×1/12=1/2,拥有的O原子数为 6×1/6=1,拥有的Si-O键数为12×1/6=2, 则Si原子数与O原子数之比为1:2。
知识拓展-石墨 石
墨 晶 体 结 构
石墨
• 1、石墨为什么很软?
石墨为层状结构,各层之间是范德华力结合,容易 滑动,所以石墨很软。
• 2、石墨的熔沸点为什么很高(高于金刚石)?
石墨各层均为平面网状结构,碳原子之间存在很 强的共价键,故熔沸点很高。金刚石的熔点是3550℃,石墨
的熔点是3652℃~3697℃(升华)。石墨熔点高于金刚石。 石墨应该是混合型晶体而金刚石是原子晶体。石墨晶体的熔点反而高于金 刚石,似乎不可思议,但石墨晶体片层内共价键的键长是1.42×10-10m,金 刚石晶体内共价键的键长是1.55×10-10m。同为共价键,键长越小,键能越 大,键越牢固,破坏它也就越难,也就需要提供更多的能量,故而熔点应该更 高。
1 6 5
2
3 4 6
3 5 4 A B
关键是第三层,对第一、二层来说,第三层可以有两种 最紧密的堆积方式。

1
2
两 个 密 置 层 密 置 堆 积
三 个 密 置 层 密 置 堆 积
六方堆积
面心立方 堆积
Ⅲ.六方堆积(镁型)
镁、锌、钛等属于六方堆积
第一种: 将第三层球对准第一层的球 A
1 6 5 4
金属的延展性
外力
自由电子
金属离子
⑷、金属晶体结构具有金属光泽和颜 色
• 由于自由电子可吸收所有频率的光,然后 很快释放出各种频率的光,因此绝大多数 金属具有银白色或钢灰色光泽。而某些金 属(如铜、金、铯、铅等)由于较易吸收 某些频率的光而呈现较为特殊的颜色。 • 当金属成粉末状时,金属晶体的晶面取向 杂乱、晶格排列不规则,吸收可见光后辐 射不出去,所以成黑色。
最稳定的金属是----------金
练习
1.金属晶体的形成是因为晶体中存在( C ) A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用 2.金属能导电的原因是( B) A.金属晶体中金属阳离子与自由电子间的 相互作用较弱 B.金属晶体中的自由电子在外加电场作用 下可发生定向移动 C.金属晶体中的金属阳离子在外加电场作 用下可发生定向移动 D.金属晶体在外加电场作用下可失去电子
熔点很高的金属:钨(3410℃)
铁的熔点:1535 ℃
资 料
金属之最
熔点最低的金属是-------- 汞 熔点最高的金属是-------- 钨 密度最小的金属是-------- 锂 密度最大的金属是-------- 锇 硬度最小的金属是-------- 铯 硬度最大的金属是-------- 铬 延性最好的金属是-------- 铂 展性最好的金属是-------- 金 最活泼的金属是----------铯
请阅读
石墨的晶体结构
并开展辩论 :石墨是原子晶体吗? 正方:是原子晶体 ⑴同一层内,碳原子
反方:不是原子晶体
⑴层与层之间通过范德
以共价键结合。
⑵形成网状结构 ⑶熔点很高
华力结合。
3、金属晶体的结构与金属性质的内在联系
⑴、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电?
在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。
比较离子体导电与金属晶体导电的区别:
导电物质 离子晶体 溶液或熔融液 阴离子和阳离子 增强 金属晶体 固态或液态 自由电子 减弱
A. Li Na K
C. Li Be Mg
B. Na Mg Al
D. Li Na Mg
B
二.金属晶体的原子堆积模型
(2)金属晶体的原子在二维平面堆积模型 金属晶体中的原子可看成直径相等的 小球。将等径圆球在一平面上排列,有两 种排布方式,按左图方式排列,剩余的空 隙较大,称为非密置层;按右图方式排列, 圆球周围剩余空隙较小,称为密置层 。
7.能正确描述金属通性的是 ( AC ) A. 易导电、导热 C. 有延展性 B. 具有高的熔点 D. 具有强还原性
8. 下列生活中的问题,不能用金属键知识解释 的是 ( D ) A. 用铁制品做炊具 B. 用金属铝制成导线 C. 用铂金做首饰 D. 铁易生锈
9. 金属键的强弱与金属价电子数的多少有关, 价电子数越多金属键越强;与金属阳离子的半 径大小也有关,金属阳离子的半径越大,金属 键越弱。据此判断下列金属熔点逐渐升高的是
⑶、金属晶体结构与金属延展性的关系
【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移ห้องสมุดไป่ตู้ 然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
相关文档
最新文档