非线性方程解法

合集下载

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。

与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。

本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。

1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。

该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。

牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。

具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。

值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。

因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。

2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。

信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。

具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。

在这里我们假设$B_k$为正定矩阵。

显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。

因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

第十章非线性方程及非线性方程组解法

第十章非线性方程及非线性方程组解法

(
x
)
n
lim
n
x
n

{x
}
n
收敛,即
lim xn x*,则:
n
x* (x*) f (x*) 0
迭代过程的几何表示
x (x) :
y x 交点即真根。
y (x)
yx
y
Q1
Q2
P* P2
O x* x2
P1
x1
y (x)
P0
x0
x
例:求方程 f (x) x3 x 1 0 在x0 1.5附近的根x*. 解:(1) 将方程改写为 x 3 x 1
第十章 方程求根
求解非线性方程
f (x) 0 f 是非线性函数,
例:代数方程
a x a x a x a f (x) n
n1 L
0, n 1。
n
n1
1
0
例: 超越方程
f (x) ex sin x 0
§1. 非线性方程实根的对分法(二分法)
设 f (x) 在[a,b] 上连续且 [a,b] 有且仅有一个根又
xn1 (xn ) (n 0,1,L )
均收敛于x*,并有
x* xn
Ln 1 L
x1 x0
收敛充分性定理(一、2)
证:由条件(2)知(x)在[a, b]上连续。 令 (x) x (x),则 (x)在[a,b]上连续,且
(a) a (a) 0, (b) b (b) 0 故存在 [a,b],使得() 0,即 (), 所以方程x (x)在[a,b]内有根。
可先用二分法或经验确定迭代初值x0 0.5,再按牛
顿公式进行迭代。
Newton法具有收敛快,稳定性好,精度高等优点,是求 解非线性方程的有效方法之一。但它每次迭代均需计算函 数值与导数值,故计算量较大。而且当导数值提供有困难 时, Newton法无法进行。

各类非线性方程的解法

各类非线性方程的解法

各类非线性方程的解法非线性方程是一类数学方程,其中包含了一个或多个非线性项。

求解非线性方程是数学研究中的重要问题之一,它在科学、工程和经济等领域具有广泛的应用。

本文将介绍几种常见的非线性方程的解法。

1. 试-and-错误法试-and-错误法是求解非线性方程的最简单方法之一。

它基于逐步尝试的思路,通过不断试验不同的数值来逼近方程的解。

这种方法的缺点在于需要反复试验,效率较低,但对于简单的方程或近似解的求解是有效的。

2. 迭代法迭代法是一种常用的数值计算方法,可以用来求解非线性方程的近似解。

它的基本思想是通过迭代计算逐步逼近方程的解。

不同的迭代方法包括牛顿迭代法、弦截法和割线法等。

这些方法都是基于线性近似的原理,通过不断迭代计算来逼近解。

迭代法的优点是可以得到较为精确的解,适用于多种类型的非线性方程。

3. 数值优化方法数值优化方法是一种求解非线性方程的高级方法,它将问题转化为优化问题,并通过优化算法来寻找方程的最优解。

常用的数值优化方法包括梯度下降法、牛顿法和拟牛顿法等。

这些方法通过不断迭代调整变量的取值,以最小化目标函数,从而求解非线性方程。

数值优化方法的优点是可以处理复杂的非线性方程,并且具有较高的求解精度。

4. 特殊非线性方程的解法对于特殊的非线性方程,还可以使用特定的解法进行求解。

例如,对于二次方程可以使用公式法直接求解,对于三次方程可以使用卡尔达诺法等。

这些特殊解法适用于特定类型的非线性方程,并且具有快速和精确的求解能力。

综上所述,非线性方程的解法有试-and-错误法、迭代法、数值优化方法和特殊非线性方程的解法等。

根据具体的方程类型和求解要求,选择合适的方法进行求解,可以得到满意的结果。

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。

求解非线性方程是数学中一个重要而又具有挑战性的问题。

本文将介绍几种常见的非线性方程求解方法。

二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。

设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。

重复这个过程直到满足精确度要求或迭代次数达到指定次数。

三、二分法二分法是一种简单而又直观的非线性方程求解方法。

它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。

根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。

重复这个过程直到满足精确度要求或迭代次数达到指定次数。

四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。

由于牛顿迭代法需要求解导数,而割线法不需要。

设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。

五、试位法试位法是一种迭代逼近的非线性方程求解方法。

它利用了函数值的变化率来逼近根的位置。

设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。

然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。

非线性方程组数值解法课件

非线性方程组数值解法课件
非线性方程组数值 解法课件
目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。

非线性方程的五种解法

非线性方程的五种解法

1、问题描述用五种不同的方法解方程x-s-ulog10(x)=0,令s=1,u=2;则原方程变为x-1-2*log10(x)=0。

2、计算机性能配置描述I5 处理器、主频2.4GHz 、内存2GB、双核3、处理方法与结果分析Ⅰ、牛顿法算法描述:⒈迭代公式:x n+1=x n-f(x n)/f′(x n)反复做一下操作:⒉计算x1处的函数值为f1,导数值为f2⒊若f2=0,则显示导数为零的信息,break⒋x2=x1-f1/f2,k=k+1,err=│x2-x1│⒌若err<eps,则输入近似根x2与迭代次数k,break⒍若k=n,则显示迭代次数超限的信息,break设置精度eps=10^(-8)、设置最大迭代次数n=100。

当初始值x1=100时,方程的根root=1.00000000、花费时间timecost=8.4840s结果分析:牛顿迭代法的收敛特性依赖于初始值x1的选择。

另外,牛顿法需要求导,这无疑限制牛顿法的使用范围。

结果精度相对较高。

Ⅱ、弦截法算法描述:⒈迭代公式:x n+1=x n-f(x n)*( x n-x1)/(f(x n)-f(x1))⒉计算x1处的函数值为3.5,x2处的函数值为2反复做一下操作:⒊x k+1=x k-f(x k)*( x k-x1)/(f(x k)-f(x1)),k=k+1⒋若│x2-x1│<eps,则输出近似根x k+1,break⒌若k=n,则显示迭代次数超限的信息,break设置精度eps=10^(-8)、设置最大迭代次数n=100。

当初始值x(1) =3.5,x(2)=2时,方程的根root=1.000000026、花费时间timecost=118.0630s结果分析:不需要计算导数,但是收敛速度比较慢。

所求根的精度不是很高。

Ⅲ、快速弦截法算法描述:⒈迭代公式:x n+1=x n-f(x n)*( x n-x n-1)/(f(x n)-f(x n-1))⒉计算x1处的函数值为3.5,x2处的函数值为2反复做一下操作:⒊x3=x3-f( x2-x1)/(f(2)-f(1)),k=k+1⒋若│x3-x2│<eps,则输出近似根x3,break⒌若k=n,则显示迭代次数超限的信息,break算法描述:⒈迭代公式:x n+1=x n-f(x n)/f′(x n)⒉计算x1处的函数值为f1,导数值为f2⒊若f2=0,则显示导数为零的信息,break⒋x2=x1-f1/f2,k=k+1,err=│x2-x1│⒌若err<eps,则输入近似根x2与迭代次数k,break⒍若k=n,则显示迭代次数超限的信息,break设置精度eps=10^(-8)、设置最大迭代次数n=100。

非线性方程(组)的解法

非线性方程(组)的解法

lnim(bn
an )
lim
n
2n1
(b
a)
0
lim
n
an
lim
n
bn
x

x
cn
1 2
(an
bn
)为
x 的近似解。
7
二分法
迭代终止准则
an - bn

x - cn
bn an 2
2
8
2.2一般迭代法
2.2.1 迭代法及收敛性
对于 f (x) 0 有时可以写成 x (x) 形式 如: x3 x 1 0 x 3 x 1
12
例题
例2.2.1 试用迭代法求方程 f (x) x3 x 1 0
在区间(1,2)内的实根。 解:由 x 3 x 1建立迭代关系
xk1 3 xk 1 k=0,1,2,3…… 计算结果如下:
13
例题
精确到小数点后五位
x 1.32472 1 105
2
14
例题 但如果由x x3 1建立迭代公式
xk1 xk3 1 k 1,2,...
仍取 x0 1.5,则有 x1 2.375 ,x2 12.39 显 然结果越来越大,{xk }是发散序列
15
2.3 Newton迭代法
设x*是方程f (x) = 0的根, 又x0 为x* 附近的一个值,
将f (x) 在x0 附近做泰勒展式:
f (x)
二分法
用二分法(将区间对平分)求解。

a1
a, b1
b, c1
1 2
(a1
b1 )
若 f (a1) f (c1) 0,则[a1, c1] 为有根区间,否 则 [c1,b1]为有根区间

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

高等代数中的非线性方程组 求解方法与案例

高等代数中的非线性方程组 求解方法与案例

高等代数中的非线性方程组求解方法与案例高等代数中的非线性方程组求解方法与案例一、引言非线性方程组在数学和科学工程领域中具有重要的理论和实际应用价值。

本文将介绍一些常用的非线性方程组求解方法,并通过案例来展示这些方法的应用。

二、牛顿法牛顿法是一种经典的非线性方程组求解方法。

该方法利用函数的导数信息进行迭代,通过不断逼近方程组的解。

其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0,则迭代公式为:x_{n+1} = x_n - J_F(x_n)^{-1} * F(x_n)其中,J_F(x_n) 表示 F(x_n) 的雅可比矩阵。

三、割线法割线法是一种迭代求解非线性方程组的方法。

该方法使用方程组中两个初始解点之间的割线来逼近方程组的解。

其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0 和 x_1,则迭代公式为:x_{n+1} = x_n - \frac{F(x_n) * (x_n - x_{n-1})}{F(x_n) - F(x_{n-1})}四、二分法二分法是一种简单且可靠的非线性方程组求解方法。

该方法利用方程组在区间两端点函数值异号的性质,在区间内部寻找解。

其迭代公式如下:假设方程组为 F(x) = 0,在区间 [a, b] 内满足 F(a) * F(b) < 0,迭代公式为:x_{n+1} = \frac{a_n + b_n}{2}五、案例分析假设有如下非线性方程组:x^2 + y^2 = 10x + y = 5我们将使用上述介绍的三种方法来求解该方程组。

1. 牛顿法求解:首先,我们需要计算方程组的雅可比矩阵:J_F(x, y) = [[2x, 2y],[1, 1]]给定初始解 x_0 = (1, 4),按照牛顿法的迭代公式进行迭代计算,直到满足收敛条件。

2. 割线法求解:给定初始解 x_0 = (1, 4) 和 x_1 = (2, 3),按照割线法的迭代公式进行迭代计算,直到满足收敛条件。

非线性方程组的解法

非线性方程组的解法

所以 f ( x) m(x x*)m1 g(x) (x x*)m g(x)
xk 1 xk
f (xk ) f (xk )
xk
m( xk
( xk x*)m g( xk ) x*)m1 g( xk ) ( xk x*)m g( xk )

xk

xk 1 xk (xk ) (xk 1 ) ( )( xk xk 1 ) 由于|( x)| L
xk 1 xk L xk xk1
xk1 x * L xk x * L xk1 x * (xk1 xk )
L xk1 x * L(xk1 xk )
本节主要研究单根区间上的求解方法
2
简单迭代法(基本迭代法)
将非线性方程(1)化为一个同解方程
x (x) 并且假设 (x)为连续函数
--------(2)
任取一个初值 x0 , 代入(2)的右端,得
x1 ( x0 )
继续
x2 ( x1 )

xk 1 ( xk )
(k 0,1,2, )
1 1 m
m 2时,1 1 0 m
由定义1
该迭代法对 m( 2)重根是线性收敛的
例4. 设f (a) 0,且f (a) 0,证明迭代法
xk 1

xk

f (xk ) f (xk )
至少是平方收敛的
19
注意例4与例3的迭代法是相同的,两例有何区别?
证明:

(x)
x1 3
x0 1 2
3 1 0.7937 2
x2
3
x1 1 3 2
1.7937 2

第九章非线性方程解法

第九章非线性方程解法

( f
,,f
1
),
n
X
(x1,,xm)
m n 是定解条件,一般 m n 是无解或不定 解的。
§1. 非线性方程实根的对分法(二分法)
设 f (x) 在[a,b] 上连续且 [a,b] 有且仅有一个根又
f (a) f (b) 0。则可用对分法:
不妨设 f (a) 0, f (b) 0
x1 x0
收敛定理证明
x x x x x x x x



n p
n
n p
n p1
n p1
n p2
n1
n
由 Lipschitz 条件,对任意 k 有
x x k1
k

(
x k
)

(
xk 1
)

x x L k
k 1

Lk
x1 x0
x x L x x L x x L x x
n
n
(x ) n


lim xn n
若 {xn}收敛,即 lim xn x,则: n x (x) f (x) 0
迭代过程的几何表示
x (x) :
y x 交点即真根。
y (x)
收敛充分性定理
定理9.2 . 若 f ( x ) 0 x ( x ) . 且 ( x ) 满足
n p1 n p2 n
n p
n
1
0
1
0
1
0

L L( n
p 1
Lp2
1) x1
x0

1 Lp
1 L

非线性方程组的解法精选全文

非线性方程组的解法精选全文

可编辑修改精选全文完整版
非线性方程组的解法
非线性方程组的解法包括:
(1)近似法。

近似法是根据所给非线性方程组,使用一定的数值方法,建立非线性方程组结果的拟合曲线,以此求解非线性方程组的常用方法,目前有贝塔、拉格朗日近似法和微分近似法等。

(2)多元分割法。

多元分割法根据非线性方程组的参数和变量空间,
将整个运算范围分割成多余小区间,利用各区间中只含有一个未知变
量的简单方程组,将非线性方程组转换成多个一元方程组,再用一次法、弦截法和二分法等算法求解,最终得出整个非线性方程组的解。

(3)迭代映射法。

迭代映射法是通过给定一个初始值,然后利用迭代,反复运算,最终达到收敛点的一种方法,主要包括牛顿法、收敛法、
弦截法、松弛法和隐函数法等。

(4)最小二乘法。

最小二乘法是将非线性方程组表示为残差函数,然
后求解残差函数最小值,获得未知变量的最优解,常用于数值分析中。

(5)特征法。

特征法是采用将非线性方程组表示为线性方程组特征值
和它们关于某一特征量的关系式,利用梯度下降法,最小化残差函数,求解非线性方程组的方法。

以上是非线性方程组的解法的简单综述,它们在一定程度上增加了解
决非线性方程组的效率,但并非所有情况都能使用以上求解方法。


确使用相应的求解方法就可以有效的求解非线性方程组,以便更好的
解决实际问题。

非线性方程(组)的解法

非线性方程(组)的解法
将F ( x) 在x k 处进行泰勒展开
f ( x) f ( xk ) f ( xk )(x xk ) 一元函数 F ( x) F ( x k ) F ( xk )(x xk ) 0 x k为向量 F ( x k )(x x k ) F ( x k ) x x k F ( x k )1 F ( x k )
18
3.非线性方程组的迭代解法
f1 ( x1 , x2 , , xn ) 0 f1 ( x) f1 ( x1 , L , xn ) 或 F ( x) L 0 L f ( x) f ( x , L , x ) f ( x , x ,, x ) 0 n n n 1 n n 1 2
9
迭代法及收敛性
考虑方程 x ( x)。 这种方程是隐式方程,因而不能直接求出它的根。
但如果给出根的某个猜测值 x0, 代入 x ( x) 中的右端得到 x1 ( x0 ),再以 为一个猜测值,
x1
代入 x ( x) 的右端得 x2 ( x1 ) ,反复迭代 得
1 f ( x ) f ( x0 ) ( x x0 ) f ( x0 ) ( x x0 )2 f ( ) 2 其中在x和x0之间
0 f ( x) f ( x0 ) ( x x0 ) f ( x0 ) 0
16
Newton迭代法
有:
*
f ( x0 ) x x0 f ( x0 )
能为力时,数值方法则可以借助于计算机出色完成。
2
2.1二分法

概念:


有根区间:存先确定有限区间:依据零点定理。 设 f ( x) C[a, b],且 f (a) f (b) 0 ,则 方程 f ( x) 0在区间 (a, b)上至少有一个根。 如果 f ' ( x) 在 (a, b)上恒正或恒负,则此根唯 一。

非线性方程组的解法

非线性方程组的解法

第四章 非线性方程组的解法4.1 非线性方程组的一般形式从上面两章中,我们研究了离散化结构中任一单元在t t t ∆+→的时间增量步内,由材料非线性引起的单元切线刚度阵是线性的,(如第三章得出的增量平衡方程p q k t ∆=∆ (7) (假定t 时刻的状态已知)),由此集合而成结构的增量平衡方程也是线性的P q K T ∆=∆,这就为求解整个的非线性过程准备了条件。

即只要确定每一步的切线刚度,通过求解一系列的线性方程组,累加起来就得到了解的全过程。

结构总的平衡方程是非线性的:P q q K =)( (1)i.e P K q 1-=。

令q q K R )(=0)()1(=-=→q R P F (1)’分段线性化是求解非线性问题中一个普遍有效的技术,但作为具体的解法还有许多种,主要的有:1、增量法―纯增量法2、迭代法―直接迭代法(刚线刚度法)、Newton-Raphson 迭代法(切线刚度法)3、.混合法―增量/迭代型方法4.2 载荷增量法(纯增量法)1、基本思想将一个非线性的全过程分成若干段,每一段用一个线性问题去近似。

如将一段取得足够小,总可以逼近真实的非线性过程。

方法:若将外载荷分成N 个增量步,而每个增量载荷为0P P i i λ∆=∆, i λ∆为载荷系数(或称载荷因子), 则总载荷 0P P λ=;其中:∑=∆=Ni i 1λλ0P 为基准载荷.上面的结构平衡方程为0)()(=-=q R P q F (1)´i.e 0)()(0=-=q R P q F λ (2)λ1Δλ1P 0Δλ2P 0 λP 0λ2 λ3q 1 q 2q 3上式两边对λ微分得00F R P λλ∂∂=-=∂∂ (3)i.e 0)(0=-λd dqq K P T (4)如比例加载(力的大小和方向不变),有0P d dP λ=,代入(4)得1110()()..()T TT d q K qd P K q d P ie qK q P λ---==∆=∆ (5)将(5)式写成增量形式便有以下求解格式1101[()]i T i ii i i i iq K q P P P q q q λ---⎧∆=∆∆=∆⎨=+∆⎩ (6)2、求解步骤1)将载荷分成若干个增量步 01P P Ni i ∑=∆=λ ,准备位移量累加器[Q]并置零.2)施加第1个载荷增量 011P P λ∆=∆,计算qRq k t ∂∂=)(0线性 求解 1101)]([P q K q T ∆=∆-11q q ∆= 并送入位移量累加器[Q]3)施加第2个增量步 022P P λ∆=∆用1q ,求)(1q K T 即在1q 处的切线刚度矩阵 求解 2112)]([P q K q T ∆=∆-212q q q ∆+= 在位移量累加器[Q]中完成累加.4)重复3)直至(N )个载荷施加完毕, 在位移量累加器[Q]中得到总位移 ∑=∆=Ni i q q 13. 几何意义及讨论优缺点:优点:了解加载过程,当→∆P 足够小,总能收敛到真实解缺点:实际不可能无限小,因此累积误差,且无法估计,造成极大偏离而失真P 2 ΔλP 1 λP 0P 3 Δλ4.3 迭代法 1 直接迭代法1) 基本思想:将载荷一次加上,并假设一个初始解代入方程组求出第一次近似解;将其再代入方程组求解,得出第二次近似解,反复迭代逐次修正解,直至满足方程组(类似于对过渡单元加权平均ep D 中m 的迭代)。

非线性解法

非线性解法

解非线性方程是方法主要有:增量法、迭代法、增量迭代混合法。

几何非线性有限元方法:1、完全的拉格朗日列式法(T.L.Formulation)在整个分析过程中,以t=0时的位形作为参考,且参考位形保持不变,这种列式称为完全的拉格朗日列式(T.L法)对于任意应力-应变关系与几何运动方程,杆系单元的平衡方程可由虚功原理推导得到:式(1)式中各量分别为:应变矩阵,是单元应变与节点位移的关系矩阵;单元的应力向量;杆端位移向量;V是单元体积分域,对T.L列式,是变形前的单元体积域;单元杆端力向量;直接按上式建立单元刚度方程并建立结构有限元列式,称为全量列式法。

在几何非线性分析中,按全量列式法得到的单元刚度矩阵和结构刚度矩阵往往是非对称的,对求解不利,因此多采用增量列式法。

将式(1)写成微分形式变形后得:式(2)这就是增量形式T.L列式的单元平衡方程。

式中为:单元弹性刚度矩阵、单元初位移刚度矩阵或单元大位移刚度矩阵、初应力刚度矩阵、三个刚度矩阵之和,称为单元切线刚度矩阵。

2、修正的拉格朗日列式法(U.L.Formulation)在建立t+∆t时刻物体平衡方程时,如果我们选择的参照位形不是未变形状态t=0时的位形,而是最后一个已知平衡状态,即本增量步起始的t时刻位形为参照位形,这种列式法称为修正的拉格朗日列式法(U.L列式)。

增量形式的U.L列式结构平衡方程可写成:式(3)3、T.L列式与U.L列式的比较T.L列式与U.L列式是不同学派用不同的简化方程及理论导出的不同方法,但是它们在相同的荷载增量步内其线性化的切线刚度矩阵应该相同,这一点已得到多个实际例题的证明。

T.L列式与U.L列式的不同点比较内容| T.L列式| U.L列式| 注意点计算单刚的积分域| 在初始构形的体积域内进行| 在变形后的t时刻体积域内进行| U.L列式必须保留节点坐标值精度| 保留了刚度阵中所有线性与非线性项| 忽略了高阶非线性| U.L列式的荷载增量不能过大单刚组集成总刚| 用初始时刻各单元结构总体坐标系中的方向余弦形成转换阵,计算过程不变| 用变形后t时刻单元在结构总体坐标中的方向余弦形成转换阵,计算过程中不断改变| U.L列式中组集荷载向量也必须注意方向余弦的改变本构关系的处理| 在大应变时,非线性本构关系不易引入| 比较容易引入大应变非线性本构关系| U.L方法更适用于混凝土徐变分析从理论上讲,这这两种方法都可以用于各种几何非线性分析。

非线性方程的数值解法

非线性方程的数值解法
第二章 非线性方程的数值解法
非线性方程:f(x)=0 包括:代数方程(多项式)、超越方程(三角函数、指
数函数或对数函数)。
求解方法:直接求解法、间接求解法; 直接求解法一般为解析法,能够得到精确解,如二次方 程求根公式等。简单但不一定总有效。 间接求解法一般较复杂,可以利用计算机进行计算,其 结果为近似解,但误差可以控制。
L L2 | x * xk | | x k x k 1 | | x k 1 xk 2 | ...... 1 L 1 L 注:定理条件非必要条件,对某些问题在区间 [a, b]上不 k L 满足| φ ’(x) | L < 1 ,迭代也收敛。 | x1 x0 | 1 L

是 是
f (a) =0

否 f(a)f(m)>0 否 b=m
打印b, k
结束
打印a, k
k=K+1
应用: 3 f x x 2x 5, a, b 2,3, 0.01 ,求x=? 例、设 解: k ba a x b
0 1 2 3 4 5 6
23+ 2.5+ 1 22.5+ 2.25+ 0.5 22.25+ 2.125+ 0.25 22.125+ 2.06250.125 2.06252.125+ 2.093750.0625 2.09375 2.125+ 2.109375+ 0.03125 2.09375 2.109375 2.1015625 0.015625 0.02
L | x k x k 1 | ? ④ | x * xk | 1 L
3 简单迭代法
| x xk | L | x xk 1 | L | x * xk xk xk 1 | | xk xk |) 1 |来 L(| x * x可用 | | x x k k k 1 (1 L) | x x | L | x x | 控制收敛精度

非线性解法

非线性解法

解非线性方程是方法主要有:增量法、迭代法、增量迭代混合法。

几何非线性有限元方法:1、完全的拉格朗日列式法(T.L.Formulation)在整个分析过程中,以t=0时的位形作为参考,且参考位形保持不变,这种列式称为完全的拉格朗日列式(T丄法)对于任意应力-应变关系与几何运动方程,杆系单元的平衡方程可由虚功原理推导得到:[[町何如-⑷二0式(1)式中各量分别为:应变矩阵,是单元应变与节点位移的关系矩阵;单元的应力向量;杆端位移向量;V是单元体积分域,对T.L列式,是变形前的单元体积域;单元杆端力向量;直接按上式建立单元刚度方程并建立结构有限元列式,称为全量列式法。

在几何非线性分析中,按全量列式法得到的单元刚度矩阵和结构刚度矩阵往往是非对称的,对求解不利,因此多采用增量列式法。

将式(1)写成微分形式变形后得:("凰十"繊+1疋L M冏=讪显冏"式(2)这就是增量形式T.L列式的单元平衡方程。

式中为:单元弹性刚度矩阵、单元初位移刚度矩阵或单元大位移刚度矩阵、初应力刚度矩阵、三个刚度矩阵之和,称为单元切线刚度矩阵。

2、修正的拉格朗日列式法(U.L.Formulation)在建立t+t时刻物体平衡方程时,如果我们选择的参照位形不是未变形状态t=0时的位形,而是最后一个已知平衡状态,即本增量步起始的t时刻位形为参照位形,这种列式法称为修正的拉格朗日列式法(U丄列式)。

增量形式的U.L列式结构平衡方程可写成:式(3)3、T.L列式与U.L列式的比较T.L列式与U.L列式是不同学派用不同的简化方程及理论导出的不同方法,但是它们在相同的荷载增量步内其线性化的切线刚度矩阵应该相同,这一点已得到多个实际例题的证明。

T.L列式与U.L列式的不同点比较内容|「L列式|U丄列式|注意点计算单刚的积分域|在初始构形的体积域内进行|在变形后的t时刻体积域内进行|U丄列式必须保留节点坐标值精度|保留了刚度阵中所有线性与非线性项|忽略了高阶非线性|U丄列式的荷载增量不能过大单刚组集成总刚|用初始时刻各单元结构总体坐标系中的方向余弦形成转换阵,计算过程不变|用变形后t时刻单元在结构总体坐标中的方向余弦形成转换阵,计算过程中不断改变|U丄列式中组集荷载向量也必须注意方向余弦的改变本构关系的处理|在大应变时,非线性本构关系不易引入|比较容易引入大应变非线性本构关系|U 丄方法更适用于混凝土徐变分析从理论上讲,这这两种方法都可以用于各种几何非线性分析。

非线性方程的解法二次方程和高次方程

非线性方程的解法二次方程和高次方程

非线性方程的解法二次方程和高次方程非线性方程的解法:二次方程和高次方程非线性方程是指未知数的幂次大于等于2的方程。

求解非线性方程是数学中的基础问题之一,其中常见的非线性方程类型包括二次方程和高次方程。

本文将分别介绍二次方程和高次方程的解法。

一、二次方程的解法二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。

解二次方程的常用方法有公式法和配方法。

1. 公式法对于一般的二次方程ax^2 + bx + c = 0,可使用求根公式x = (-b±√(b^2-4ac))/(2a)求解。

其中,当判别式Δ = b^2 - 4ac大于0时,方程有两个不相等的实根;当Δ = 0时,方程有两个相等的实根;当Δ小于0时,方程没有实根,但有两个共轭复根。

2. 配方法对于无法直接使用求根公式解的二次方程,可使用配方法进行转化。

具体步骤如下:(1)若方程中二次项系数a不为1,则可将方程两边同除以a,化为标准形式。

(2)将方程两边移项,得到形如x^2 + px + q = 0的方程。

(3)根据p = b/a和q = c/a,求出p和q的值。

(4)根据方程的左边是一个完全平方形式(x+p/2)^2,将方程化为(x+p/2)^2 = q - (p/2)^2的形式。

(5)进行求根运算,得到方程的解。

二、高次方程的解法高次方程是指次数大于二的方程,其中最常见的高次方程类型包括三次方程和四次方程。

由于高次方程不存在通用的求根公式,因此求解方法相对复杂,通常需要利用特殊性质或特定方法进行求解。

1. 三次方程的解法对于一般的三次方程ax^3 + bx^2 + cx + d = 0,常用的解法有牛顿迭代法和三次方程标准形式转化法。

(1)牛顿迭代法:通过迭代逼近的方式求解近似解,具体步骤较为复杂,这里不详细展开。

(2)三次方程标准形式转化法:对于一般的三次方程,可通过变量代换,将其转化为形如y^3 + py = q的标准形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
ω 2 = ω0 − εα1 − ε 2α 2 −
2

ω 0 = ω 2 + εα1 + ε 2α 2 +
2
其中 α 1 ,α 2 , 是待定常量.
2 3 [ x = x 0 + εx1 + ε x 2 + ε x3 + ]
2 3 2 x + ω ω x 将 展开的 和 0 代入 方程 0 x = εx , 利用等 式
准确到第一级的完全解为
εA 2 εA 3 x = x 0 + ε x1 = (1 + ) A cos ω t − cos 3ω t 2 2 32 ω 32 ω
可求得准确到一级的振动频率
ω = ω 0 (1 − ε
≈ ω 0 (1 − ε
3A2 4ω 0
3 A2 8ω 0
2
12 ) 2
)
用 类 似方法求出二级解和确 定 α 2 , 我们 得 到 精确到第二级的全部解为
运动,
+ g θ = g θ 3 θ l 6l
2 取 x = θ , ω 0 = g l , ε = g 6l 即 可 , 所以 本 节 的 结果
完全 适 用 于大幅 角 单 摆 运 动 , 可 用 来研究其 周 期 与幅角的近似关系.
x 0 = A cos ω t
代入一级方程
1 + ω 2 x1 = A 3 cos 3 ω t − α 1 A cos ω t x
3 1 = ( A 3 − α 1 A) cos ω t + A 3 cos 3ω t 4 4
这是一 个 无阻尼 强迫 振动方程 , 等号右 端 相 当于 两 个强迫力 , 第一项的频率为 ω , 它 将产生共振 , 使 解的振幅 随 时 间增长 出 现 无限大 , 此 项 称 为 久
3
2 ε x 项为 , 则产生的谐频将是 2ω ,4ω , .
(2) 以 倍 数 越 高 的 谐 频振动的分振动 , 其振 幅越小. (3) 不 存 在 固 有频率 , 基 频不 仅 与 系 统 结 构 有关(由 ω 0 体现), 还与振幅及解的精度有关, ω 0 仅当做参数看待.
2 3 x + ω x = ε x Байду номын сангаас程 可近似描述大幅角单摆 的 0
设初始条件为
x (0) = A ,
(0) = 0 . x
可知各级解的初始条件为
x0 (0) = A ,
0 (0) = 0 ; x
x1 (0) = 0 ,
x 2 (0) = 0 ,
1 (0) = 0 ; x
2 (0) = 0 ; x
求解的 顺序 是 先 从 零 级方程求出 零 级解 ; 再 将零 级解 代入 一级方程 右 端 , 解 此 方程 , 得 一级 解; 同理, 将零级、 一级解代入二级方程右端后, 可求出二级解 . 我们 注意 到 这 样 做 后 各级解的方 程都是便于求解的线性方程!(意义——线性化!!) 求解 中 还 会遇到久期 项的出 现 , 通过消除久 期项求出待定常数 α1,α 2 , 等等. 让我们来看解的具体过程. 满足初始条件的零级解容易求出为
+ ω 0 2 x = εx 3 x
其中 ε = − α m , 假设为小量! 由 于 ε 是小 量 , 说明 非线性项的 作用 是 弱 的 , 可 猜想 它的解可在非线性项不 存 在时的解 基础 上 做微小变化而得, 故设其解可以展成小量 ε 的级数
形式
x = x 0 + εx1 + ε 2 x 2 + ε 3 x3 +
由于 ε 是小量, 上式右端各项为不同量级的项, 分别称零级项、 一级项、 二级项,……后一级比 前 一级小很 多 , 这 样 我们可 以逐 级求近似 , 求解 可 精 确 到任 一级 , 这种求解方法 称 为微 扰 法 ( 或 摄动法). 微扰法是非线性物理中常用的近似方法, 它适用于弱非线性情况. 其次, 假设振动频率也需要在固有频率 ω 基础 上逐级修正 (表为小量 ε 的级数形式)
左 右 同 一 量 级的 量 应相等 , 得 出各级解 满足 的方 程. 需要精确到哪一级应根据所需的精确度而定. 假设我们需要求精确到第二级的解, 则零级、 一 级、 二级解满足的方程为
0 + ω 2 x0 = 0 x 1 + ω 2 x1 = x0 3 − α 1 x0 x
2 + ω 2 x2 = 3x0 2 x1 − α1 x1 − α 2 x0 x
物理上来分析、 评估数值计算的结果. 理论研究 与数值计算两种方法是相辅相成的, 都是必要的. 一、非线性振动和线性振动的根本区别 两种振动的 根本区 别在数 学 上 归结 于非线性 微分方程 与 线性微分方程的 根本区 别 . 线性微分 方程的解 满足叠加 原 理 . 非线性微分方程的解则 不满足叠加原理. 例 如 , 若存 在 x 2 形式的非线性项 , 假设 方程 有 x1 = x1 (t ), x2 = x2 (t ) 两个解, 叠加为 x1 + x2 代入方程, 从非线性项展开式可看出它们的作用,
§4-2 一维非线性振动及微分方程的近似解法
我们只限于讨论一维非线性振动 , 其一般微 分方程形式如下:
+ FR ( x ) + F ( x) = F0 sin ω1t m x
F0 和 ω1 是驱动力的振幅和圆频率, F ( x) 是恢复力
很小时, 这两 ) 是阻尼力项, 只有当 x 和 x 项, FR ( x , 项按泰勒级数展开可近似看做分别正比于 x 和 x 较大时, 这两 上述方程还原为线性方程. 当 x 和 x 的线性函数, 则成为二阶非线性微 项不再是 x 和 x 分方程, 它描述的是非线性振动. 研究非线性振动的方法有 3 种. 一是解析法 . 是指在无法求出准确的解析解 情况下 , 发展起来的各种近似求解方法 . 我们只 介 绍 解非线性微分方程 常用 的小 参 数展开这种近 似方法(又称微扰法, 或摄动法). 二是 几何 法 . 在无法 进行 解析求解情况下 , 法 国科学家庞加莱创立了 微分方程的 定 性 理 论 , 发展 了相图 和 拓扑学 方法 , 开 拓了 一 个 数 学新领 域. 我们只就一维情况简单介绍相平面法. 三 是数 值计算 方法 , 即利用计算机进行 数 值 求解. 这是在现代条件下应采用的快速、 高效的 方法, 它对新现象的发现、 新理论的建立起重要 作用. 注意 : 需要用前 两种方法 获得 的 理 性 认识从
εA 2 ε 2 A4 x = (1 + − ) A cos ω t 32 ω 2 1024 ω 4
εA 2 ε 2 A4 −( ) A cos 3ω t + ( ) A cos 5ω t 2 4 32 ω 1024 ω
ω ≈ ω 0 (1 − ε
3A2 8ω 0
2

2
3A4 256ω 0
4
)
从 上述 结果 我们看 到 非线性 自由 振动一 些普遍规 律: (1) 出 现 谐 频频率 . 精 确 到 一级的解有 ω 和 3ω 的两种振动 ; 从 精 确 到 二级的解还有频率为 5ω 的振动. 可见求解的精度越高, 解中会出现更 多频率的振动. 最低 频率 称 为 基 频 , 为 基 频 整 数 倍 的 称 为各 种谐频. 上述谐频是由非线性项 εx 产生的, 若非线性
( x1 + x 2 ) 2 = x1 ⋅ x1 + 2 x1 ⋅ x 2 + x 2 ⋅ x 2
等号右 端第 二项不可 能由 原来的 运 动 叠加得 出 , 它表征由两个解相互作用产生的新的现象. 二、用小参数展开方法求解非线性自由振动问题 非线性 自由 振动是指 质点 不 受 阻尼力和驱动 力的 作用 , 仅受 非线性恢复力 作用 产生 的振动 , 例 如 , 弹簧 振 子 在振动幅 度 较大时 需要 考虑弹 性 力展开中三次方项, 此时振动方程为
期 项 . 为 了 符合 物理 实际 , 必 须消除此 项 , 令该 项系数为零,
3 3 A − α1 A = 0 4
从而求得
α1 = 3 2 A 4 1 3 A cos 3ω t 4
而一级方程成为
1 + ω 2 x1 = x
其满足初始条件的通解为
A3 x1 = (cos ω t − cos 3ω t ) 2 32 ω
相关文档
最新文档