布朗运动的计算详细版.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2. 与布朗运动有关的随机过程
过程1:d维布朗运动
若 W 1(t),W 2 (t), ,W n (t) 是 d SBM,则称
W=(W 1(t), ,W d (t))
是 d 维标准布朗运动.
个相互独立的
优选
1
过程2:(, 2 ) 布朗运动
Bt, 2 =t+W (t), t 0
均值函数
m B
,
2
(t
)=t
R, >0
相关函数
R B
,
2
(s,t
)=
2
st
+
2
min
(s,t
)
性质 (, 2 ) 布朗运动是一个高斯过程
带漂移的布朗运动的民用航空发动机实时性能可
靠性预测,航空动力学报
2009,Vol.1,No.12.任淑优红选
2
证明 (, 2 ) 布朗运动是一个高斯过程
对任意自然数 n 2, 不是一般性,取n个不同
, t 0
优选
13
mBre (t)=E[ W(t) ]
+
=x -
1
- x2
e 2t dx
2 t
=
2t
- x2 +
( -e 2t )
2 t
0
= 2t , t 0
优选
14
过程6:奥恩斯坦-乌伦贝克过程
Btou =e -t W ( (t)) t 0, >0
其中 (t)= t e2sds= 1 (e2t -1)
显然Nn(s)~B(n,s),由强优大选 数定理有
6
P
lim
n
Fn
s
s
1
由格利汶科-康泰利定理可以得到更强的结果,
P
lim
n
sup
0s1
Fn s s
0 1
即Fn(s)以概率1一致地收敛于s.
令n s n Fn s s, 则
E n s n EFn s s 0
Dn s
n
2
D(
的极限过程即为布朗桥过程。
一般的,设X1,X2, …Xn, …独立同分布,F(x) 为分布函数,则随机变量F(Xi)~U(0,1)。记
n
Nn s IF Xi s i 1
类似可讨论 n sup Fn X F X 的极限分
布。
x
优选
9
过程:4:几何布朗运动(指数布朗运动)
Btge =exp(Bt,2 ) t 0, R, 2 >0
Nn
s
)
s(1
s)
n
x,
lim P
n
n
s
x
1
2 s 1 s
e du x
u2 2 s (1 s )
优选
7
所以 n s,0 s 1 的极限过程是一正态过程。 可以证明 n s,n t 的联合分布趋于二维正
态分布。
0 s t 1
covn s,n t E n sn t nE Fn s sFn t t
Bab t
=a+(b-a)t
+Btbr
t [0,1]
证明 : (1)
B0ab =a,
B a b 1
=b
(2) 从a到b的布朗桥是高斯过程,且
mab (t)=a+(b-a)t t [0,1]
Cab (s,t)=E[(Bsab -mab (s))(Btab -mab (t))
= min{s,t}-st
t [0,1]
均值函数
mBge
(t)=E[exp(Bt, 2
)]=exp{( +
2
2
)t},
t 0
相关函数
RBge
(s,t
百度文库)=e
(t
+s
)e2
2s
2
e2
(t
-s
)
,
s,t 0
股票价格服从几何布朗运动的证明 谢惠扬
优选
10
m B
ge
(t
)=E[exp(Bt
,
2
)]
= e + t+ x -
1
- x2
e 2t dx
=e Ee (s+t) [W (s)+(W (t )-W (s))+W (s)]
=e Ee E (s+t) 2W (s) [W (t)-W (s)]
2
=e(t+s)e2 2se 2
(t -s )
,s,t
0
优选
12
过程5:反射布朗运动
Btre = W (t) t 0
均值函数
2t
mBre (t)=E[ W (t) ]=
2 t
=et + -
1
- x2 -2t x
e 2t dx
2 t
=et + -
1 -(x-t )2 (t )2
e e dx 2t
2t
2 t
=exp{(+ 2 )t}, t 0
2
优选
11
RBge (s,t)=Ees+W (s)et+W (t) =Ee(s+t)+ (W (s)+W (t)) =e Ee (s+t) (W (s)+W (t))
的时间指标 0=t0 <t1< <tn <, 定义增量
=B -B , , 2 , 2
k
tk
tk -1
k =1,
,n
则 k ~N ((tk -tk -1), 2 (tk -tk -1))
(Bt1 , 2 , ,Btn , 2 )=(1, ,n ) Mnn
优选
3
过程3:布朗桥
Btbr =W (t)-tW (1) t [0,1]
优选
5
补充 :布朗桥在统计中的应用
布朗桥在研究经验分布函数中起着非常重要的 作用。设X1,X2, …Xn, …独立同分布,Xn~U(0,1) , 对0<s<1,记
n
Nn s IXi s i 1
Nn(s)表示前n个X1,X2, …Xn 中取值不超过s的个数,
Fn
s
1 n
Nn
s
称Fn(s)为经验分布函数。
则称 Bbr ={Btbr , t [0,1]} 为从0到0的布朗桥 均值函数 mBbr (t)=E[W (t)-tW (1)]=0, t [0,1] 相关函数 RBbr (s,t)=min{s,t}-st, s,t [0,1]
性质,从0到0的布朗桥是高斯过程
优选
4
例 设常数 a,b R, 定义从a到b的布朗桥:
1 n
E
Nn
s
Nn
t
ntE
Fn
s
nsE
Fn
t
nst
1 E[E n
Nn
s
Nn
t
Nn
t
]
nst
1 n
E[Nn
t E
Nn s Nn t ] nst
1 n
E[ N n
t
s t
Nn
t
]
nst
1 n
s t
nt n(n 1)t 2
nst
s 1 t
优选
8
所以当n→∞时,
n(s),0 s 1
lim E
n
Xn
X
2
0
则称{Xn,n=1,2,…}均方收敛于X,
或称 X 为{Xn,n=1,2,…}的均方极限,记为
l.i.m
n
Xn
X
优选
17
2 均方连续
1. 均方连续定义
设{X(t), t∈T}是二阶矩过程, t0∈T, 若
0
2
均值函数
mBou (t)=E[e-tW( (t))]=0, t 0
相关函数
RBou (s,t)=min{ (s), (t)}e-(s+t), s,t 0
优选
15
补充: 随机变量序列或随机过程 均方极限 均方连续 均方可导 均方可积
优选
16
1.均方极限的定义
定义 设 X , X n H , n 1, 2, 如果
过程1:d维布朗运动
若 W 1(t),W 2 (t), ,W n (t) 是 d SBM,则称
W=(W 1(t), ,W d (t))
是 d 维标准布朗运动.
个相互独立的
优选
1
过程2:(, 2 ) 布朗运动
Bt, 2 =t+W (t), t 0
均值函数
m B
,
2
(t
)=t
R, >0
相关函数
R B
,
2
(s,t
)=
2
st
+
2
min
(s,t
)
性质 (, 2 ) 布朗运动是一个高斯过程
带漂移的布朗运动的民用航空发动机实时性能可
靠性预测,航空动力学报
2009,Vol.1,No.12.任淑优红选
2
证明 (, 2 ) 布朗运动是一个高斯过程
对任意自然数 n 2, 不是一般性,取n个不同
, t 0
优选
13
mBre (t)=E[ W(t) ]
+
=x -
1
- x2
e 2t dx
2 t
=
2t
- x2 +
( -e 2t )
2 t
0
= 2t , t 0
优选
14
过程6:奥恩斯坦-乌伦贝克过程
Btou =e -t W ( (t)) t 0, >0
其中 (t)= t e2sds= 1 (e2t -1)
显然Nn(s)~B(n,s),由强优大选 数定理有
6
P
lim
n
Fn
s
s
1
由格利汶科-康泰利定理可以得到更强的结果,
P
lim
n
sup
0s1
Fn s s
0 1
即Fn(s)以概率1一致地收敛于s.
令n s n Fn s s, 则
E n s n EFn s s 0
Dn s
n
2
D(
的极限过程即为布朗桥过程。
一般的,设X1,X2, …Xn, …独立同分布,F(x) 为分布函数,则随机变量F(Xi)~U(0,1)。记
n
Nn s IF Xi s i 1
类似可讨论 n sup Fn X F X 的极限分
布。
x
优选
9
过程:4:几何布朗运动(指数布朗运动)
Btge =exp(Bt,2 ) t 0, R, 2 >0
Nn
s
)
s(1
s)
n
x,
lim P
n
n
s
x
1
2 s 1 s
e du x
u2 2 s (1 s )
优选
7
所以 n s,0 s 1 的极限过程是一正态过程。 可以证明 n s,n t 的联合分布趋于二维正
态分布。
0 s t 1
covn s,n t E n sn t nE Fn s sFn t t
Bab t
=a+(b-a)t
+Btbr
t [0,1]
证明 : (1)
B0ab =a,
B a b 1
=b
(2) 从a到b的布朗桥是高斯过程,且
mab (t)=a+(b-a)t t [0,1]
Cab (s,t)=E[(Bsab -mab (s))(Btab -mab (t))
= min{s,t}-st
t [0,1]
均值函数
mBge
(t)=E[exp(Bt, 2
)]=exp{( +
2
2
)t},
t 0
相关函数
RBge
(s,t
百度文库)=e
(t
+s
)e2
2s
2
e2
(t
-s
)
,
s,t 0
股票价格服从几何布朗运动的证明 谢惠扬
优选
10
m B
ge
(t
)=E[exp(Bt
,
2
)]
= e + t+ x -
1
- x2
e 2t dx
=e Ee (s+t) [W (s)+(W (t )-W (s))+W (s)]
=e Ee E (s+t) 2W (s) [W (t)-W (s)]
2
=e(t+s)e2 2se 2
(t -s )
,s,t
0
优选
12
过程5:反射布朗运动
Btre = W (t) t 0
均值函数
2t
mBre (t)=E[ W (t) ]=
2 t
=et + -
1
- x2 -2t x
e 2t dx
2 t
=et + -
1 -(x-t )2 (t )2
e e dx 2t
2t
2 t
=exp{(+ 2 )t}, t 0
2
优选
11
RBge (s,t)=Ees+W (s)et+W (t) =Ee(s+t)+ (W (s)+W (t)) =e Ee (s+t) (W (s)+W (t))
的时间指标 0=t0 <t1< <tn <, 定义增量
=B -B , , 2 , 2
k
tk
tk -1
k =1,
,n
则 k ~N ((tk -tk -1), 2 (tk -tk -1))
(Bt1 , 2 , ,Btn , 2 )=(1, ,n ) Mnn
优选
3
过程3:布朗桥
Btbr =W (t)-tW (1) t [0,1]
优选
5
补充 :布朗桥在统计中的应用
布朗桥在研究经验分布函数中起着非常重要的 作用。设X1,X2, …Xn, …独立同分布,Xn~U(0,1) , 对0<s<1,记
n
Nn s IXi s i 1
Nn(s)表示前n个X1,X2, …Xn 中取值不超过s的个数,
Fn
s
1 n
Nn
s
称Fn(s)为经验分布函数。
则称 Bbr ={Btbr , t [0,1]} 为从0到0的布朗桥 均值函数 mBbr (t)=E[W (t)-tW (1)]=0, t [0,1] 相关函数 RBbr (s,t)=min{s,t}-st, s,t [0,1]
性质,从0到0的布朗桥是高斯过程
优选
4
例 设常数 a,b R, 定义从a到b的布朗桥:
1 n
E
Nn
s
Nn
t
ntE
Fn
s
nsE
Fn
t
nst
1 E[E n
Nn
s
Nn
t
Nn
t
]
nst
1 n
E[Nn
t E
Nn s Nn t ] nst
1 n
E[ N n
t
s t
Nn
t
]
nst
1 n
s t
nt n(n 1)t 2
nst
s 1 t
优选
8
所以当n→∞时,
n(s),0 s 1
lim E
n
Xn
X
2
0
则称{Xn,n=1,2,…}均方收敛于X,
或称 X 为{Xn,n=1,2,…}的均方极限,记为
l.i.m
n
Xn
X
优选
17
2 均方连续
1. 均方连续定义
设{X(t), t∈T}是二阶矩过程, t0∈T, 若
0
2
均值函数
mBou (t)=E[e-tW( (t))]=0, t 0
相关函数
RBou (s,t)=min{ (s), (t)}e-(s+t), s,t 0
优选
15
补充: 随机变量序列或随机过程 均方极限 均方连续 均方可导 均方可积
优选
16
1.均方极限的定义
定义 设 X , X n H , n 1, 2, 如果