八年级数学竞赛例题专题讲解8:分式方程 含答案
初二数学分式方程试题答案及解析
初二数学分式方程试题答案及解析1.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳下,则可列关于的方程为.【答案】【解析】本题考查了分式方程的应用.如果设小林每分钟跳x下,那么小群每分钟跳(x+20)下.题中有等量关系:小林跳90下所用的时间=小群跳120下所用的时间,据此可列出方程.解:由于小林每分钟跳x下,所以小群每分钟跳(x+20)下.根据相同时间内小林跳了90下,小群跳了120下,可知2.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程①②72-x=③x+3x="72" ④上述所列方程,正确的有()个A 1B 2C 3D 4【答案】C【解析】本题主要考查了分式方程的应用. 关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72-x=,故①②④正确,故正确的有3个,故选C.3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【答案】A【解析】本题主要考查了分式方程的应用. 根据题意,得到甲、乙的工效都是.根据结果提前3天完成任务,知:整个过程中,甲做了(x-3)天,乙做了(x-5)天.再根据甲、乙做的工作量等于1,列方程求解.解:根据题意,得解得x=8,经检验x=8是方程的解.故选A4.解方程:(1)(2)【答案】(1)(2)x=2是增根,原方程无解【解析】本题主要考查了解分式方程.根据方程两边都乘最简公分母,可把分式方程转换为整式方程.(1)方程两边都乘(x-2)(x+2),得x(x+2)+6(X-2)= (x-2)(x+2)解得:x=1经检验是原方程的解.∴方程的解为x=1(2)方程两边都乘3(x-2),得3(5x-4) = 4X+10-3(x-2)解得:x=2经检验x=2是增根.∴原方程无解5.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)乙队单独完成该工程省钱【解析】本题主要考查了分式方程的应用. (1)根据甲、乙合做24天可完成列方程求解(2)分别求出各个条件的工程款进行比较.解:设乙队单独完成这项工程需要x天根据题意得:解得:x=90(2)甲队工程款:60 3.5=210万元, 乙队工程款:902=180万元设甲乙两队全程合作完成该工程需要y天解得:y=36合作工程款: (3.5+2) 36=198万元故乙队单独完成该工程省钱6.当______时,的值等于.【答案】3【解析】本题主要考查了解分式方程. 由题意可得分式方程=,方程两边同乘以2(5+x),去分母,化为整式方程求解.解:由题意可得分式方程:=,方程两边同乘以2(5+x),得2(1+x)=5+x,整理得x=3,经检验,原方程的解为x=3.7.当______时,的值与的值相等.【答案】-1【解析】本题主要考查了解分式方程. 由题意可得分式方程=,方程两边同乘以(4-x),去分母,化为整式方程求解.解:由题意可得分式方程:=,方程两边同乘以(4-x),得4-2x=5-x,整理得x=-1,经检验,原方程的解为x=-1.8.若方程的解是最小的正整数,则的值为________.【答案】【解析】本题主要考查了解分式方程.把最小的正整数1代入方程,求得关于a的值解:把x=1代入方程得:解得:a=-19.解分式方程,去分母后所得的方程是()A.B.C.D.【答案】C【解析】本题主要考查了解分式方程.本题的最简公分母是3x,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘3x,得1-3(2x+1)=69x.故选C.10.若关于的方程无解,求的值.【答案】【解析】本题主要考查了分式方程的解.关于x的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3,据此即可求解解:去分母得:x-2(x-3)=k解得:x=6-k根据题意得:6-k=3解得:k=311.“十一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【答案】(1)优惠率为32.5%;(2)标价750元【解析】本题考查了分式方程的应用.(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程,解方程即可解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为:=0.325=32.5%;(2)设西服标价x元,根据题意得,解之得x=750经检验,x=750是原方程的根.∴该套西装的标价是750元12.新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x天,根据题意可列方程.【答案】【解析】本题主要考查了由实际问题抽象出分式方程.根据两台合播,1天播完这块地的另一半,列方程即可解:设乙型播种单独播完这块地需要x天,根据题意可列方程13.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林公顷,根据题意列方程正确的是()A. B.B. D.【答案】B【解析】本题主要考查了由实际问题抽象出分式方程.有工作总量240,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“提前5天完成任务”.等量关系为:原计划用的时间-实际用的时间=5.解:原计划用的时间为:时间用的时间为:那么根据等量关系方程为故选B14.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.【答案】(1)60天,(2)24天【解析】本题主要考查分式方程的应用. 等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:()y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.15.某单位将沿街的一部分房屋出租作为店面房,每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)求出租的房屋总间数;(2)分别求历年每间房屋的租金.【答案】(1)12间,(2)8000元、8500元【解析】本题主要考查分式方程的应用.等量关系为:第二年的房租总价÷单价-第一年的房租总价÷单价=500.设出租房屋x间.则根据题意列方程得:=500.解得:x=12.经检验:x=12是原方程的解.所以第一年租金为96000÷12=8000;第二年租金为102000÷12=8500.16.分式方程的解为.【答案】【解析】本题主要考查了解分式方程.观察可得这个分式方程的最简公分母为(2-x),去分母,转化为整式方程求解.结果要检验.解:两边都乘以(2-x),得x-1-(2-x)=-3,解方程得x=0.经检验x=0是原方程的根.17.解分式方程,去分母后所得的方程是()A.B.C.D.【答案】C【解析】本题主要考查了解分式方程.本题的最简公分母是2x,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘2x,得1-2(3x+1)=6x.故选C18.解方程:(1);(2).【答案】(1);(2)无解【解析】本题主要考查了解分式方程.根据去分母,转化为整式方程求解解:(1)方程两边都乘x(x-1),得(x-1)2-2x2="-" x(x-1)解得:x=经检验是原方程的解.∴原方程的解为x=(2)方程两边都乘x2-1,得2(x-1)+3(x+1)=6解得:x=1经检验x=1是增根∴原方程无解.19.若方程的一个解为,求代数式的值.【答案】【解析】本题主要考查了分式方程的解.把x的值代入原方程,得到一个关于k的方程,直接解答求出k即可.解:原方程化为整式方程得:2x(x-1)-k(x-2)=2(x-1)(x-2)∵x=-2代入得:k=3当k=3时,=3+=.20.已知关于的方程的解为正数,求的取值范围.【答案】m<-2且m≠-4【解析】本题主要考查了分式方程的解.用含有m的代数式表示x,然后根据x的取值,求m的范围.解:∵原分式方程有解,∴x≠2,解分式方程得,x=-m-2∵原方程的解为正数,∴x>0,即-m-2>0∴m<-2,∵x≠2,∴-m-2≠2,即m≠-4.故答案为:m<-2且m≠-4.。
初二数学分式方程的解与不等式组(含答案)
初二数学分式方程的解与不等式组一选择题1.若关于x的不等式组有解,关于y的分式方程有整数解,则符合条件的所有整数a的和为()A.3 B.4 C.8 D.92.关于x的不等式组有且仅有四个整数解,且关于x的分式方程﹣=1有非负整数解,则符合条件的所有整数m的和是()A.8 B.9 C.11 D.7 3.若关于x的一元一次不等式组的解集为x≥3,且关于y的分式方程有正整数解,则所有满足条件的整数a的值之和是()A.10 B.12 C.18 D.20 4.若实数a使得关于x的分式方程的解为负数,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和为()A.6 B.5 C.4 D.1 5.若关于x的一元一次不等式组的解集恰好有1个负整数解,且关于y的分式方程=1有非负数解,则符合条件的所有整数a的和为()A.5 B.6 C.9 D.106.关于x的不等式组有解且至多有4个整数解,关于y的分式方程的解为整数,则所有满足条件的整数a的和为()A.4 B.8 C.11 D.157.若关于x的方程的解为负数,且关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.3 B.2 C.1 D.08.若关于x的一元一次不等式组的解集为x≤﹣5,且关于x的分式方程有正整数解,则符合条件的所有整数a的和为()A.-6 B.-4 C.-2 D.0二填空题9.若关于x的一元一次不等式组有解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为.10.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解.则满足条件的所有整数m的和是.11.若实数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y>a,求符合条件的所有整数a的和为.12.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程有正数解,则所有满足条件的整数a的和为.13.若数a关于x的不等式组恰有两个整数解,且使关于y的分式方程的解为正数,则所有满足条件的整数a的值之和是.14.若数a使关于x的分式方程的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为.15.若关于x的一元一次不等式组的解集为x≥m;且关于y的分式方程有负整数解,则所有满足条件的m的整数值之和是.16.如果关于x的不等式组的解集为x<1,且关于x的分式方程有非负整数解,则符合条件的m的所有值的和是.17.若关于x的不等式组有且仅有4个整数解,且使得关于y的分式方程﹣1=有整数解,则满足条件整数a的和为.18.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是.19.若关于x的不等式组有且只有五个整数解,且关于y的分式方程=1的解为非负整数,则符合条件的所有整数a的和为.20.已知不等式组的解集为﹣1<x<1,且关于y的方程+1=的解为正数,则m的取值范围是.初二数学分式方程的解与不等式组参考答案与解析1.分析:解不等式组可得a≤5,解分式方程可得y=,由题意可求符合条件的a的值有1,3,0,4,5,﹣4.解:,由①得,x≤7,由②得,x≥2+a,∵方程有解,∴7≥2+a,∴a≤5;,ay﹣2y+4=﹣2,(a﹣2)y=﹣6,y=,∵方程有整数解,∴2﹣a=±1或2﹣a=±2或2﹣a=±3或2﹣a=±6,解得a=1,3,0,4,﹣1,5,﹣4,8,∵y≠2,∴2﹣a≠3,∴a≠﹣1,∴a=1,3,0,4,5,﹣4,∴符合条件的所有整数a的和为9,故选:D.2.分析:解不等式组和分式方程得出关于x的范围及x的值,根据不等式组有且仅有三个整数解和分式方程的解为非负整数得出m的值,即可求解.解:解不等式m﹣4x>4,得:x<,解不等式x﹣<3(x+),得:x>,∵不等式组有且仅有四个整数解,∴0<≤1,解得:4<m≤8,解关于x的分式方程﹣=1,得:x=,∵分式方程有非负整数解,且≠2,m﹣1≠0,解得:m=7,所以所有满足条件的整数m值的和为7.故选:D.3.分析:首先根据不等式组的已知解集求出a的取值范围,然后利用分式方程的正整数解求出a的取值范围,最后结合两个条件即可求出a的所有正整数解决问题.解:,解①得:x≥3,解②得:x>,∵x的一元一次不等式组的解集为x≥3,∴<3,∴a<8,∵,∴y=,此方程有正整数解,∴a﹣2>0,∴a>2,∴2<a<8,∴a的整数解且使y有正整数解有a=4或6,∴所有满足条件的整数a的值之和是10.故选A.4.分析:首先分别根据分式方程的解为负数和不等式组至少有三个整数解求出a的取值范围,然后取整即可解决问题.解:,去分母得2+2(x+1)=a﹣x,∴x=,而此方程的解为负数,∴x=<0,且x=≠﹣1,∴a<4且a≠1,,解①得y≥﹣,解②得y<a+1,又不等式至少有三个整数解,∴0<a+1,∴﹣1<a,∴﹣1<a<4且a≠1,∴整数a的值有0,2,3,∴符合条件a的值的和为5.故选B.5.分析:首先根据不等式组的解集的条件求出a的取值范围,然后根据分式方程的解为非负数求出a的取值范围,最后求出满足所有条件的a的取值范围即可解决问题.解:,解①得x≥,解②得x<﹣1,而不等式组的解集恰好有1个负整数解,∴﹣3<≤﹣2,∴1<a≤4,=1,解之得y=,又分式方程有非负数解,∴x=≥0,且x=≠1,∴a≥﹣1且a≠3,∴1<a≤4,且a≠3,∴a的整数值有2,4,∴符合条件的所有整数a的和为6.故选B.6.分析:求出不等式组的解集,根据解集的限制条件确定a的取值范围,再解关于y的分式方程,是分式方程的解为整数,进而确定a的取值,再进行计算即可.解:解关于x的不等式组得,,所以﹣2≤x≤,由于这个关于x的不等式组有解且至多有4个整数解,∴﹣2≤<2,∴﹣3≤a<5,解关于y的分式方程的解为y=,由于这个分式方程的解是整数,且y≠3,∴2a﹣5=±1或2a﹣5=﹣3或2a﹣5=±9,当2a﹣5=±1时,a=3或a=2,当2a﹣5=﹣3时,a =1,当2a﹣5=±9时,a=7或a=﹣2,又∵a为整数,且﹣3≤a<5,∴a=3或a=2或a =1或a=﹣2,∴所有满足条件的整数a的和为3+2+1﹣2=4,故选:A.7.分析:分别解分式方程和不等式组,从而得出a的范围,从而得整数a的取值,进而得所有满足条件的整数a的值之积.解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1),解得:x=﹣2a﹣1,∵解为负数,∴﹣2a﹣1<0,∴a>﹣,∵当x=1时,a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:,∵不等式组无解,∴a≤2,∴a的取值范围为:﹣<a≤2,且a≠0,∴满足条件的整数a的值为:1,2,∴所有满足条件的整数a的值之积是2.故选:B.8.分析:先求出每个不等式的解集,再根据关于x的一元一次不等式组的解集为x≤﹣5,列3+2a>﹣5,求出解集;解分式方程得x=﹣,再根据关于x的分式方程有正整数解,x≠3,求出a<2,a≠﹣2,综合两个解集得4<a<2且a≠﹣2,再根据分式方程有正整数解,求出a.解:,解不等式①,得x≤﹣5,解不等式②,得x<3+2a,∵关于x的一元一次不等式组的解集为x≤﹣5,∴3+2a>﹣5,∴a>﹣4,原分式方程化为:+2=,2+ax+2(3﹣x)=﹣4,解得:x=﹣,∵关于x的分式方程有正整数解,x≠3,∴﹣>0,﹣≠3,解得a<2,a≠﹣2,综上所述:﹣4<a<2且a≠﹣2,∵关于x的分式方程有正整数解,∴a﹣2=﹣12,a﹣2=﹣6,a﹣2=﹣3,a﹣2=﹣4,a﹣2=﹣2,a﹣2=﹣1,∴a=﹣10,a=﹣4,a=﹣1,a=﹣2,a=0,a=1,∵﹣4<a<2且a≠﹣2,∴a=﹣1或a =0或a=1,﹣1+0+1=0,故选:D.9.分析:由一元一次不等式组有解,可求出a的范围,根据分式方程=1有非负整数解,可得a的值,即可得答案.解:由一元一次不等式组得x<5且x≥2a+1,∵一元一次不等式组有解,∴2a+1<5,∴a<2,解分式方程=1得y=,∵y﹣1≠0,即y≠1,∴≠1,∴a≠﹣6,∵分式方程=1有非负整数解,∴是非负整数,∴a的值为0或﹣2或﹣4或﹣8,∴符合条件的所有整数a的和为0+(﹣2)+(﹣4)+(﹣8)=﹣14.故答案为:﹣14.10.分析:先解不等式组得﹣5≤x<m,再由题意可知﹣2≤m≤3;再解分式方程得x=,由方程有整数解,则3m﹣1是2的倍数,因为x≠1,所以m≠1,则可求满足条件的整数为2.解:,由①得,x≥﹣5,∵不等式组至少有3个整数解,∴﹣2≤m,∵2x﹣5≤1的解集是x≤3,∴m≤3,∴﹣2≤m≤3,,方程两边同时乘x﹣1,得4x﹣2﹣3m+1=2x﹣2,移项、合并同类项得,2x=3m﹣1,解得x=,∵分式方程有整数解,∴3m﹣1是2的倍数,∵x≠1,∴m≠1,∵m是整数,∴m=﹣1,3,∴满足条件的所有整数m的和是2,故答案为:2.11.分析:先解分式方程得x=,再由题意可得>0,且≠1,可求得a<6且a≠2;再解不等式组,结合题意可得a>1,则可得所有满足条件的整数为1,3,4,5,求和即可.解:+=4,2﹣a=4(x﹣1),2﹣a=4x﹣4,4x=6﹣a,x=,∵方程的解为正数,∴6﹣a>0,∴a<6,∵x≠1,∴≠1,∴a≠2,∴a<6且a≠2,,由①得y≥1,由②得y>a,∵不等式组的解集为y>a,∴a≥1,∴符合条件a的整数有1,3,4,5,∴符合条件的所有整数a的和为13,故答案为:13.12.分析:解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a的整数解为3,4,6,和为13.解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为≤x<5,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x−1)得:ax−2−3=x−1,解得:x=,∵x−1≠0,∴x≠1,∵方程有正数解,∴>0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,∴3+4+6=13,故答案为:13.13.分析:解不等式组得≤a≤2,根据其有两个整数解得出0<≤1,解之求得a的范围;解分式方程求出y=2a﹣1,由解为正数且分式方程有解得出,解之求得a的范围;综合以上a的范围得出a的整数值,从而得出答案.解:解不等式﹣1≤(x﹣2),得:x≤2,解不等式3x﹣a≥2(1﹣x),得:x≥,∵不等式组恰有两个整数解,∴0<≤1,解得﹣2<a≤3,解分式方程,得y =2a﹣1,由题意知,解得a>且a≠1,则满足﹣2<a≤3,且a>且a≠1的所有整数有2、3,所以所有满足条件的整数a的值之和是2+3=5,故答案为:5.14.分析:解分式方程得出x=,由关于x的分式方程的解为正数,得出>0且≠1,解得:a<6且a≠2,解不等式组及关于y的不等式组的解集为y<﹣2,得出a≥﹣2,进而得出﹣2≤a<6且a≠2,再由a为整数,得出a=﹣2、﹣1、0、1、3、4、5,进一步求出它们的和,即可得出答案.解:去分母得:2﹣a=4(x﹣1),∴x=,∵关于x的分式方程的解为正数,∴>0且≠1,解得:a<6且a≠2,,解不等式①得:y<﹣2,解不等式②得:y≤a,∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2,∴﹣2≤a<6且a≠2,∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,﹣2﹣1+0+1+3+4+5=10,故答案为:10.15.分析:化简一元一次不等式组,根据解集为x≥m得到m的取值范围;解分式方程,根据解是负整数,且不是增根,确定整数m的取值,从而求解.解:,解不等式①,得:x≥﹣7,解不等式②,得:x≥m,又∵不等式组的解集为x≥m,∴m≥﹣7,分式方程去分母,得:3y+4﹣(y+2)=m﹣y,解得:y=,又∵分式方程有负整数解,且y≠﹣2,∴符合条件的整数m可以取﹣7,﹣1,其和为﹣7+(﹣1)=﹣8,故答案为:﹣8.16.分析:先根据不等式组的解求m的范围,再根据分式方程的整数解求m.解:,由①得:x<m,由②得:x﹣4>3x﹣6.∴x<1.∵原不等式组的解集为:x<1.∴m≥1.∵﹣=3.∴x+2﹣m=3x﹣3.∴x=,∵方程的解是非负整数,∴符合条件的整数m为:1,3,5.当m=3是,x=1,x﹣1=0不合题意,∴m=1,5.1+5=6.故答案为:6.17.分析:解关于x的不等式组,然后根据“该不等式组有且仅有4个整数解”,确定a的取值范围,解分式方程并根据分式方程解的情况,结合a为整数,取所有符合题意的整数a,即可得到答案.解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故答案为:﹣2.18.分析:解一元一次不等式组的解集,根据不等式组的解集为x≥6,列出<6,求出a 的范围a<7;解出分式方程的解,根据方程的解是正整数,列出>0,求得a的范围a >﹣5;检验分式方程,列出≠1,即a≠﹣3,求得a的范围﹣5<a<7,且a≠﹣3,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴<6,∴a<7,分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴≠1,∴a≠﹣3,∴﹣5<a<7且a≠﹣3,∴能是正整数的a是:﹣1,1,3,5,∴所有满足条件的整数a 的值和为8,故答案为:8.19.分析:解不等式组,利用已知条件得到a的不等式,利用分式方程的解为非负整数点的关于a的不等式,将两个不等式组成新的不等式组,解不等式组取整数解即可.解:解x的不等式组得:<x≤6.∵若关于x的不等式组有且只有五个整数解,∴1≤<2.关于y的分式方程=1的解为:y=.∵关于y的分式方程=1可得产生增根2,∴≠2.∵关于y的分式方程=1的解为非负整数,∴≥0且≠2.∴.解得:4<a≤8.∵a为整数,且为整数,∴a=6,8.∴符合条件的所有整数a的和为:6+8=14.故答案为:14.20.分析:先解不等式,求出解集,进行比对,列出关于a,b的方程,求出a、b的值.然后解分式方程,根据解为正数和方程最简公分母不等于零,可以确定m的取值范围.解:不等式组,解得,即2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,=1,解得:a=1,b=﹣2.∴分式方程为:,去分母得:2﹣y+1﹣2y=m,解得:y=,∵解为正数,∴>0,且1﹣≠0.∴m<3,.故答案为m <3,且.。
初二数学分式方程试题答案及解析
初二数学分式方程试题答案及解析1.已知关于x的分式方程无解,则m=_____________。
【答案】m=1.5【解析】去分母得:x-2x+6=2m,根据分式方程无解,得到x-3=0,即x=3,将x=3代入整式方程得:3-6+6=2m,解得:m=1.5,【考点】分式方程的解2.(1)解分式方程:(2)如图,点A,B在数轴上,它们所对应的数分别是和,且点A,B到原点的距离相等,求的值.【答案】(1)x=6;(2)x的值为3.【解析】(1)根据分式方程的解法求解;(2)根据题意可得:=2,求解x的值即可.试题解析:(1)去分母得:2x=3x﹣6,解得:x=6,经检验,x=6是原分式方程的解,即原方程的解为:x=6;(2)由题意得,=2,去分母得,1﹣x=4﹣2x,解得:x=3,经检验,x=3是原方程的解,即x的值为3.【考点】分式方程的应用.3.关于的方程的解是负数,则的取值范围是.【答案】m<5且m≠0.【解析】求出分式方程的解x=m-5,得出m-5<0,求出m的范围,根据分式方程得出n-2≠-5,求出n,即可得出答案.试题解析:,解方程得:x=m-5,∵关于x的方程的解是负数,∴m-5<0,解得:m<5,又∵原方程有意义的条件为:x≠-5,∴m-5≠-5,即m≠0.∴m<5且m≠0.【考点】分式方程的解.4.关于的方程的解是负数,则的取值范围是()A.B.C.D.【答案】B.【解析】方程去分母得,a=x+1,解得,x=a-1,∵x<0,∴a-1<0即a<1,又a≠0则a的取值范围是a<1且a≠0.故选B.【考点】分式方程的解.5.解方程【答案】无解.【解析】因为2-1=(+1)(-1),所以方程最简公分母为:. 故方程两边乘以,化为整式方程后求解,最后检验.试题解析:去分母,得,解得.∵当时,,∴是方程的增根.∴原方程无解.【考点】解分式方程.6.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【答案】(1)5;(2)1650,甲超市销售方式更合算.【解析】(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x的值,再进行检验即可求出答案;(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可.试题解析:解:(1)设苹果进价为每千克x元,根据题意得:400x+10%x(-400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分别为10元和5.5元,则乙超市获利600×(-5)=1650(元),∵甲超市获利2100元,∴甲超市销售方式更合算.【考点】分式方程的应用.7.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x下,则可列关于x的方程为.【答案】=【解析】要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“相同时间内小林跳了90下,小群跳了120下”;等量关系为:小林跳90下的时间=小群跳120下的时间.解:小林跳90下的时间为:,小群跳120下的时间为:.所列方程为:.点评:题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.8.一项工程要在限期内完成,若第一组单独做,则恰好在规定日期完成,若第二组单独做,则超过规定日期4天才能完成,若两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成,问规定日期是多少天?【答案】12天【解析】设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,根据“两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成”即可列方程求解.解:设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,由题意得解得:经检验:是原方程的解答:规定日期为12天。
初二数学分式方程精华题(含答案)
初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。
2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。
3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。
4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。
将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。
5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。
初二数学分式方程试题答案及解析
初二数学分式方程试题答案及解析1.关于x的分式方程+3=有增根,则增根为()A.x=1B.x=﹣1C.x=3D.x=﹣3【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选A.2.分式方程=有增根,则m的值为()A.0和3B.1C.1和﹣2D.3【答案】D【解析】根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0,方程无解,∴m=3.故选D.3.若分式方程有增根,则m的值是()A.﹣1或1B.﹣1或2C.1或2D.1或﹣2【答案】D【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x(x+1)=0,所以增根是0或﹣1,把增根代入化为整式方程的方程即可求出未知字母的值.解:方程两边都乘x(x+1),得2x2﹣(m+1)=(x+1)2∵最简公分母x(x+1)=0,∴x=0或x=﹣1.当x=0时,m=﹣2;当x=﹣1时,m=1.故选D.4.如果方程有增根,那么m的值等于()A.﹣5B.4C.﹣3D.2【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣4)=0,得到x=4,然后代入化为整式方程的方程算出m的值.解:方程两边都乘(x﹣4),得x+1+(x﹣4)=﹣m∵原方程有增根,∴最简公分母(x﹣4)=0,解得x=4,当x=4时,m=﹣5.故选A.5.分式方程会产生增根,则m=()A.﹣10B.﹣3C.﹣10或﹣4D.﹣4【答案】C【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+1)(x﹣1)=0,得到x=1或﹣1,然后代入化为整式方程的方程算出未知字母的值.解:方程两边都乘(x﹣1)(x+1),得2(x﹣1)﹣5(x+1)=m∵原方程有增根,∴最简公分母(x+1)(x﹣1)=0,解得x=﹣1或1,当x=﹣1时,m=﹣4,当x=1时,m=﹣10,故选C.6.若解分式方程产生増根.则m等于()A.1B.0C.﹣4D.﹣5【答案】D【解析】首先去分母,进而得出x与m的关系,进而利用分式方程有增根,则x=﹣4,即可得出m的值.解:去分母得:x﹣1=m,∴x=1+m,∵解分式方程产生増根,∴x=﹣4,∴﹣4=1+m,解得:m=﹣5.故选:D.7.方程的增根可能是()A.﹣2B.﹣1C.1D.2【答案】D【解析】将方程右边第一项分母提取﹣1变形后,两边都乘以x﹣2去分母后,去括号移项,将x 系数化为1,求出x=2,可得出分式方程的增根为2.解:原方程变形得:,去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,将x=2代入检验得到x﹣2=2﹣2=0,则x=2是分式方程的增根,原分式方程无解.故选D8.若解关于x的方程有增根,则m的值为()A.﹣5B.5C.﹣2D.任意实数【答案】A【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5))=0,得到x=5,然后代入化为整式方程的方程算出m的值.解:方程两边都乘(x﹣5),得x=3(x﹣5)﹣m,∵原方程有增根,∴最简公分母x﹣5=0,解得x=5,当x=5时,m=﹣5,故m的值是﹣5.故选A.9.若解分式方程出现增根,则增根一定是()A.0B.0或2C.2D.1【答案】B【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,故分式方程的增根满足两个条件:使分式方程的分母为0;是分式方程化为整式方程后那个整式方程的根.解:方程两边都乘x(x﹣2),得x2=2(x﹣2)+m,∵原方程有增根,∴最简公分母x(x﹣2)=0,解得x=0或2,当x=0时,0=﹣4+m,m=4,符号题意,当x=2时,4=m,符合题意,故增根可能是0或2.故选B.10.若分式方程:有增根,则k=.【答案】1【解析】把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.11.已知关于x的分式方程=1有增根,则a=.【答案】1【解析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.12.已知关于x的分式方程=2有增根,则a=.【答案】-1【解析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x,然后代入进行计算即可得解.解:方程两边都乘以(x﹣3)得,a+1=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴a+1=2×(3﹣3),解得a=﹣1.故答案为:﹣1.13.已知方程有增根,则k=.【答案】-【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(2+x)(2﹣x)=0,所以增根是x=2或﹣2,把增根代入化为整式方程的方程即可求出k 的值.解:方程两边都乘(2+x)(2﹣x),得1+2×(2+x)(2﹣x)=﹣k(2+x)∵原方程有增根,∴最简公分母(2+x)(2﹣x)=0,∴增根是x=2或﹣2,当x=2时,k=﹣;当x=﹣2时,k无解.14.关于x的方程=0有增根,则m=.【答案】9【解析】首先将方程化为整式方程,求出方程的根,若方程有增根,则方程的根满足分母x2﹣m=0,由此求得m的值.解:方程两边都乘以(x2﹣m),得:x﹣3=0,即x=3;由于方程有增根,故当x=3时,x2﹣m=0,即9﹣m=0,解得m=9;故答案为:m=9.15.若关于x的方程有增根,则m的值是.【解析】方程两边都乘以最简公分母(x﹣2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解:方程两边都乘以(x﹣2)得,2﹣x﹣m=2(x﹣2),∵分式方程有增根,∴x﹣2=0,解得x=2,∴2﹣2﹣m=2(2﹣2),解得m=0.故答案为:0.16.分式方程有增根x=1,则k的值为.【答案】-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.解:化为整式方程得:x(x+1)+k(x+1)﹣x(x﹣1)=0,当x=1时,k=﹣1.17.关于x的方程有增根,则m的值为.【答案】3【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出m的值.解:方程两边都乘x﹣3,得x=2(x﹣3)+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,当x=3时,3=2×(3﹣3)+m,m=3.故答案为3.18.若关于x的方程产生增根,则m的值为.【答案】4【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x﹣2),得x+1=m﹣1,∵原方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=4.19.当m=时,方程会产生增根.【答案】3【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x+3=0,所以增根是x=﹣3,把增根代入化为整式方程的方程即可求出未知字母的值.解:方程两边都乘(x+3),得x=2(x+3)﹣m,∵方程有增根,∴最简公分母x+3=0,即增根是x=﹣3,把x=﹣3代入整式方程,得m=3.20.若关于x的方程有增根,则k的值为.【答案】1【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程即可算出k的值.解:方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,把x=3代入k+2(x﹣3)=4﹣x,得k=1.故答案为1.。
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题(解析版)
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题)1.当x 分别取2020、2018、2016、…、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得结果相加,其和等于( ) A .1-B .1C .0D .2020【答案】A【分析】 先把互为倒数的两个数代入并求和,得0,再把没有倒数的0代入即可.【详解】解:把2020代入11x x -+,得20192021, 把12020代入11x x -+,得20192021-,相加得零, 设x=a (a≠0)代入11x x -+,得11a a -+, 把x=1a 代入11x x -+,得11a a --+, 故互为倒数的两个数代入分式后,和为0,把0代入11x x -+,得-1, 故选:A .【点睛】本题考查了分式求值运算和数字规律,解题关键是通过计算发现互为倒数的两个数代入分式后,和为0.2.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】 解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由①得:36x x -+>2,-2x ∴->8,-x \<4,由②得:a x +<2,xx \>,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4,13244ay y y -+=---Q , ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B【点睛】本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.3.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t +分钟B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟 【答案】C【分析】 根据题意得到队伍的速度为2a t ,队尾战士的速度为12a a t t +,可以得到他从最前头跑步回到队尾,那么他需要的时间是122aa a a t t t ++,化简即可求解 【详解】 解:由题意得:12212122t a a a a t t t t t t =+++分钟. 故选:C【点睛】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键.4.已知113x y -=,则分式5xy 5xy y x y x+---的值为( ) A .8B .72C .53-D .4【答案】A【分析】 由113x y-=,得3y x xy -=,3x y xy -=-.代入所求的式子化简即可. 【详解】 解:由113x y-=,得3y x xy -=, ∴555()15168()32y xy x y x xy xy xy xy y xy x y x xy xy xy xy+--++====-----. 故选:A .【点睛】本题解题关键是用到了整体代入的思想.5.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【分析】 先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得. 【详解】 解:21M N x x ++- =()()()()1221M x N x x x -+++-=()()222M N x M N x x ++-++- ∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.6.如果2220x x +-=,那么代数式214422x x x x x x -+⋅--+的值为( ) A .2-B .1-C .1D .2【答案】A【分析】 由2220x x +-=可得222x x +=,再化简214422x x x x x x -+⋅--+,最后将222x x +=代入求值即可.【详解】解:由2220x x +-=可得222x x +=214422x x x x x x -+⋅--+ =()22122x x x x x -⋅--+ =22x x x x --+ =()()22422x x x x x x --++ =242x x-+=42- =-2故答案为A .【点睛】本题考查了分式的化简求值,正确化简分式以及根据2220x x +-=得到222x x +=都是解答本题的关键.7.当4x =-的值为( ) A .1BC .2D .3【答案】A【分析】 根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式= 将4x =代入得,原式===1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18【答案】D【分析】 根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】 由13x x +=得21()9x x+=,即2217x x += 2421x x x ++=22111x x++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.二、填空题(本大题共6小题)9.关于x 的分式方程11211a x x-+=--的解为正数,则a 的取值范围是________ . 【答案】4a <且2a ≠.【分析】去分母,化成整式,计算分母为零时,a 的值,计算方程的解,根据解是正数,转化为不等式,确定a 的范围,最后将分母为零时的a 值除去即可.【详解】 ∵11211a x x-+=--, 去分母,得-1+a-1=2(1-x ),当x=1时,解得a=2;当x≠1时,解得x=42a -, ∵方程的解为正数, ∴42a ->0, ∴a <4,∴a <4且a≠2,故答案为a <4且a≠2.【点睛】本题考查了分式方程的解,探解时,熟练把解转化为相应的不等式,同时,把分母为零对应的值扣除是解题的关键.10.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z ++++的值为______ 【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③. ①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式 222xy yz zx x y z ++++ =()()()()()()222·22?·2x x x x x x x x x -+--+-+-+-=222222 224x x x x x x -+-++=22 6 x x -=1 6 -故答案为:1 6 -【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x的式子表示y,z.本题较难,要学会灵活化简.11.已知三个数,x,y,z满足443,,33xy yz zxx y y z z x=-==-+++,则y的值是______【答案】12 7【分析】将443,,33xy yz zxx y y z z x=-==-+++变形为133,,344x y y z z xxy yz zx+++=-==-,得到111113113,,344y x z y x z+=-+=+=-,利用11113()()2z y x z+-+=,求出1132x y=-,代入1113y x+=-即可求出答案.【详解】∵443,,33 xy yz zxx y y z z x=-==-+++,∴133,,344x y y z z xxy yz zx+++=-==-,∴111113113,,344y x z y x z+=-+=+=-,∴11113 ()()2z y x z+-+=,得1132y x -=, ∴1132x y =-, 将1132x y =-代入1113y x +=-,得276y =, ∴y=127, 故答案为:127. 【点睛】 此题考查分式的性质,分式的变形计算,根据分式的性质得到111113113,,344y x z y x z +=-+=+=-是解题的关键. 12.已知方程11x c x c +=+(c 是常数,0c ≠)的解是c 或1c ,那么方程2131462a a x x a+++=-(a 是常数,且0a ≠)的解是________. 【答案】32a +或312a a + 【分析】 观察方程:11x c x c+=+(c 是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程x +2131462a a x a++=- 变形,使等号左边未知数的系数变得相同,等号右边的代数式可变为31222a a ++.为此,方程的两边同乘2,整理后,即可写成方程11x c x c+=+的形式,从而求出原方程的解. 【详解】 将2131462a a x x a+++=- 整理得 112323x a x a+=++-, 即112323x a x a -+=+-,所以23x a -=或1a , 故答案为:32a x +=或312a a +. 【点睛】 本题考查了阅读理解能力与知识的迁移能力.关键在于将所求方程变形为已知方程的形式.难点是方程左边含未知数的项的系数不相同.13.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中的较大值,如:{}max 2,44=,故{}max 3,5=__________;按照这个规定,方程{}21max ,x x x x--=的解为__________.【答案】5 1-1【分析】 按照规定符号可求得{}max 3,5=5;根据x 与x -的大小关系化简所求方程,求出解即可.【详解】{}max 35=,5;故答案为:5;当x x >-,即0x >时,方程化简得:21x x x -=, 去分母得:221x x =-,整理得:2210x x -+=,即()210x -=解得:1x =,经检验:1x =是分式方程的解;当x x <-,即0x <时,方程化简得:21x x x--=, 去分母得:221x x -=-,整理得:2210x x +-=,解得:1x =-+不合题意,舍去)或1-经检验:1x =-故答案为:1-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.弄清题中的新定义是解本题的关键. 14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a,b 的形式,则20192020-a b 的值为____. 【答案】-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】 解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a -、b 的形式,∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于b a有意义,所以0a ≠, 则0a b +=,所以a 、b 互为相反数. ∴1b a=-, ∴1b a -= ∴1b =-,1a =.∴()2019202011111-=-=--. 故答案是:-1.【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键.三、解答题(本大题共4小题)15.解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩.【答案】10.5x y =⎧⎨=-⎩.【分析】 设1a x=,1b x y =+,把原方程组转化为二元一次方程组,求解后,再解分式方程即可.【详解】 解:设1a x=,1b x y =+, 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:44a =,解得:1a =,把1a =代入①得:13+=b ,解得:2b =, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】本题考查了换元法解方程组,解题关键是抓住方程组的特征,巧妙换元,熟练的解二元一次方程组和分式方程,注意:分式方程要检验.16.(1)先化简:23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭,再从1-,0,1,2中取一个你喜欢的数代入求值.(2)已知12x x-=,求221x x +,1x x +. 【答案】(1)8;(2)6;±【分析】(1)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.(2)将已知等式两边平方,利用完全平方式展开,即可求出所求式子的值.【详解】解:(1)23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ =(3(1)(1)(1)(1)(1)(1)x x x x x x x x +---+-+)÷2x 1x - =2224-1x x x +21x x- =24x +∵ 21x - ≠0,0x ≠∴x ≠1或x ≠-1,0x ≠当x=2时,原式=4+4=8.(2)12x x -= 21x 4x ⎛⎫= ⎪⎝⎭-41222=+-x x 2216x x +=; 21x x ⎛⎫ ⎪⎝⎭+ =221x 2x ++=8 1xx+=±【点睛】本题考查了分式的化简求值和完全平方式,熟练掌握公式和运算法则是解题的关键. 17.阅读下面材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:11x x -+,21x x -这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:31x +,221x x +这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:86222223333+==+=,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:()1将分式11x x -+,422311x x x +-+化为带分式. ()2当x 取什么整数值时,分式212x x -+的值也为整数? 【答案】(1)112x +-,22321x x +-+;(2)1x =-,3,3-,7-时,分式的值也为整数.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x 的值.【详解】解:(1)12111222x x x x x --+==+---, 42222222231(1)2(1)332111x x x x x x x x x +-+++-==+-+++; (2)212(2)552222x x x x x -+-==-+++, 当21x +=,即1x =-;当25x +=,即3x =;当21x +=-,即3x =-;当25x +=-,即7x =-,综上,1x =-,3,3-,7-时,分式的值也为整数.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.对于平面直角坐标系xOy 中的点(), P a b ,若点P'的坐标为 ,b a ka b k 骣çè+ç+÷÷ø(其中k 为常数,且0k ≠),则称点P'为点P 的“k 之雅礼点”.例如:()1, 4P 的“2之雅礼点”为4'12142()P +?,,即()'3, 6P . (1)①点()1,3P --的 “3之雅礼点”P'的坐标为___________; ②若点P 的“k 之雅礼点” P'的坐标为()2, 2,请写出一个符合条件的点P 的坐标_________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P'点,且'OPP D 为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的分式方程32233x mx k x x-++=--无解,求m 的值. 【答案】(1)①()2,6--; ②()1, 1;(2)±1;(3)3m =-或53m =-或1m =-. 【分析】(1)①只需把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø即可求出P′的坐标;②由P′(2,2)可求出k=1,从而有a+b=2.任取一个a 就可求出对应的b ,从而得到符合条件的点P 的一个坐标.(2)设点P 坐标为(a ,0),从而有P′(a ,ka ),显然PP′⊥OP ,由条件可得OP=PP′,从而求出k .(3)分1k =和1k =-两种情况,根据方程无解求出m 的值即可.【详解】(1)①∵把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø, 得()2,6--,∴P′的坐标为()2,6--;②令k=1,把k=1代入 ,b a ka b k 骣çè+ç+÷÷ø得到a+b=2,当a=1时,b=1,所以点P 的一个坐标()1, 1;(2)∵点P 在x 轴的正半轴上,∴b=0,a >0∴点P 的坐标为(a ,0),P′(a ,ka ),∴PP′⊥OP ,∵'OPP D 为等腰直角三角形,∴OP=PP′,∴a=ka ,±∵a >0,∴k=1±;(3)当1k =时,去分母整理得:()34m x += ∴原方程无解∴①3m =-②3x =,则53m =- 当1k =-时,去分母整理得: ()12m x +=-原方程无解∴①1m =-②3x =,则53m =- 综上,3m =-或53m =-或1m =-. 【点睛】本题考查了坐标系的新定义问题,读懂题目信息,理解“k 之雅礼点”的定义是解题的关键.。
初中奥数讲义 分式方程(组)附答案
初中奥数讲义分式方程(组)附答案初中奥数讲义-分式方程(组)附答案分数阶方程本讲我们将介绍分式方程(组)的解法及其应用.【知识拓展】分母中含有未知量的方程称为分数阶方程。
解分数阶方程的基本思想是将它们转化为积分方程。
通常有两种方法:一种是去除分母;第二种是替代。
解分数阶方程时必须检验根解分式方程组时整体代换的思想体现得很充分.常见的思路有:取倒数法方程迭加法,换元法等.解决分数阶方程应用问题的关键是找到等价关系并列出方程。
如果方程包含以字母表示的已知数,则需要根据问题的变换条件实现变换。
在不求解的情况下设置未知数是常见的技能之一例题求解一、分数阶方程(组)解的例子1。
拆分项目并重新组织以解分数方程[示例1]以解方程x?5x?2x?3x?4.x?7x?4x?5x?6解析直接去分母太繁琐,左右两边分别通分仍有很复杂的分子.考虑将每一项分拆:如11x?52,这样可降低计算难度.经检验x?为原方程的解.?1?2x?7x?7注本题中用到两个技巧:一是将分式拆成整式加另一个分式;二是交换了项,避免通分后分子出现x.这样大大降低了运算量.本讲趣题引路中的问题也属于这种思路.2.用元素交换法求解分数阶方程[例2]1x?11x?82?1x?2x?82?1x?13x?82?0.如果在解析时考虑去除分母,则计算量过大;分裂是不够的,但每个分母都是一个二次三项式。
试试替代法。
解为x+2x-8=y,原始方程可转化为2111 0岁?9xyy?15x解关于y的分数方程,得到y=9x或y=-5x。
因此,当y=9x,x+2x-8=9x时,解得到X1=8,X2=-1。
当y=-5x,x+2x-8=-5x时,解得到X3=-8,X4=1。
经检验,上述四种解均为原方程的解注当分式方程的结构较复杂且有相同或相近部分时,可通过换元将之简化.3.形如x?形如x?11?a?结构的分式方程的解法xa22111? A.分数阶方程的解是:X1?a、 x2?。
八年级数学分式方程解决问题含答案详析
八年级数学分式方程解决问题含答案详析1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
北师大版八年级数学上册竞赛讲义-分式方程(组)及其应用
分式方程(组)及其应用竞赛热点1.分式方程的概念:分母中含有未知数的有理方程称为分式方程。
2.解分式方程的方法:解分式方程的基本思想是转化思想,即把分式方程转化为整式方程来解;转化的基本方法是;去分母,换元法等。
分式方程在转化过程中会产生增根或漏根,因此解分式方程必须验根。
3.分式方程应用题:列分式方程应用题与列整式方程应用题的思路相同,首先要注意审题,弄清未知数与已知数之间的关系,并把它们表示出来,从而转化成数学模型,要善于运用列表,画图等辅助手段帮助分析问题;但与解整式方程应用题不同的是:对所求的结果既要验根又要检验方程的根是否符合实际意义,二者缺一不可。
解题示范例1.解方程9182716x x x x x x x x -+-+=+----。
思考题1.解下列方程: ⑴13217219211211215217292x x x xx x x x ----+=+----;⑵1321121111x x x++=+++。
例2.解方程组1034331522x y x y x y x y -⎧+=⎪+⎪⎨-⎪-=-⎪+⎩。
思考题2. .解方程组 ⑴4955210x y y x⎧=+⎪⎪⎨⎪=+⎪⎩ ; ⑵345xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩。
例3.一只虫子从A处爬到B处,如果它的速度每分钟增加1米,可提前10分钟到达;如果它的速度每分钟再增加2米,则可又提前10分钟到达,求A,B之间的路程。
思考题3.甲、乙两人做一项工程,合做4小时后,甲另有任务被调走,余下部分由乙单独做,又用了6小时才完成这项工程。
已知甲独做6小时的工作量,由乙单独做要7小时30分钟,问甲、乙单独完成这项工程各需多少小时?例4.如图,在矩形ABCD中,甲、乙二人分别从A、B两点同时出发,甲、乙速度分别为65米/分,74米/分,沿矩形A→B→C→D→A→B→……顺序前进,乙至少跑第几圈时才可能第一次追上甲?又乙至少在跑第几圈时一定又追上甲?请说明理由。
人教版数学八年级竞赛教程之分式方程及其应用题附答案
分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
初二数学分式方程经典应用题(含答案)(K12教育文档)
(完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)初二数学分式方程经典应用题(含答案)(word版可编辑修改)的全部内容。
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0。
01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x=+ B .9001500300x x =-C .9001500300x x =+D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3。
初中数学竞赛指导:《分式》竞赛专题训练(含答案)
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x有意义?(2)当x 为何值时,分式22211x x的值为零?解题策略(1)要使分式22211x x有意义,应有分母不为零这个分式有两个分母x 和11x,它们都不为零,即0x 且110x,于是当0x 且1x 时,分式22211x x有意义,(2)要使分式22211x x的值为零,应有2220x且110x,即1x 且1x ,于是当1x 时,分式22211x x的值为零画龙点睛1.要使分式有意义,分式的分母不能为零.2.要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1.(1)要使分式24x x 有意义的x 的取值范围是()(A)2x (B) 2x ( C)2x (D)2x (2)若分式的的值为零,则x 的值为() (A)3(B)3或3(C)3(D)02.(1)当x时,分式23(1)16x x 的值为零;(2) 当x时,分式2101x x 3.已知当2x 时,分式x b xa无意义;当4x时,分式的值x b xa为零,求a b .融会贯通4.若201a a ,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题若2731x xx ,求2421x xx 的值解题策略因为2731x xx ,所以0x 将等式2731x xx 的左边分子、分母同时除以x ,得1713x x,所以有1227xx因此242222211149112214351()1()17xx xxxxx画龙点睛对于含有1xx 形式的分式,要注意以下的恒等变形:22211()2x x x x 22211()2x xx x 2211()()4xxxx举一反三1.(1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b ca b c(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a aa 2.已知13xy xy,求2322x xy y xyxy的值.3.已知13xx,求2421x xx 的值.融会贯通4.已知3a b ba,求22224a ab baabb的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x yx yx y xyxyxy解题策略原式2222()4()43()()8xy y x y xxy x y xyx y x yx yg()(3)(3)()(3)(3)x y x y x y yx xy x y x y xy xy ggyx画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1.先化简,再求值:262393m m mm ,其中2m .2.计算:322441124a aa babab ab3.(1)已知实数a 满足2280aa ,求22213211143a aa a aaa的值(2)已知a 、b 为实数,且1ab ,设11a b Ma b ,1111Na b ,试比较M 、N 的大小关系.融会贯通4.甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x xx x 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B ABBA,111(1)1n n nn 经典例题已知54(1)(21)121x A B x x x x ,求A 、B 的值解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x (2)(1)(21)A B x B Ax x ,可得254A B BA,解得13A B画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B的值即可. 举一反三1.若在关于x 的恒等式222Mx N c xxxax b中,22Mx N xx 为最简分式,且有a b ,abc ,求M ,N .2.化简:222211113256712xxxx xx xx 3.计算:222222a b c b c a c a b aabacbcbabbcaccacbcab融会贯通4.已知21(2)(3)23xb c ax x x x ,当1,2,3x时永远成立,求以a 、b 、c为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决. 经典例题已知x y z x y z x y zzyx,且()()()1x y y z z x xyz,求x y z 的值解题策略由x y z x y z x y zzyx得111x yx zy zz y x 从而xy x z yz z yx设x yxz y zk zyx,则x y kz ,x z ky ,y z kx三式相加得2()()x yz k xyz ,即()(2)0x y z k ,所以0xy z ,或2k若0xy z ,则1x y xz y zzy x g,符合条件;若2k ,则()()()81x y y z zx xyz与题设矛盾,所以2k 不成立因此0x yz画龙点睛1.将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2.在得到等式2()()x yz k x y z 后.不要直接将等式的两边除以x y z ,因为此式可能等于0.3.在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1.(1)已知275x y z ,求值①x y zz;②x yz;③x y zx(2)已知2310254a b b c c a,求56789a b cab的值2.若a b c d bcaa,求a b c d abcd的值3.已知实数a 、b 、c 满足0a b c,并且a b c k bccaab,则直线3y kx 一定通过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限融会贯通4.已知9pq r ,且222p qrxyzyzxzxy,求px qy rz xyz的值6 整数指数幂一般地,当n 是正整数时,1(0)nnaaa,这就是说(0)na a是na 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2mx ,3ny,求24()mn xy 的值解题策略242(4)(4)84()mn m n mnxy xyxyg g 848481()()23256mn xy 画龙点睛将所求的代数式转化为以mx、ny 为底的乘方,进而代入相应的值进行计算.举一反三1.计算(1)222242(2)()ab a b a b g (2)541321111(1)()()()()21023(3)10222(510)(0.210)(200)2.水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510kg ,求一个氢原子的质量.3.已知2310aa ,求(1)1a a ;(2)22aa ;(3)44aa融会贯通4.如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答. 经典例题解方程52432332x x x x 解题策略解法一去分母,得(52)(32)(43)(23)x x x x 2215610486129xxxxxx所以1x 验根知1x 为原方程的解.解法二方程两边加1,得5243112332x x x x 即222332x x 所以2332x x 解得1x 验根知1x 为原方程的解.解法三原式可化为22112332x x所以222332xx以下同解法二画龙点睛1.通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2.除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3.解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1.(1)解方程2227461xxxxx。
八年级数学竞赛讲座分式的概念、性质及运算附答案
八年级数学竞赛讲座分式的概念、性质及运算附答案第四讲:分式的概念、性质及运算分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容。
从整式到分式,我们可以形象地说是从“平房”到了“楼房”。
在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理。
分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具。
分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:1.化整为零,分组通分;2.步步为营,分步通分;3.减轻负担,先约分再通分;4.裂项相消后通分等。
例题求解例1】要使分式 $\frac{1}{1-x}$ 有意义,则 $x$ 的取值范围是?思路点拨:当分式的分母不为零时,分式有意义,由于分式是繁分式,因此考虑问题应细致周密。
注:在新事物面前,人们往往惯于把它们与原有的、熟知的事物相比,这里蕴涵的思想方法就是类比。
研究分式时,应注意:1) 分式与分数的概念、性质、运算的类比;2) 整数可以看做是分数的特殊情形,但整式却不是分式的特殊情形;3) 分式需要讨论分母的取值范围,这是分式区别于整式的关键所在。
例2】已知 $\frac{3x+4}{x^2-x-2}=\frac{A}{x-2}+\frac{B}{x+1}$,其中 $A$、$B$ 为常数,则 $4A-B$ 的值为()。
思路点拨:对等式右边通分,比较分子的对应项系数求出$A$、$B$ 的值。
例3】计算下列各式:1) $\frac{1}{a-b}+\frac{1}{a+b}+\frac{1}{a^2+b^2}$;2) $\frac{x^2+yz}{x+(y-z)x-yz^2}+\frac{y^2-zx}{y+(z+x)y+zx^2}+\frac{z^2+xy}{z-(x-y)z-xy^2}$;3) $\frac{x^3-1}{32x+2x^2+2x+1x-2x+2x-1x-1}$;4) $\frac{(y-x)(z-x)(z-y)}{(x-y)(x-z)(y-z)}+\frac{x^3+1}{3^2}-\frac{2(x^2+1)}{2}$。
人教版数学八年级培优竞赛 分式方程的解 专题课件
=1
得
y= 10+a
2
,∵y≠2,∴a≠-6,又
y=
10+a 2
有
整数解,∴a=-8 或一 4,所有满足条件的整数 a 的值之和为-12.
1.分式方程 x 1 4 的解为( B)
x 1 (x 1)(x 2)
A.x=1
B.x=2
C.x=-1
D.x=-2
2.若分式方程 6 x 5 有增根,则增根是( A )
x
(2)x+ n n+1 =n+(n+1)得 x=n 或 x=n+1;
x
(3)解 x+ n2+n =2n+4,则(x-3)+ n2+n =2n+1,(x-3)+ nn+1 =n+
x-3
x-3
x-3
(n+l),由(2)得 x-3=n 或 x-3=n+1,故原方程的解为 x=n+3 或 x=n
+4.
谢谢观赏
x 1
10.若解关于 x 的分式方程 2 mx 3 会产生增根,则 m 的值为
x 2 x2 4 x 2
_____-__4__或__.6
11.若分式方程 1 3 ax 无解,求 a 的值.
x2
x2
去分母得 1+3(x-2)=ax,整理得(a-3)x=-5,当 a=3 时,该方程无解;
当 a≠3 时,若 x=2,则分式方程也无解,此时 a= 1 ,综上,a=3 或 a= 1 .
≠-3
时,方程的解为负数,解得
m<4
或
m≠2.
13.阅读材料:
关于 x 的方程:
x
1 x
c
1 c
的解为:
x1
c
,x2
=
1 c
;
x
1 x
c
初二数学分式方程试题答案及解析
初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【答案】原计划每天种树60棵.【解析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.试题解析:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.【考点】分式方程的应用.3.若关于的分式方程无解,则.【答案】a=1或a=-2【解析】该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.试题解析:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.【考点】解分式方程.4.一项工程要在限期内完成,若第一组单独做,则恰好在规定日期完成,若第二组单独做,则超过规定日期4天才能完成,若两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成,问规定日期是多少天?【答案】12天【解析】设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,根据“两组合做3天后剩下的工程由第二组单独做,则正好在规定日期内完成”即可列方程求解.解:设规定日期为x天,则第一组单独完成用x天,第二组单独完成用()天,由题意得解得:经检验:是原方程的解答:规定日期为12天。
八年级数学竞赛例题专题讲解8:分式方程附答案
八年级数学竞赛例题专题讲解8:分式方程附答案分式方程是含有未知数的方程,其中分母含有未知数。
解分式方程的主要思路是去分母,把分式方程化为整式方程,可以通过直接去分母或换元法等方法实现。
有时,在解分式方程时可能会出现增根的情况。
虽然增根必须舍去,但有时也可以利用增根,挖掘隐含条件。
例如,对于一个关于x的方程2x+a/(x-2)=-1,如果其解为正数,则a的取值范围需要注意增根的隐含制约。
另一个例子是已知2/(x(x-1))+A/(x-1)+B/x=C,其中A,B,C为常数,需要求出A+B+C的值。
可以将右边通分,然后比较分子,建立A,B,C的等式。
对于一些复杂的分式方程,不宜直接去分母。
需要运用解分式问题、分式方程相关技巧和方法来解决。
例如,对于方程5x-9/(x-19)+6x-8/(x-9)+4/(x-6)+2/(x-8)=0,或者方程x^2+3x/(x^2+x-4)+11/2=0,或者方程x/(x+1)+1/(x+1)^2=3,需要仔细观察分子、分母间的特点,寻找解题的突破口。
有时,解分式方程需要对原方程“只有一个解”的准确理解,利用增根解题。
例如,对于方程2kx/(kx+1)-2/(x-1)=0,如果该方程只有一个解,则需要化分式方程为整式方程,并利用增根解题。
对于一些复杂的不定方程,可以通过转化为一元不等式,逐步缩小未知数的取值范围,求出结果。
例如,对于方程1115/(xyz)=1,且x≤y≤z,≥111,然后通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出结果。
最后,需要注意格式错误和明显有问题的段落,进行删除和小幅度改写,以提高文章的可读性。
1.当$x=\frac{1}{y}$时,原方程变为$\frac{y^2-1}{y}=2$,即$y^2-2y-1=0$。
因此,这个整式方程是$y^2-2y-1=0$。
2.将方程$x^2-3x+4=0$移项得$x^2=3x-4$,代入原方程得$\frac{2x(3x-4)}{x-1}=2x^2-2x-4=0$。
初二年级奥数分式方程试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
下⾯是为⼤家带来的初⼆年级奥数分式⽅程试题及答案,欢迎⼤家阅读。
1.下列是分式⽅程的是(D)A.xx+1+x+43B.x4+x-52=0C.34(x-2)=43xD.1x+2+1=0 2.为加快“最美毕节”环境建设,某园林公司增加了⼈⼒进⾏⼤型树⽊移植,现在平均每天⽐原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的分式⽅程为(A)A.400x=300x-30B.400x-30=300xC.400x+30=300xD.400x=300x+30 3.已知x=1是分式⽅程1x+1=3kx的根,则实数k=16. 4.把分式⽅程2x+4=1x转化为⼀元⼀次⽅程时,⽅程两边需同乘以(D) A.x B.2x C.x+4 D.x(x+4) 5.解分式⽅程2x+1+3x-1=6x2-1分以下⼏步,其中错误的⼀步是(D) A.⽅程两边分式的最简公分母是(x-1)(x+1) B.⽅程两边都乘以(x-1)(x+1),得整式⽅程2(x-1)+3(x+1)=6 C.解这个整式⽅程,得x=1 D.原⽅程的解为x=1 6.解分式⽅程1x-1+1=0,正确的结果是(A) A.x=0 B.x=1 C.x=2 D.⽆解 7.已知x=3是关于x的⽅程10x+k-3x=1的⼀个解,则k=2. 8.解下列⽅程: (1)2xx-2=1-12-x; 解:⽅程两边同乘以(x-2),得 2x=x-2+1.解得x=-1. 经检验,x=-1是原⽅程的解. (2)6x-2=xx+3-1; 解:⽅程两边同乘以(x-2)(x+3),得 6(x+3)=x(x-2)-(x-2)(x+3). 解得x=-43. 经检验,x=-43是原⽅程的解. (3)xx2-4+2x+2=1x-2; 解:⽅程两边都乘以(x+2)(x-2),得 x+2(x-2)=x+2.解得x=3. 经检验,x=3是原⽅程的解. (4)23+x3x-1=19x-3. 解:⽅程两边同乘以9x-3,得 2(3x-1)+3x=1.解得x=13. 检验:当x=13时,9x-3=0. 因此x=13不是原⽅程的解. ∴原分式⽅程⽆解. 9.某机加⼯车间共有26名⼯⼈,现要加⼯2 100个A零件,1 200个B零件,已知每⼈每天加⼯A零件30个或B零件20个,问怎样分⼯才能确保同时完成两种零件的加⼯任务(每⼈只能加⼯⼀种零件)?设安排x⼈加⼯A零件,由题意列⽅程得(A) A.2 10030x=1 20020(26-x) B.2 100x=1 20026-x C.2 10020x=1 20030(26-x) D.2 100x×30=1 20026-x×20 10.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值⽐正确答案⼩5.依上述情形,所列关系式成⽴的是(B)A.13x=18x-5B.13x=18x+5C.13x=8x-5D.13x=8x+5 11.⽤换元法解⽅程x2-12x-4xx2-12=3时,设x2-12x=y,则原⽅程可化为(B) A.y-1y-3=0 B.y-4y-3=0 C.y-1y+3=0 D.y-4y+3=0 12.当x=56时,xx-5-2与x+1x互为相反数. 13.若关于x的⽅程x-1x-5=m10-2x⽆解,则m=-8. 14.解下列⽅程: (1)3x2-9+xx-3=1; 解:去分母,得3+x(x+3)=x2-9, 3+x2+3x=x2-9.解得x=-4. 经检验,x=-4是原⽅程的解. (2)x+1x-1+4x2-1=1; 解:⽅程两边同乘以(x+1)(x-1),得 (x+1)2+4=(x+1)(x-1), 解得x=-3. 检验:当x=-3时,(x+1)(x-1)≠0, ∴x=-3是原⽅程的解. ∴原⽅程的解是x=-3. (3)8x2-4+1=xx-2. 解:原⽅程可化为8(x+2)(x-2)+1=xx-2. 去分母,得8+(x+2)(x-2)=x(x+2). 解得x=2. 检验:当x=2时,(x+2)(x-2)=0, ∴x=2是原⽅程的增根,即原⽅程⽆解. 15.如图,点A,B在数轴上,它们所对应的数分别是-3和1-x2-x,且点A,B到原点的距离相等,求x的值. 解:由题意,得1-x2-x=3.解得x=52. 经检验,x=52是原⽅程的解. ∴x=52. 16.解关于x的⽅程:mx-1x-1=0(m≠0且m≠1). 解:⽅程两边同乘以x(x-1),得 m(x-1)-x=0.(m-1)x=m. ∵m≠1,∴x=mm-1. 检验:当x=mm-1时,x(x-1)≠0. ∴原分式⽅程的解为x=mm-1.。
初中数学竞赛指导:《分式》竞赛专题训练(含答案)
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x--有意义? (2)当x 为何值时,分式22211x x--的值为零? 解题策略(1) 要使分式22211x x--有意义,应有分母不为零这个分式有两个分母x 和11x -,它们都不为零,即0x ≠且110x -≠,于是当0x ≠且1x ≠时,分式22211x x--有意义, (2) 要使分式22211x x--的值为零,应有2220x -=且110x -≠,即1x =±且1x ≠,于是当1x =-时,分式22211x x--的值为零 画龙点睛1. 要使分式有意义,分式的分母不能为零.2. 要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1. (1)要使分式24x x -有意义的x 的取值范围是( ) (A)2x = (B) 2x ≠ ( C)2x =- (D)2x ≠-(2)若分式的的值为零,则x 的值为( )(A)3 (B)3或3- (C) 3- (D)0 2. (1)当x 时,分式23(1)16x x -+-的值为零;(2) 当x 时,分式2101x x +≥- 3. 已知当2x =-时,分式x b x a -+无意义;当4x =时,分式的值x b x a -+为零,求a b +.融会贯通4.0≤,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题 若2731x x x =-+,求2421x x x ++的值 解题策略 因为2731x x x =-+,所以0x ≠ 将等式2731x x x =-+的左边分子、分母同时除以x ,得1713x x=-+,所以有 1227x x += 因此242222211149112214351()1()17x x x x x x x ====+++++-- 画龙点睛 对于含有1x x+形式的分式,要注意以下的恒等变形: 22211()2x x x x+=++ 22211()2x x x x-=+- 2211()()4x x x x+--= 举一反三1. (1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b c a b c -+++(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a a a ---+ 2. 已知13xy x y =--,求2322x xy y x y xy +---的值.3. 已知13x x+=,求2421x x x ++的值.融会贯通4. 已知3a b b a+=,求22224a ab b a ab b ++++的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x y x y x y x y x y x y--+-÷+--+- 解题策略 原式2222()4()43()()8x y y x y x x y x y xy x y x y x y--+-+--=÷-+- ()(3)(3)()(3)(3)x y x y x y y x x y x y x y x y x y +-+--=-++- y x =-画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1. 先化简,再求值:262393m m m m -÷+--,其中2m =-.2. 计算:322441124a a a b a b a b a b+++-+++= 3. (1)已知实数a 满足2280a a +-=,求22213211143a a a a a a a +-+-⨯+-++的值(2)已知a 、b 为实数,且1ab =,设11a b M a b =+++,1111N a b =+++,试比较M 、 N 的大小关系.融会贯通4. 甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法 我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x x x x -+=---- 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B AB B A ±=±,111(1)1n n n n =-++ 经典例题已知54(1)(21)121x A B x x x x -=-----,求A 、B 的值 解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x ----=-=------(2)(1)(21)A B x B A x x -+-=--,可得254A B B A -=⎧⎨-=-⎩,解得13A B =⎧⎨=-⎩ 画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B 的值即可.举一反三1. 若在关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=,求M ,N .2. 化简:222211113256712x x x x x x x x ++++++++++3. 计算:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+融会贯通 4. 已知21(2)(3)23x b c a x x x x -=++----,当1,2,3x ≠时永远成立,求以a 、b -、c 为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决.经典例题已知x y z x y z x y z z y x +--+-++==,且()()()1x y y z z x xyz +++=-,求x y z ++的值解题策略 由x y z x y z x y z z y x+--+-++== 得111x y x z y z z y x +++-=-=- 从而x y x z y z z y x+++== 设x y x z y z k z y x+++===,则x y kz +=,x z ky +=,y z kx +=三式相加得2()()x y z k x y z ++=++,即()(2)0x y z k ++-=,所以0x y z ++=,或2k =若0x y z ++=,则1x y x z y z z y x+++•=-,符合条件; 若2k =,则()()()81x y y z z x xyz+++=≠-与题设矛盾,所以2k =不成立 因此0x y z ++=画龙点睛1. 将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2. 在得到等式2()()x y z k x y z ++=++后.不要直接将等式的两边除以x y z ++,因为此式可能等于0. 3. 在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1. (1)已知275x y z ==,求值①x y z z ++;②x y z +;③x y z x +-(2)已知2310254a b b c c a +-+==,求56789a b c a b +-+的值2. 若a b c d b c a a ===,求a b c d a b c d -+-+-+的值3. 已知实数a 、b 、c 满足0a b c ++≠,并且a b c k b c c a a b===+++,则直线3y kx =-一定通过( )(A)第一、二、三象限 (B)第一、二、四象限(C)第二、三、四象限 (D)第一、三、四象限 融会贯通 4. 已知9p q r ++=,且222p q r x yz y zx z xy ==---,求px qy rz x y z++++的值6 整数指数幂一般地,当n 是正整数时,1(0)n n a a a-=≠,这就是说(0)n a a -≠是n a 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2m x-=,3n y =,求24()m n x y ---的值解题策略 242(4)(4)84()m n m n m n x y x y x y -------==848481()()23256m n x y ---==⨯=画龙点睛将所求的代数式转化为以m x-、n y 为底的乘方,进而代入相应的值进行计算. 举一反三1. 计算(1)222242(2)()a b a b a b ----÷(2)541321111(1)()()()()21023----++-+-⨯-(3)10222(510)(0.210)(200)⨯÷-⨯⨯-2. 水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310-⨯kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510-⨯kg ,求一个氢原子的质量.3. 已知2310a a -+=,求(1)1a a -+;(2)22a a -+;(3)44a a -+融会贯通4. 如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答.经典例题解方程52432332x x x x --=-- 解题策略解法一 去分母,得(52)(32)(43)(23)x x x x --=--2215610486129x x x x x x --+=--+所以1x =-验根知1x =-为原方程的解.解法二 方程两边加1,得5243112332x x x x --+=+-- 即222332x x =-- 所以2332x x -=-解得1x =-验根知1x =-为原方程的解.解法三 原式可化为22112332x x -=--- 所以222332x x =-- 以下同解法二画龙点睛1. 通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2. 除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3. 解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1. (1)解方程2227461x x x x x +=+--(2)解方程2222112x x x x x x x x -++=--+-2. (1)解方程22252571061268x x x x x x x x x --+=+----+(2)解方程253336237456x x x x x x x x ----+=+----3. 若解方程61(1)(1)1m x x x -=+--是会有增根,求它的增根融会贯通4. 已知方程11x c x c +=+ (c 是常数,0c ≠)的解是c 或1c,求方程2131462a a x x a+++=- (a 是常数,且0a ≠)的解.8 列分式方程解应用题和整式中的一元一次方程一样,列分式方程所解的应用题也包括工程问题、行程问题、经济问题等,本节介绍列分式方程解应用问题的方法.经典例题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月多6立方米,求该市今年居民用水的价格.解题策略设该市去年居民用水价格为x 元/m 3,则今年用水价格为(125%)x +元/m 3.根据题意得:36186(125%)x x-=+,解得: 1.8x = 经检验: 1.8x =是原方程的解.所以(125%) 2.25x +=所以该市今年居民用水的价格为2. 25元/m 3.画龙点睛列分式方程解应用题的步骤与列一元一次方程解应用题步骤基本上是一致的:审查题意,设未知数;找出等量关系,列出方程;解分式方程并验根;写出答案.举一反三1. 某服装厂准备加工300套演出服,加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,请问:该厂原来每天加工多少套演出服?2. 便民服装店的老板在株洲看到一种夏季衫,就用8000元购进若干件,以每件58元的价格出售,很快售完.又用17 600元购进同种衬衫,数量是第一次的2倍,每件进价比第一次贵了4元,服装店仍按每件58元出售,全部售完.问该服装店这笔生意共盈利多少元?3. 从甲地到乙地共50 km ,其中开始的10 km 是平路,中间的20 km 是上坡路,余下的20 km 又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路上和上坡路上保持匀速).融会贯通4. 某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.参考答案1 分式的概念1. (1)B (2) C2. (1)3x =- (2) 12x ≤-或1x > 3. 64. 21a -≤<2分式的基本性质1. (1)1561561510a b c a b c -+++(2)3211a a a --+ 2. 由已知,得3x y xy -=-,所以 原式2()36333()23255x y xy xy xy xy x y xy xy xy xy -+-+-====----- 3. 242222211111113181()1x x x x x x x====++-+++- 4. 将22224a ab b a ab b ++++分子和分母同时除以ab ,得13143474a b b a a b b a +++==+++3 分式的四则运算1. 262393m m m m -÷+-- 633(3)(3)2m m m m m -=-++- 33m m -=+ 当2m =-时,原式3235323m m ---===-+-+ 2. 322441124a a a b a b a b a b +++-+++ 3222244224a a a a b a b a b =++-++ 33444444a a a b a b =+-+ 7884a a b=- 3. (1) 22213211143a a a a a a a +-+-⨯+-++ 213(1)1(1)(1)(1)(3)a a a a a a a +-=-⨯++-++2111(1)a a a -=-++ 22(1)a =+ 由2280a a +-=知2(1)9a += 所以原式222(1)9a ==+ (2)11()()1111a b M N a b a b -=+-+++++ 111111a b a a b b =-+-++++ 1111a b a b --=+++ (1)(1)(1)(1)(1)(1)a b b a a b -++-+=++ (1)(1)(1)(1)ab a b ab b a a b +--++--=++ 220(1)(1)ab a b -==++ 所以M N =4. 设两次购买肥料的单价分别为a 元/千克和b 元/千克(a 、b 为正数,且a b ≠),则 甲两次购买肥料的平均单价为:8008008008002a b a b ++=+ (元/千克). 乙两次购买肥料的平均单价为:6006002600600ab a b a b +=++ (元/千克). 因为22()2()a b ab a b a b a a b +--=++,又a b ≠,0a >,0b >,所以2()0()a b a a b ->+ 所以甲的平均单价比乙的高,所以乙的购货方式更合算一些4 分式的运算技巧——裂项法1. 222(2)22()()()()Mx N x b cx ca c x b ca x x x a x b x a x b ++---+-==+-++++ 且22(1)(2)x x x x +-=-+,a b >所以2a =,1b =-,1c a b =+=从而可得21M x =-=,24N b ca =-=-2. 原式1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x =++++++++++ 111111*********x x x x x x x x =-+-+-+-+++++++ 114x x =-+ 3. 原式()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-=++------ 111111a c a b b a b c c b c a=+++++------ 0=4. 因为23b c a x x ++-- (2)(3)(3)(2)(2)(3)a x xb xc x x x --+-+-=-- 25632(2)(3)ax ax a bx b cx c x x -++-+-=-- 所以2215632x ax ax a bx b cx c -=-++-+-所以1a =,50a b c -++=,6321a b c --=-解得1a =,3b =-,8c =所以四边形的第四边d 的取值范围应满足138d ++>,138d ++>,182d ++>,381d ++>,解得412d <<5 含有几个相等分式问题的解法1. (1)设275x y z k ===,则2,7,5x k y k z k === ① 2751455x y z k k k z k ++++== ② 27955x y k k z k ++== ③ 27522x y z k k k x k+-+-== (2)设2310254a b b c c a k +-+===则2253104a b k b c k c a k +=⎧⎪-=⎨⎪+=⎩解得2a k b k c k =⎧⎪=⎨⎪=-⎩56756(14)25898917a b c k k k a b k k +-+--==++ 2. 设a b c d k b c a a==== 则234,,,d ak c dk ak b ck ak a bk ak =======所以41k =,得1k =±当1k =时,a b c d ===,原式0=当1k =-时,a b c d =-==-,原式2=-3. (),(),()k a b c k b c a k c a b +=+=+=于是2()k a b c a b c ++=++因为0a b c ++≠ 所以12k =直线132y x =-的图象经过第一、三、四象限 故选择D4. 设222p q r k x yz y zx z xy===---, 故222(),(),()p k x yz q k y zx r k z xy =-=-=-所以222()9p q r k x y z yz zx xy ++=++---=又px qy rz ++=333()k x xyz y xyz z xyz -+-+-333()k x y z xyz xyz xyz =++--- 222()()k x y z x y z yz zx xy =++++---9()x y z =++所以px qy rz x y z++++9= 6 整数指数幂1. (1)424b a(2)149(3)12510⨯2. 232.6710⨯个 271.67510-⨯ kg 3. (1)因为2310a a -+=,且0a ≠所以213a a += 所以2113a a a a -++== (2) 2212()27a aa a --+=+-= (3)44222()247a a a a --+=+-=4. 1M 表示的数为310.110100-⨯= 1N 表示的数为3511010100--⨯= 1P 5711010100--⨯= 37P 表示的数为637 3.710-=⨯7 分式方程的解法1. (1)原方程分母因式分解为746(1)(1)(1)(1)x x x x x x +=+-+- 去分母得7(1)4(1)6x x x -++= 解得35x =检验知35x =为原方程的根(2) 原方程式变形为22221112x x x x +=+--+- 整理得2212x x x x --=+- 解得12x =检验知12x =为原方程的根 2. (1) 原方程分母因式分解为525710(3)(2)(4)(3)(2)(4)x x x x x x x x x --+=+--+-- 去分母得5(4)(25)(2)(710)(3)x x x x x x -+--=-+解得1x =检验知1x =为原方程的根(2)原方程化为2(7)93(4)93(5)92(6)97456x x x x x x x x -+-+-+-++=+---- 999923327456x x x x +++=+++---- 11117456x x x x +=+---- 11117654x x x x -=----- (6)(7)(4)(5)(7)(6)(5)(4)x x x x x x x x ------=---- 11(7)(6)(5)(4)x x x x =---- 22111342920x x x x =-+-+ 422x = 解得112x = 检验把112x =代入最简公分母(7)(4)(5)(6)0x x x x ----≠,所以112x =是原方程的根3. 去分母,得6(1)(1)(1)m x x x -+=+-如果增根为1x =,则6(11)0m -+=,3m =如果增根为1x =-,则6(11)0m --+=,无解,所以3m =4. 将方程2131462a a x x a+++=-整理得 112323x a x a+=++- 112323x a x a -+=+- 所以23x a -=,或123x a -=故32a x +=或312a x a +=8 列分式方程解应用题1. 设服装厂原来每天加工x 套演出服.根据题意,得603006092x x -+= 解得20x =经检验20x =是原方程的根.2. 设原进价为x 元一件,则第二次进价为(4)x +元一件,依题意得176********x x =+ 解得40x = 经检验40x =是原方程的根 服装店这笔生意第一次购进8000200x =件,第二次购进176004004x =+件,服装店这笔生意共盈利200(5840)400(5844)9200⨯-+⨯-=(元). 3. 设小明在平路上的速度是x km/h ,根据题意,得131011203()66x x -=-, 解得15x =经检验15x =是原方程的根,且符合题意.4. (1)设规定的时间是x 天,则甲单独完成需要(30)x +天,乙单独完成需要(12)x +,由题意,得11120()(20)1301230x x x x ++⨯-=+++, 解得24x =经检验24x =是原方程的根,所以规定的时间是24天;(2)由题意,因为规定时间是24天,所以甲单独完成需要243054+=(天),乙单独完成需要241236+=(天).留下甲完成需要的时间是:51151()(1)65436654÷++-÷189=+ 27=24>,不能在规定时间完成任务;留下乙完成需要的时间是:51151()(1)1862465436636÷++-÷=+= 能在规定时间完成任务.所以留下乙组好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 分式方程
阅读与思考
分母含有未知数的方程叫分式方程.解分式方程的主要思路是去分母,把分式方程化为整式方程,常用的方法有直接去分母、换元法等.
在解分式方程中,有可能产生增根.尽管增根必须舍去,但有时却要利用增根, 挖掘隐含条件.
例题与求解
【例1】 若关于x 的方程22
x a x +-=-1的解为正数,则a 的取值范围是______. (黄冈市竞赛试题)
解题思路:化分式方程为整式方程,注意增根的隐含制约.
【例2】 已知()22221111
x x A B C x x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值. (“五羊杯”竞赛试题) 解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.
【例3】解下列方程:
(1)596841922119968
x x x x x x x x ----+=+----; (“五羊杯”竞赛试题) (2)222234112283912
x x x x x x x x ++-+=+-+; (河南省竞赛试题) (3)2x +2
1x x ⎛⎫ ⎪+⎝⎭=3. (加拿大数学奥林匹克竞赛试题) 解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.
【例4】(1)方程
18272938x x x x x x x x +++++=+++++的解是___________. (江苏省竞赛试题)
(2)方程222111132567124
x x x x x x x ++=+++++++的解是________. (“希望杯”邀请赛试题)
解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.
【例5】若关于x 的方程2211k x kx x x x x
+-=--只有一个解,试求k 的值与方程的解. (江苏省竞赛试题)
解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.
【例6】求方程11156
x y z ++=的正整数解. (“希望杯”竞赛试题) 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则
111x y z ≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.
能力训练
A 级
1.若关于x 的方程
1101
ax x +-=-有增根,则a 的值为________. (重庆市中考试题) 2.用换元法解分式方程21221x x x x --=-时,如果设21x x -=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. (上海市中考试题)
3.方程2211340x x x x ⎛⎫+-++= ⎪⎝
⎭的解为__________. (天津市中考试题) 4.两个关于x 的方程220x x --=与132x x a
=-+有一个解相同,则a =_______. (呼和浩特市中考试题)
5.已知方程11x a x a
+
=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1a a - (辽宁省中考试题)
6.关于x 的方程
211
x m x +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0
C .m <-1
D .m <-l 且m ≠-2 (孝感市中考试题)
7.关于x 的方程22x c x c +
=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) .
A .a ,2a
B .a -1,21a -
C .a ,21a -
D .a ,11
a a +- 8.解下列方程: (1)()2221160x x x x
+++-=; (苏州市中考试题) (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭
. (盐城市中考试题)
9.已知13x x +
=.求x 10+x 5+51011x x +的值.
10.若关于x 的方程2211k x kx x x x x
+-=--只有一个解(相等的两根算作一个),求k 的值. (黄冈市竞赛试题)
11.已知关于x 的方程x 2
+2x +221022m x x m -=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.
(聊城市中考试题)
12.若关于x 的方程()()
122112x x ax x x x x ++-=+--+无解,求a 的值. (“希望杯”邀请赛试题)
B 级
1.方程222211114325671221
x x x x x x x x +++=+++++++的解是__________. (“祖冲之杯”邀请赛试题)
2.方程222111011828138
x x x x x x ++=+-+---的解为__________. 3.分式方程()()
1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程
22
x a x +-=-1的解是正数,则a 的取值范围是______. (黑龙江省竞赛试题) 5.(1)若关于x 的方程
2133
m x x =---无解,则m =__________. (沈阳市中考试题) (2)解分式方程225111m x x x +=+--会产生增根,则m =______. (“希望杯”邀请赛试题) 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭
的解的个数为( ). A .4个 B .6个 C .2个 D .3个
7.关于x 的方程
11
a x =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠0 (山西省竞赛试题)
8.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则
111111a b c +++++的值是( ).
A .1
B .2
C .3
D .4
(江苏省竞赛试题)
9.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭
有实数根. (1)求a 的取值范围;
(2)若原方程的两个实数根为x 1,x 2,且121231111
x x x x +=--,求a 的值. (TI 杯全国初中数学竞赛试颞)
10.求方程2
2x -xy 3x -+y +2006=0的正整数解.
(江苏省竞赛试题)
11.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元.要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?
(齐齐哈尔市中考试题)。