2018年上海市高三数学竞赛试题

合集下载

2018年全国高中数学竞赛试题

2018年全国高中数学竞赛试题

2018年全国高中数学竞赛试题一、选择题(每题4分,共24分)函数f(x)=4−x2的定义域是().A. [−2,2]B. (−2,2)C. [0,2]D. (0,2)下列命题中,正确的是().A. 若α⊂β,则α∩β=αB. 若直线l与平面α平行,则l与α内的所有直线平行C. 若直线l与平面α相交,则l与α内的无数条直线垂直D. 若平面α∥β,直线a⊂α,则a∥β若x,y∈R,且xy=0,则“x>y”是“x1<y1”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件已知tanα=21,则sin2α=().A. 51B. 52C. 54D. 53设Sn为等比数列{an}的前n项和,若S3,S9−S3,S15−S9成等差数列,则公比q为().A. 2B. −2C. 21D. −21在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=4,cosC=41,则sinB=().A. 815B. 16315C. 23D. 415二、填空题(每题5分,共20分)函数y=log2(x2−2x−3)的定义域是_______.若直线l与平面α垂直,则l与α内所有直线所成的角中().A. 必有一个是直角B. 必有一个是锐角C. 必有一个是钝角D. 都是直角已知函数f(x)=x3−3x2+2x,则f′(x)= _______.在△ABC中,角A,B,C的对边分别为a,b,c,若sinA:sinB:sinC=3:5:7,则cosC= _______.三、解答题(共56分)(12分)求函数f(x)=x+1x2−1在x=2处的导数值.(12分)已知数列{an}满足a1=1,且an+1=2an+1,求数列{an}的通项公式.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=31。

(1)求sinB的值;(2)求△ABC的面积。

2018年上海市高三数学竞赛试题含答案解析

2018年上海市高三数学竞赛试题含答案解析

2018年上海市高三数学竞赛试题一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是.2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x =.3.已知椭圆22221(0)x y a b a b+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为.4.设集合111111{,,,,,}2711131532A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i = (单元数集的元素积是这个元素本身),则1263p p p +++ =.5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是.6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,则M m -=.7.在三棱锥P ABC -中,已知1,AB AC PB PC ===则22ABC PBC S S ∆∆+的取值范围是.8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k = ,这里12201812018a a a >>>= ,且⊙k A 与⊙1k A +外切(1,2,,2017)k = ,则1a =.二、解答题(本大题满分60分,每小题15分)9.已知三个有限集合,,A B C 满足A B C =∅ .(1)求证:1()2A B C A B C ≥++ (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.11.设,,,abcd 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的最小值.12.设n为给定的正整数,考虑平面直角坐标系xoy中的点集==≤∈对T中的两点,P Q,当且仅当PQ=PQ与两条坐T x y x y n x y Z{(,),,}标轴之一平行时,称,P Q是“相邻的”,将T中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.试卷答案一、填空题1.3172.13. 4.79655.(2,6.327.17(]44,8.22019二、解答题9.解:(1)∵A B C =∅ ∴()()A B A C =∅∴集合A 可以拆分成三部分:A B ,A C ,A A B A C A '--=(如图) 则A A A B A C '=++B ,C 集合同理. ∵A B C A B C =++ A B B C C A A B C ---+∴命题⇔证1()2A B C ++A B B C C A ≥++ 而A B C ++A B C '''++222A B B C C A +++ ∴1()2A B C A B B C C A ++--- 1()02A B C '''=++≥ (2)当A B C '''===∅时取等号,如{}12A =,,{}23B =,,{}31C =, 10.令Y X α-=,*N α∈则225x z w α+++=当x 取遍1~11时,252z w x α++=-的正整数解组数为2242x C -∴总共222224622946C C C C ++++=22(21)n C n n =-,∴2222n C n n =-∑∑∑(1)(21)(1)(1)(41)326n n n n n n n n ++++-=-= 11.210210210210F a b c d a Fb acd b Fc a bd c F d a b c d ∂⎧=++++=⎪∂⎪∂⎪=++++=⎪∂⎨∂⎪=++++=⎪∂⎪∂⎪=++++=∂⎩∴当15a b c d ====-时,min 2()5F a b c d =-,,, 12.从(00),点向外一共有n 层正方形,染色要求:正方形相邻顶点颜色不同与上一层相邻点,也不同记(00),点染了③号色,第1个正方形四个顶点①②②①染色A 类:①②②①(一共用了2色)上层A 类,之后一层的染色情况:A B ⎧⎪⎪⎨⎪⎪⎩②①③①②③三种①②①③③②②①②①②①②③四种①③①②③②①②B 类:①②③①(一共用了3色)上层为B 类,则下层的染色情况:A B ⎧⎪⎪⎨⎪⎪⎩②①③①两种①②①③②③②①③①③①四种①②①③①②②③构建数列,n O 表示第n 层为A 类染色方法,n b 表示第n 层为B 类染色方法113244n n n n n n a a b b a b ++=+⎧⎨=+⎩11a =,10b =∴1111))n n n n n n n n a a a a ++++⎧=+⎪⎪⎨⎪=⎪⎩构造λ:11(34)(24)n n n n a J b a d b λ+++⋅=+++ 满足22442034d dλλλ+=⇒--=+λ=又11a =,10b =,∴11n n n n n n a a --⎧+=⎪⎪⎨⎪+=⎪⎩解得1111n n n n n n a b ----⎧=+⎪⎪⎨⎪-⎪⎩∴11n n n n a b --+= 最后,①、②、③色号与红绿蓝之间有336P =种排法∴染色方式有6()n n n n a b ⎡⎤+-⎥⎦种.2018年上海市高三数学竞赛试题时间:2小时,满分:120分姓名一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是.2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x =.3.已知椭圆22221(0)x y a b a b+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为.4.设集合111111{,,,,,}2711131532A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i = (单元数集的元素积是这个元素本身),则1263p p p +++ =.5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是.6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,则M m -=.7.在三棱锥P ABC -中,已知1,AB AC PB PC ===则22ABC PBC S S ∆∆+的取值范围是.8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k = ,这里12201812018a a a >>>= ,且⊙k A 与⊙1k A +外切(1,2,,2017)k = ,则1a =.二、解答题(本大题满分60分,每小题15分)9.已知三个有限集合,,A B C 满足A B C =∅ .(1)求证:1()2A B C A B C ≥++ (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.11.设,,,abcd 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的最小值.12.设n 为给定的正整数,考虑平面直角坐标系xoy 中的点集{(,),,}T x y xy n x y Z ==≤∈对T 中的两点,P Q ,当且仅当PQ =PQ 与两条坐标轴之一平行时,称,P Q 是“相邻的”,将T 中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.。

【解析版】2018年高考上海卷数学试题

【解析版】2018年高考上海卷数学试题

2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足: 22221122121211,1,2x y x y x x y y +=+=+=,则_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为( )A. B.C.D. 14.已知a R ∈,则“1a >”是“11a<”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2018年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案

2018年普通高等学校招生全国统一考试 数学(上海卷)word版  含答案

2018年普通高等学校招生全国统一考试(上海卷) 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分) 1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______ 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 10.设等比数列{错误!未找到引用源。

}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim 2n n a →∞+=,则q=____________ 11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________ 12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则2+2的最大值为__________ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2错误!未找到引用源。

2018年高考数学真题试卷(上海卷)(秋考)含逐题详解

2018年高考数学真题试卷(上海卷)(秋考)含逐题详解

2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名,准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔,水笔或圆珠笔作答非选择题.一,填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。

若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。

若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E ,F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克,3克,1克砝码各一个,2克砝码两个。

从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。

2018年上海市普通高等学校招生统一考试数学真题试题及参考答案(上海卷)

2018年上海市普通高等学校招生统一考试数学真题试题及参考答案(上海卷)

【试题级别】高三
【试题地区】上海
【试题来源】2018年高考数学真题试卷(上海卷)
15.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()
A.4
B.8
C.12
D.16
【答案】D
【解析】【解答】以AA1取矩形分别讨论,找到AA1所在矩形个数,并根据每个矩形可做4个阳马的基本位置关系,可得答案为D。

故答案为:D。

【分析】以AA1为底边的直四棱锥,运用线面垂直关系判定的方法分析图形中基本元素及其相互关系解答即可。

【题型】单选题
【考查类型】高考真题
【试题来源】2018年高考数学真题试卷(上海卷)。

【真题】2018年上海市高考数学试题含答案解析

【真题】2018年上海市高考数学试题含答案解析

2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。

【答案】18【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。

【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。

故渐近线方程为12y x =± 【分析】渐近线方程公式。

注意易错点焦点在x 轴上,渐近线直线方程为22221x y ba -=时,by x a=±。

【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r rC x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。

考点公式()na b +第r+1项为T r+1=r n r rn C ab-。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。

【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则22的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4 (B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A )3(B )3(C )3 (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。

2018年上海市高考数学试卷-含答案详解

2018年上海市高考数学试卷-含答案详解

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2018年普通高等学校招生全国统一考试(上海卷)数学副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A. 2√2B. 2√3C. 2√5D. 4√22. 已知a ∈R ,则“a >1”是“1a <1”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分又非必要条件3. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 16……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 设D 是含数1的有限实数集,f(x)是定义在D 上的函数,若f(x)的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f(1)的可能取值只能是 ( )A. √3B. √32C. √33D. 0第II 卷(非选择题)二、填空题(本大题共12小题,共54.0分) 5. 行列式∣∣∣4125∣∣∣的值为______.6. 双曲线x 24−y 2=1的渐近线方程为 .7. 在(1+x )7的二项展开式中,x 2项的系数为 .(结果用数值表示).8. 设常数a ∈R ,函数f(x)=log 2(x +a),若f(x)的反函数的图象经过点(3,1),则a = .9. 已知复数z 满足(1+i)z =1−7i(i 是虚数单位),则|z|= .10. 记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= .11. 已知α∈{−2,−1,−12,12,1,2,3},若幂函数f(x)=x α为奇函数,且在(0,+∞)上递减,则α= .12. 在平面直角坐标系中,已知点A(−1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗ 的最小值为……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………13. 有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).14. 设等比数列{a n }的通项公式为a n =q n−1(n ∈N ∗),前n 项和为S n .若lim n→+∞Sn a n+1=12,则q =______.15. 已知常数a >0,函数f(x)=2x2x +ax的图象经过点P(p,65),Q(q,−15).若2p+q =36pq ,则a = .16. 已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则|x 1+y 1−1|√2+|x 2+y 2−1|√2的最大值为 .三、解答题(本大题共5小题,共76.0分。

2018年全国高中数学联赛试题与解析B卷

2018年全国高中数学联赛试题与解析B卷
2
o 二二 f(x ) 三1 仲 !( 却一6)三 f(x )三/(4-的,
(用含有r的式子表示〉.
z, =一,Z2 =一,Z3 =-,
因此 W= Z1 �2 +毛毛+勾引·于是
2
Z1
Z2
Z3
r = (z1 十Z2 + Z3 )(王+三十三) =lz.1 十lzJ + lz3 l + w十二=3+2Rew,
2 2
解得Rew=三三 2 二、解答题:本大题共3小题,满分56分.解答应写出立字说明、证明过 程或演算步骤. 9. (本题满分16分)己知数列{a,,}:α, =7, 满足 a. >4
川 生土L =
的最小正整数 n.
2
α
a,,十2 , n = 1, 2, 3, · · · .求
故。”=2 3烛
解:由生土L = α,,+2可知 G川 +1=(α,,+ 1) .因此 α,2 时 ”I 3x2"-1, α,,+l=(a1 +1)2 =82 = 2
AD BC ,以 AB 为直径的圆 与线段 DE 交于一点 F. DC 2CE
A
证明:B,C,F,D 四点共圆(答题时请将图画在答卷纸上)
D
F
B
C
E
三、 (本题满分 50 分)设集合 A {1, 2,
, n} ,X,Y 均为 A 的非空设空子集(允许 X = Y) .X
中的最大元与 Y 中的最小元分别记为 maxX,minY 求满足 maxX > minY 的有序集合对(X , Y) 的数目.
四、 (本题满分 50 分)给定整数 a 2 . 证明:对任意正整数 n,存在正整数 k,使得连续 n 个 数 ak 1, ak 2 , , a k n 均是合数.

2018年全国高中数学联赛A试题+答案

2018年全国高中数学联赛A试题+答案

2018年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设集合 1,2,3,,99,2,2A B x x A C x x A ,则B C 的元素个数为 .答案:24.解:由条件知, 13992,4,6,,198,1,,2,,2,4,6,,48222B C,故B C 的元素个数为24.2. 设点P 到平面的距离为,点Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 .答案:8 .解:设点P 在平面 上的射影为O .由条件知,tan OP OQP OQ ,即[1,3]OQ ,故所求的区域面积为22318 .3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 .答案:910.解:先考虑abc def +为奇数的情况,此时,abc def 一奇一偶,若abc 为奇数,则,,a b c 为1,3,5的排列,进而,,d e f 为2,4,6的排列,这样有3!3!36×=种情况,由对称性可知,使abc def +为奇数的情况数为36272×=种.从而abc def +为偶数的概率为72729116!72010−=−=.4. 在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b的左、右焦点分别是1F 、2F ,椭圆C 的弦ST 与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段,,,PU PS PV PT 的长分别为1,2,3,6,则12PF F 的面积为 .答案解:由对称性,不妨设(,)P P P x y 在第一象限,则由条件知112,122P P x PT PS y PV PU ,即(2,1)P .进而由1,2P x PU PS 得(2,2),(4,1)U S ,代入椭圆C 的方程知2222111144161a b a b,解得2220,5a b .从而121212PF F P P S F F y y .5. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足()1,(2)2f f ,则不等式组12,1()2x f x的解集为 . 答案:[2,82] .解:由()f x 为偶函数及在[0,1]上严格递减知,()f x 在[1,0] 上严格递增,再结合()f x 以2为周期可知,[1,2]是()f x 的严格递增区间.注意到(2)()1,(82)(2)(2)2f f f f f ,所以1()2(2)()(82)f x f f x f ,而12822 ,故原不等式组成立当且仅当[2,82]x .6. 设复数z 满足1z ,使得关于x 的方程2220zx zx 有实根,则这样的复数z 的和为 .答案:32.解:设22i (,,1)R z a b a b a b .将原方程改为2(i)2(i)20a b x a b x ,分离实部与虚部后等价于2220ax ax ,① 220bx bx .②若0b ,则21a ,但当1a 时,①无实数解,从而1a ,此时存在实数1x 1z 满足条件.若0b ,则由②知{0,2}x,但显然0x 不满足①,故只能是2x ,代入①解得14a ,进而bz .综上,满足条件的所有复数z 之和为312.7. 设O 为ABC 的外心,若2AO AB AC,则sin BAC 的值为 .答案 解:不失一般性,设ABC 的外接圆半径2R .由条件知,2AC AO AB BO,①故112AC BO .取AC 的中点M ,则OM AC ,结合①知OM BO ,且B 与A 位于直线OM 的同侧.于是1cos cos(90)sin 4MCBOC MOC MOC OC. 在BOC 中,由余弦定理得BC ,进而在ABC中,由正弦定理得sin 2BC BAC R. 8. 设整数数列1210,,,a a a 满足1012853,2a a a a a ,且1{1,2},1,2,,9i i i a a a i ,则这样的数列的个数为 .答案:80.解:设1{1,2}(1,2,,9)i i i b a a i ,则有11011292a a a b b b ,① 2345285567b b b a a a a b b b .②用t 表示234,,b b b 中值为2的项数.由②知,t 也是567,,b b b 中值为2的项数,其中{0,1,2,3}t .因此237,,,b b b 的取法数为021222323333(C )(C )(C )(C )20 .取定237,,,b b b 后,任意指定89,b b 的值,有224 种方式.最后由①知,应取1{1,2}b 使得129b b b 为偶数,这样的1b 的取法是唯一的,并且确定了整数1a 的值,进而数列129,,,b b b 唯一对应一个满足条件的数列1210,,,a a a .综上可知,满足条件的数列的个数为20480 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知定义在R 上的函数()f x 为3log 1,09,()49.x x f x x设,,a b c 是三个互不相同的实数,满足()()()f a f b f c ,求abc 的取值范围.解:不妨假设a b c .由于()f x 在(0,3]上严格递减,在[3,9]上严格递增,在[9,) 上严格递减,且(3)0,(9)1f f ,故结合图像可知(0,3)a ,(3,9)b ,(9,)c ,并且()()()(0,1)f a f b f c . …………………4分由()()f a f b 得331log log 1a b ,即33log log 2a b ,因此239ab .于是9abc c . …………………8分又0()41f c , …………………12分 故(9,16)c .进而9(81,144)abc c .所以,abc 的取值范围是(81,144). …………………16分注:对任意的(81,144)r ,取09rc =,则0(9,16)c ∈,从而0()(0,1)f c ∈.过点00(,())c f c 作平行于x 轴的直线l ,则l 与()f x 的图像另有两个交点(,())a f a ,(,())b f b (其中(0,3),(3,9)a b ),满足()()()f a f b f c ,并且9ab ,从而abc r =.10.(本题满分20分)已知实数列123,,,a a a 满足:对任意正整数n ,有(2)1n n n a S a ,其中n S 表示数列的前n 项和.证明:(1) 对任意正整数n ,有n a(2) 对任意正整数n ,有11n n a a .证明:(1) 约定00S .由条件知,对任意正整数n ,有221111(2)()()n n n n n n n n n a S a S S S S S S ,从而220n S n S n ,即n S (当0n 时亦成立). …………………5分显然,1n n n a S S . …………………10分(2) 仅需考虑1,n n a a 同号的情况.不失一般性,可设1,n n a a 均为正(否则将数列各项同时变为相反数,仍满足条件),则11n n n S S S ,故必有1n n S S ,此时1n n a a从而11n n a a . …………………20分11.(本题满分20分)在平面直角坐标系xOy 中,设AB 是抛物线24y x 的过点(1,0)F 的弦,AOB 的外接圆交抛物线于点P (不同于点,,O A B ).若PF 平分APB ,求PF 的所有可能值.解:设222123123,,,,,444y y y A y B y P y,由条件知123,,y y y 两两不等且非零. 设直线AB 的方程为1x ty ,与抛物线方程联立可得2440y ty ,故124y y . ① 注意到AOB 的外接圆过点O ,可设该圆的方程为220x y dx ey ,与24y x 联立得,4210164y d y ey .该四次方程有123,,,0y y y y 这四个不同的实根,故由韦达定理得12300y y y ,从而312()y y y .②…………………5分因PF 平分APB ,由角平分线定理知,12PA FA yPB FB y ,结合①、②,有2222312222231212112122222222222321222132()()16(2)44()16(2)()44y y y y y y y y y PA yy PB y y y y y y y y y2222422122122224212112(8)16(416)64192(8)16(416)64192y y y y y y y y y y , ………………10分 即62226222112122126419264192y y y y y y y y ,故 224224121122()(192)0y y y y y y . 当2212y y 时,21y y ,故30y ,此时P 与O 重合,与条件不符. 当422411221920y y y y 时,注意到①,有22221212()192()208y y y y . …………………15分因22121282y y y y ,故满足①以及2212y y 的实数12,y y 存在,对应可得满足条件的点,A B .此时,结合①、②知222231212()4411444y y y y y PF .…………………20分2018年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设n 是正整数,1212,,,,,,,,,n n a a a b b b A B 均为正实数,满足,,1,2,,i i i a b a A i n ≤≤= ,且1212n n b b b Ba a a A≤ . 证明:1212(1)(1)(1)1(1)(1)(1)1n n b b b B a a a A ++++≤++++ .证明:由条件知,1,1,2,,i i i b k i n a =≥= .记BK A=,则1212n n b b b B a a a A ≤ 化为12n k k k K ≤ .要证明11111ni i i ik a KA a A =++≤++∏. ① 对1,2,,i n = ,由于1i k ≥及0i a A <≤知,11111111i i i i i i i i i k a k k k A k k a a A A +−−+=−≤−=++++. 结合12n K k k k ≥ 知,为证明①,仅需证明当0,1(1,2,,)i A k i n >≥= 时,有1211111ni n i k A k k k A A A =++≤++∏. ②…………………20分对n 进行归纳.当1n =时,结论显然成立. 当2n =时,由120,,1A k k >≥可知1212122111(1)(1)0111(1)k A k A k k A A k k A A A A +++−−⋅−=−≤++++, ③ 因此2n =时结论成立. …………………30分设n m =时结论成立,则当1n m =+时,利用归纳假设知,11121111111111111m m i i m m m i i k A k A k A k k k A k A A A A A A +++==+++++ =⋅≤⋅ +++++∏∏ 12111m k k k A A ++≤+ ,最后一步是在③中用121,m m k k k k + (注意1211,1m m k k k k +≥≥ )分别代替12,k k . 从而1n m =+时结论成立.由数学归纳法可知,②对所有正整数n 成立,故命题得证.…………………40分二、(本题满分40分)如图,ABC 为锐角三角形,AB AC ,M 为BC 边的中点,点D 和E 分别为ABC 的外接圆 BAC和 BC 的中点,F 为ABC 的内切圆在AB 边上的切点,G 为AE 与BC 的交点,N 在线段EF 上,满足NB AB . 证明:若BN EM ,则DF FG .(答题时请将图画在答卷纸上)证明:由条件知,DE 为ABC 外接圆的直径,DE BC 于M ,AE AD . 记I 为ABC 的内心,则I 在AE 上,IF AB . 由NB AB 可知(180)90NBE ABE ABN ADE90ADE MEI .① …………………10分又根据内心的性质,有EBI EBC CBI EAC ABI EAB ABI EIB , 从而BE EI .结合BN EM 及①知,NBE MEI ≌ . …………………20分于是90180EMI BNE BFE EFI ,故,,,E F I M 四点共圆.进而可知9090AFM IFM IEM AGM ,从而,,,A F G M 四点共圆. …………………30分 再由90DAG DMG 知,,,,A G M D 四点共圆,所以,,,,A F G M D 五点共圆.从而90DFG DAG ,即DF FG . …………………40分三、(本题满分50分)设,,n k m 是正整数,满足2k ≥,且21k n m n k−≤<. 设A 是{1,2,,}m 的n 元子集.证明:区间0,1n k−中的每个整数均可表示为a a ′−,其中,a a A ′∈.证明:用反证法.假设存在整数0,1n x k∈ −不可表示为a a ′−,,a a A ′∈.作带余除法m xq r =+,其中0r x ≤<.将1,2,,m 按模x 的同余类划分成x 个公差为x 的等差数列,其中r 个等差数列有1q +项,x r −个等差数列有q 项.由于A 中没有两数之差为x ,故A 不能包含以x 为公差的等差数列的相邻两项.从而1,2,12()22,2|,2q x q q q n A r x r q x r q + ⋅ + =≤+−= ⋅+ ① 这里α 表示不小于α的最小整数. …………………20分由条件,我们有()2121k kn m xq r k k >+−−. ②又0,1n x k ∈ −,故(1)n k x >−. ③情形一:q 是奇数.则由①知,12q n x +≤⋅. ④ 结合②,④可知,1()22121q k kx n xq r xq k k +⋅≥>+≥−−,从而21q k <−.再由q 是奇数可知,23q k ≤−,于是1(1)2q n x k x +≤⋅≤−,与③矛盾.情形二:q 是偶数.则由①知,2qn x r ≤⋅+. ⑤结合②,⑤可知,()221q k x r n xq r k ⋅+≥>+−,从而1(1)2(21)2121xq k k xr k k k −−<<−−−,故2(1)q k <−.再由q 是偶数可知,24q k ≤−,于是(2)(1)2qn x r k x r k x ≤⋅+≤−+<−,与③矛盾.综上可知,反证法假设不成立,结论获证. …………………50分四、(本题满分50分) 数列{}n a 定义如下:1a 是任意正整数, 对整数1n ≥, 1n a +是与1ni i a =∑互素,且不等于1,,n a a 的最小正整数.证明:每个正整数均在数列{}n a 中出现.证明:显然11a =或21a =.下面考虑整数1m >,设m 有k 个不同素因子,我们对k 归纳证明m 在{}n a 中出现.记1n n S a a =++,1n ≥.1k =时,m 是素数方幂,设m p α=,其中0α>,p 是素数.假设m 不在{}n a 中出现.由于{}n a 各项互不相同,因此存在正整数N ,当n N ≥时,都有n a p α>.若对某个n N ≥,n p S ,那么p α与n S 互素,又1,,n a a 中无一项是p α,故由数列定义知1n a p α+≤,但是1n a p α+>,矛盾!因此对每个n N ≥,都有|n p S .但由1|n p S +及|n p S 知1|n p a +,从而1n a +与n S 不互素,这与1n a +的定义矛盾. …………………10分假设2k ≥,且结论对1k −成立.设m 的标准分解为1212k km p p p ααα=.假设m 不在{}n a 中出现,于是存在正整数N ′,当n N ′≥时,都有n a m >.取充分大的正整数11,,k ββ−,使得11111max k k n n N M p p a ββ−−′≤≤=> .我们证明,对n N ′≥,有1n a M +≠. …………………20分对任意n N ′≥,若n S 与12k p p p 互素,则m 与n S 互素,又m 在1,,n a a 中均未出现,而1n a m +>,这与数列的定义矛盾.因此我们推出:对任意n N ′≥,n S 与12k p p p 不互素.()∗情形1.若存在(11)i i k ≤≤−,使得|i n p S ,因1(,)1n n a S +=,故1i n p a +,从而1n a M +≠(因|i p M ). …………………30分 情形2.若对每个(11)i i k ≤≤−,均有i n p S ,则由()∗知必有|k n p S .于是1k n p a + ,进而1k n n p S a ++,即1k n p S +.故由()∗知,存在00(11)i i k ≤≤−,使得01|i n p S +,再由11n n n S S a ++=+及前面的假设(11)i n p S i k ≤≤−,可知01i n p a +,故1n a M +≠. …………………40分因此对1n N ′≥+,均有n a M ≠,而1max n i N M a ′≤≤>,故M 不在{}n a 中出现,这与归纳假设矛盾.因此,若m 有k 个不同素因子,则m 一定在{}n a 中出现.由数学归纳法知,所有正整数均在{}n a 中出现. …………………50分。

2018年全国高中数学联赛试题及答案详解(A卷)

2018年全国高中数学联赛试题及答案详解(A卷)


2,
4,
6,,
48

故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为

答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ


tan
OQP



3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为

答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1

an
(2Sn

(完整版)【解析版】2018年高考上海卷数学试题

(完整版)【解析版】2018年高考上海卷数学试题

2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2 •选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4 •考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)4 11. 行列式'门的值为___________________________X22~~ y ■ == 12. 双曲线4 ■的渐近线方程为________3. •的二项展开式中-的系数为____________________ (结果用数值表示)4. 设常数,■',函数汀-竺二泊吻【X *茂.:,若虑的反函数的图像经过点,则5. 已知复数H满足11 + i) ' = 1 _丄是虚数单位),则国=________________________________6. 记等差数列'的前••项和为「,若I ' _ 1 ,则Sj =(认+x )上递减,则c 二8.在平面直角坐标系中,已知点■ ' ' ■ !' ■'是■轴上的两个动点,且9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为 ______________ (结果用最简分数表示)考生应在答题纸的相应位置,将代表正确选项的小方格涂黑a E7.已知丨.若函数=書"为奇函数,且在,则.-.最小值为10.设等比数列■;的通项公式为'~ '(” €),前口项和为孔,若lim —1-,则'f (J :)= -----11.已知常数筮紳那,函数… ;‘十心-的图像经过点若’''■12.已知实数 X 1, X 2, y 1, y 2 满足:X 12y 121,血22 . 1 M .7211X 1X 271722,则二、选择题(本大题共有 4题,满分20分, 每题5分)每题有且只有一个正确选项2 213.设p是椭圆—"^―5 31上的动点p到该椭圆的两个焦点的距离之和为()A. 2.2 B. 2 一3 D. 4.214.已知a R,则“ a1 1 ”是“-aB.必要非充分条件 D.既非充分又非必要条件15•《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2018年上海市高三数学竞赛试题

2018年上海市高三数学竞赛试题

2018年上海市高三数学竞赛试题时间:2小时,满分:120分 姓名一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是 .2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x = .3.已知椭圆22221(0)x y a b a b+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为 .4.设集合111111{,,,,,}2711131532A =的非空子集为1263,,,A A A L ,记集合i A 中的所有元素的积为(1,2,,63)i p i =L (单元数集的元素积是这个元素本身),则1263p p p +++L = .5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是 .6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,则M m -= .7.在三棱锥P ABC -中,已知1,AB AC PB PC ====则22ABC PBC S S ∆∆+的取值范围是 .8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k =L ,这里12201812018a a a >>>=L ,且⊙k A 与⊙1k A +外切(1,2,,2017)k =L ,则1a = . 二、解答题(本大题满分60分,每小题15分)9.已知三个有限集合,,A B C 满足A B C =∅I I .(1)求证:1()2A B C A B C ≥++U U (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.11.设,,,a b c d 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的最小值.12.设n 为给定的正整数,考虑平面直角坐标系xoy 中的点集{(,),,}T x y x y n x y Z ==≤∈对T 中的两点,P Q ,当且仅当PQ =PQ 与两条坐标轴之一平行时,称,P Q 是“相邻的”,将T 中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.。

上海市2018年高考[数学]考试真题与答案解析

上海市2018年高考[数学]考试真题与答案解析

上海市2018年高考:数学考试真题与答案解析一、填空题本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果。

1.行列式的值为 18 .答案解析:行列式=4×5﹣2×1=18.故答案为:18.2.双曲线﹣y2=1的渐近线方程为 ± .答案解析:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±3.在(1+x)7的二项展开式中,x2项的系数为 21 (结果用数值表示).答案解析:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.4.设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a= 7 .答案解析:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.5.已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .答案解析:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.6.记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7= 14 .答案解析:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.7.已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α= ﹣1 .答案解析:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.8.在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为 ﹣3 .答案解析:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).答案解析:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.10.设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q= 3 .答案解析:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.11.已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .答案解析:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.12.已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 + .答案解析:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.二、选择题本大题共有4题,满分20分,每题5分,每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市高三数学竞赛试题
时间:2小时,满分:120分 姓名
一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)
1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是 .
2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x = .
3.已知椭圆22
221(0)x y a b a b
+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为 .
4.设集合111111{,,
,,,}2711131532
A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i =(单元数集的元素积是这个元素本身),则1263p p p +++= . 5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是 .
6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,则M m -= .
7.在三棱锥P ABC -中,已知1,AB AC PB PC ====则22ABC PBC S S ∆∆+的取值范围是 .
8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4
k a k =,这里12201812018
a a a >>>=,且⊙k A 与⊙1k A +外切(1,2,,2017)k =,则1a = . 二、解答题(本大题满分60分,每小题15分)
9.已知三个有限集合,,A B C 满足A B C =∅.
(1)求证:1()2A B C A B C ≥++(这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.
10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.
11.设,,,a b c d 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的最小值.
12.设n 为给定的正整数,考虑平面直角坐标系xoy 中的点集
{(,),,}T x y x y n x y Z ==≤∈对T 中的两点,P Q ,当且仅当PQ =PQ 与两条坐标轴之一平行时,称,P Q 是“相邻的”,将T 中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.。

相关文档
最新文档