比例黄金分割前三章易错点及经典题
比例典型及易错题型.docx
比例典型及易错题型一、比例1.已知 AB=K,=D,( ABCD都是大于0 的自然数),那么下列比例中正确的是()A. B. C. D.【答案】D是正确的。
【解析】【解答】解:故答案: D。
【分析】 AB=K, =D,那么=D,所以 AB=CD,据此作答即可。
2.下面各比中,能与:6成比例的是()A. 2.5: 16B. 0.:1C.:3 2.4D. : 4【答案】D【解析】【解答】解:;A、 2.5: 16=2.5 ÷ 16=0.15625,不能成比例;B、,不能成比例;C、3: 2.4=1.25,不能成比例;D、,能成比例。
故答案: D。
【分析】比例是表示两个比相等的式子,因此比相等的两个比才能成比例。
3.下列法中,不正确的是()。
A. 2019 年二月份是28 天。
B. 零件0.2 厘米,画在上30 厘米,幅的比例尺是1: 150。
C. 930 分,面上与分成的小角是一个角。
D.两个数的一定是一个合数。
【答案】 B【解析】【解答】 A, 2019÷4=504⋯⋯3,2019 年是平年,二月份有 28 天,此法正确;B, 30cm: 0.2cm=( 30× 10):( 0.2 × 10) =300:2=( 300 ÷2):( 2÷2) =150: 1,原法;选项 C, 9 时 30 分,钟面上时针与分针组成的较小夹角是一个钝角,此题说法正确;选项D,质数×质数 =合数,此题说法正确。
故答案为: B.【分析】闰年和平年的判断方法:当年份是整百年份时,年份能被能被 400 整除的是平年;当年份不是整百年份时,年份能被400 整除的是闰年,不4 整除的是闰年,不能被 4 整除的是平年,闰年全年366 天,平年全年365 天,平年 2 月28 天,闰年 2 月29 天,据此解答;比例尺 =图上距离:实际距离,据此解答;钟面被12 个数字平均分成12 大格,每个大格所对的圆心角是360 °÷ 12=30,°角的分类:0°<锐角< 90°,直角 =90 °,90°<钝角< 180 °,平角 =180 °,周角 =360 °,据此解答;一个数,如果除了 1 和它本身还有别的因数,这样的数叫做合数,两个质数的积一定是一个合数。
黄金分割经典例题
已知线段AB的长度为2,点C是AB的黄金分割点,求AC的长度。
已知矩形ABCD的长和宽分别为a和b,且a>b。
如果点E在AB上,且AE/EB=b/a,证明点E是线段AB的黄金分割点。
在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点。
如果一个身高为170cm的人,他的肚脐到脚底的长度为多少时才是黄金身段?(保留两位小数)
点P是线段AB的黄金分割点,且AP>PB。
设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小。
用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B',因而EB'=EB。
类似地,在AB上折出点B''使AB''=AB'。
这时B''就是AB的黄金分割点。
证明上述的方法作岀的点B''是这条线段的黄金分割点。
已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD^2=BD*AB,求AD的长度。
五角星是我们常见的图形,其中,点C、D分别是线段AB的黄金分割点,AB=20cm,求EC+CD 的长度。
九年级数学上册:19.2《黄金分割》课后零失误训练及答案
19.2 黄金分割基础能力训练★回归教材 注重基础◆黄金分割的定义1.已知AB=10 cm,P 、Q 是线段AB 的两个黄金分割点,则PQ=________.2.已知线段AB=1,点P 是线段AB 的黄金分割点,则AP=________.3.已知线段AB=b,C 为其黄金分割点,求下列各式的值(AC>BC): (1)=BA AC _______;(2)=ACBC _______; (3)=BC AC _______;(4)AC -BC=________. 4.正常人的体温一般是37℃左右,室温太高、太低,人都会感觉不舒服,多少摄氏度比较合适呢?有人研究认为该温度正好是人正常体温的黄金分割点,则这个温度约为________.5.(2009·南京模拟)顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC 中,AB=AC,BD 是∠ABC 的角平分线,交AC 于D,若AC=4 cm,则BC=___________.6.若S 是线段PQ 的黄金分割点,且PS>SQ,则( )A.SQ 2=PS·PQB.PS 2=SQ·PQC.PQ PS PS ∙=22D.22PQ PS PS SQ +∙= 7.已知M 是线段AB 的黄金分割点,且AM>BM.(1)写出线段AB 、AM 、BM 之间的比例式.(2)如果AB=12 cm,求AM 、BM 的长.8.如图19-2-4所示,线段AB 长10cm,点C 是线段AB 的黄金分割点,AC>BC,设以AC 为边的正方形ACDE 的面积为S 1,以BC 为一边,AB 长为另一边的矩形BCFG 的面积为S 2,试比较S 1和S 2的大小.◆黄金分割点的作图9.采用如下方法也可以得到黄金分割点:如图19-2-5所示,设AB 为已知线段,以AB 为边作正方形ABCD ;取AD 的中点E,联结EB ;延长DA 至F,使EF=EB ;以线段AF 为边作正方形AFGH,点H 就是AB 的黄金分割点. 任意作一条线段,用上述方法作出这条线段的黄金分割点,你能说出这种作法的道理吗?10.求作已知线段AB 的黄金分割点.(不写作法)综合创新训练★登高望远 课外拓展◆创新应用11.如图19-2-6所示,正五角星中,线段AD=2,试问图中阴影部分图形的周长是多少?12.举例说明黄金分割在日常生活中的一些应用.◆开放探索13.若一个矩形的短边与长边的比值为215-(黄金分割数),我们把这样的矩形叫做黄金矩形.(1)操作:请你在如图19-2-7所示的黄金矩形ABCD(AB>AD)中,以短边AD 为一边作正方形AEFD.(2)探究:(1)中的四边形EBCF 是不是黄金矩形?若是,请说明理由;若不是,也给予说明.(3)归纳:通过上述操作及探究,请概括出具有一般性的结沦(不需要证明).参考答案1答案:)25(10-cm2答案:215-或253- 解析:本题应考虑到同一线段上的黄金分割点有两个. 3答案:(1)215-(2)215-(3)215+(4)b )25(- 4答案:23℃ 5答案:)15(2-cm 解析:∵等腰△ABC 为黄金三角形,∴AC BC 为黄金比. ∴AC BC 215-=,∴)15(2-=BC cm.6答案:B。
专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)
专题01 比例线段及黄金分割点压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一 比例线段的识别】 (1)【考点二 比例线段的计算】 (2)【考点三 黄金分割点的定义】 (2)【考点四 黄金分割点的应用】 (3)【考点五 黄金分割点的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一 比例线段的识别】【例题1】若a :b=2:3,则下列各式中正确的式子是( )A .2a=3bB .3a=2bC .D .【变式1】已知=,那么下列等式中,不一定正确的是( ).A .2a=5b B. a b 52= C. a+b=7 D.a b b 72+= 【变式2】由5a=6b (a≠0),可得比例式( )A .B .C .D .【考点二 比例线段的计算】【例题2】 设,求的值.432z y x ==2222232z xy x z yz x --+-【变式1】若=,则=().A. B. C. D. 无法确定【变式2】已知,(1)求的值;(2)如果,求x的值.【变式3【考点三黄金分割点的定义】【例题3】已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为().A. B. C. D.【变式1】已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为__________cm;【变式2】已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B.C. 或D.以上都不对【考点四黄金分割点的应用】【例题4】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().A.4cmB.6cmC.8cmD.10cm【变式1】如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为__________cm(结果精确到0.1cm).【变式2△BDC 、△DEC 都是黄金三角形,已知AB=4,则DE=__________.【考点五 黄金分割点的拓展提高】【例题5】是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【变式1】如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【变式2道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF 和一个矩形EFDC ,那么EFDC 这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.BC AB 215-【变式3】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【过关检测】一.选择题1.在比例尺为1︰1 000 000的地图上,相距3cm 的两地,它们的实际距离为( ).A .3 kmB .30 kmC .300 kmD .3 000 km2.已知线段满足把它改写成比例式,其中错误的是( ).A. B. C.D. 3. (2014•牡丹江)若x :y=1:3,2y=3z ,则的值是(). 4.如图,已知点P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示以PA 为边的正方形的面积,S 2表示a 、b 、c 、d =ab cd ::b c d a =::a b c d =::c b a d =::a c d b =长为AB 、宽为PB 的矩形的面积,那么S 1( )S 2.A.>B.=C.<D.无法确定6. 宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二. 填空题8.线段AB 长10cm ,点P 在线段AB 上,且满足=,那么AP的长为 cm . ,(填写一个即可).10.已知若若5x -4y=0,则x:y=________. -3=,=____;4x y x y y则三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14.如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2.(1)求∠B 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边 长①写出图中所有的黄金三角形,选一个说明理由;②求AD 的长;③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.a b c d k b c d a c d a b d a b c====++++++++y kx m =+15. 如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)。
比例黄金分割前三章易错点及经典题
比例各类题型展1.已知bc ad =(a 、b 、c 、d 不等于零),那么下列各式中不正确的是( )A .d d c b b a +=+B .d d b c c a +=+C .d d b c c a -=-D .dd b a c a -=- 2.下列a 、b 、c 、d 四条线段,不成比例线段的是………………( )A. a=2cm b=5cm c=5cm d=12.5cmB. a=5cm b=3cm c=5mm d=3mmC. a=30mm b=2cm c= cm d=12mmD. a=5cm b=0.02m c=0.7cm d=0.3dm3、如果四条线段a 、b 、c 、d 成比例,即a c b d=,m >0,那么下面结论中正确的个数是( ) (1)a cm b dm = (2)77a a cm b b dm +=+ (3)a c m b d m +=+ (4)a b a cm b dm=++ A 、1个 B 、2个 C 、3个 D 、4个4.已知23y x =,那么下列式子中一定成立的是( ) A .y x 32= B .y x 23= C .y x 2= D .xy=65、把 写成比例式,下列写法不正确的是 ( ) A 、 B 、 C 、 D 、 6.已知32=b a ,那么=+bb a ___________. 7.已知432∶∶=x ,那么x = .8.若线段a =3,b c =2,则比例式a cb d =中,d =___________. 9.若357x y z ==,则x y z z++=_____________. 10.已知532z y x ==,且15=++z y x ,则x= ,y= ,z= . 11.如果5:4:3::=c b a ,那么=+--+cb ac b a 3532 ; 12.若)0(32≠+==q n q p n m ,则=++q n p m . 13、已知线段a =4,b =6,c =8,线段a 、b 、c 、d 是成比例线段,则d 等于____________.14.已知,求的值。
2021年九年级中考数学几何教学重难点专题:黄金分割比例(三)
2021年九年级中考数学几何教学重难点专题:黄金分割比例(三)1.阅读理解:如图1,点C将线段AB分成两部分,若=,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果=,那么称直线l为该图形的黄金分割线.问题解决:如图2,在△ABC中,若点D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于E,过D作DF∥CE,交AC于F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.2.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE 的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)3.若一个矩形的短边与长边的比值为(黄金分割数),我们把这样的矩形叫做黄金矩形.(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.4.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.5.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.6.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF 和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.7.如图1所示,点C将线段AB分成两部分,如果,那么点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;(2)请你说明:三角形的中线是否是该三角形的黄金分割线.8.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.9.“黄金分割”在人类历史上有着重要的作用和影响,世界上许多著名的建筑和艺术品中都蕴涵着“黄金分割”.下面我们就用黄金分割来设计一把富有美感的纸扇:假设纸扇张开到最大时,扇形的面积与扇形所在圆的剩余部分的比值等于黄金比,请你来求一求纸扇张开的角度.(黄金比取0.6)10.如图,在△ABC中,点D在边AB上,且BD=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长.参考答案1.解:(1)直线CD 是△ABC 的黄金分割线.理由如下: ∵点D 是AB 的黄金分割点,∴=,∵=,=,∴=,∴直线CD 是△ABC 的黄金分割线;(2)∵三角形的中线把AB 分成相等的两条线段,即AD =BD , ∴=,==1,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF ∥CE ,∴S △FDE =S △FDC ,S △DEC =S △FEC ,∴S △AEF =S △ADC ,S 四边形BEFC =S △BDC ,∵=,∴=,∴直线EF 是△ABC 的黄金分割线.2.证明:如图,连接GF ,设正方形ABCD 的边长为1,则DF =. 在Rt △BCF 中,BF ==,则A ′F =BF ﹣BA ′=﹣1. 设AG =A ′G =x ,则GD =1﹣x ,在Rt △A ′GF 和Rt △DGF 中,有A 'F 2+A 'G 2=DF 2+DG 2, 即,解得x=,即点G是AD的黄金分割点(AG>GD).3.解:(1)如图:以A为圆心,在AB上截取AE=AD,以D为圆心,在DC上截取DF=DA,连接EF,所以四边形AEFD为所求作的正方形;(2)答:四边形EBCF是黄金矩形.证明:∵四边形AEFD是正方形,∴∠AEF=90°,∴∠BEF=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°∴∠BEF=∠B=∠C=90°,∴四边形EBCF是矩形.设CD=a,AD=b,则有,∴,∴矩形EBCF是黄金矩形.4.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.5.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.6.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.7.解:∵,,又∵D是AB的黄金分割点,∴,,∴CD是△ABC的黄金分割线;(2)不是.∵CD是△ABC的中线,∴AD=DB,∴=,而=1,∴≠,∴中线不是黄金分割线.8.解:(1)(3分)(2)CM=AB(4分)9.解:设扇形的半径为R,圆心角为n,则剩余扇形的圆心角为(360°﹣n),由题意得,:=0.6,即n:(360°﹣n)=0.6,解得:n=135,答:纸扇张开的角度为135°.10.解:(1)设∠B=x,∵BD=DC,∴∠DCB=∠B=x,∴∠ADC=∠B+∠DCB=2x,∵AC=DC,∴∠A=∠ADC=2x,∵∠ACE=∠B+∠A,∴x+2x=108°,解得x=36°,即∠B的度数为36°;(2)①△ABC、△DBC、△CAD都是黄金三角形.理由如下:∵DB=DC,∠B=36°,∴△DBC为黄金三角形;∵∠BCA=180°﹣∠ACE=72°,而∠A=2×36°=72°,∴∠A=∠ACB,而∠B=36°,∴△ABC为黄金三角形;∵∠ACD=∠ACB﹣∠DCB=72°﹣36°=36°,而CA=CD,∴△CAD为黄金三角形;②∵△BAC为黄金三角形,∴=,而BC=2,∴AC=﹣1,∴CD=CA=﹣1,∴BD=CD=﹣1,∴AD=AB﹣BD=2﹣(﹣1)=3﹣.。
黄金分割(知识讲解)九年级数学上册基础知识讲与练(北师大版)
专题4.4 黄金分割(知识讲解)【学习目标】1、理解黄金分割的概念;2、会找一条线段的黄金分割点;3、会判断一个点是否为一条线段的黄金分割点。
【要点梳理】要点一:黄金分割的定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BCAB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.特别说明:51AC AB -=≈0.618AB(叫做黄金分割值). 要点二: 作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.特别说明:一条线段的黄金分割点有两个.要点三: 黄金三角形和黄金矩形黄金三角形有2种:1、等腰三角形,两个底角为72°,顶角为36°;这种三角形既美观又标准。
这样的三角形的底与一腰之长之比为黄金比:; 2、等腰三角形,两个底角为36°,顶角为108°;这样的三角形的一腰与底之长之比为黄金比:黄金矩形:黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的短边为长边的 0.618倍。
黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。
在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。
达芬奇的脸符合黄金矩形,同样也应用了该比例布局。
512512512【典型例题】类型一、黄金分割的作法1.作出线段AB 的黄金分割点(不写作法,保留作图痕迹)【分析】作法:(1)延长线段AB 至F ,使AB BF =,分别以A 、F 为圆心,以大于等于线段AB 的长为半径作弧,两弧相交于点G ,连接BG ,则BG AB ⊥,在BG 上取点D ,使2ABBD =;(2)连接AD ,在AD 上截取DE DB =.(3)在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.解:如图,点C 即为所求.【点拨】本题主要是考查了黄金分割点的概念,熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解和作图.【变式1】黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,,通过计算证明2AE BE AB =⋅即可解决问题.解:(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,, ∴CD=BC=a ,-a ,∴22226)AE a a =-=-,222(2)6AB BE a a a a ⋅=⋅+=-, ∴2AE BE AB =⋅,∴点E 是线段AB 的黄金分割点.【点拨】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.【变式2】回顾:“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用,通.的矩形叫做“黄金矩形” . 若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的“黄金矩形ABEF ”,请在BC 边上作出这个黄金矩形的顶点E .(要求:尺规作图,保留作图痕迹.如用铅笔作图,必须用黑色水笔把线条描清楚.)【分析】此题主要是确定矩形的长边,根据黄金比,只需要保证较短的边是较长的边倍即可,这里可以熟练的运用勾股定理进行分析.解:第一步,用圆规作出BC的中点H,则由题意可知112BH BC==,第二步,连接AH,以H为圆心,以BH为半径画弧交AH于O,由勾股定理知AH OH=HB所以AO=AH-OH1,第三步,以A为圆心,以AO为半径画弧交AD于F,过F点作FE∴BC交BC于E,∴AF=AO1,∴AFAB=故矩形ABEF即为所求.【点拨】本题考查了作图-应用与设计,矩形的性质,正方形的性质等知识,此题主要类型二、由黄金分割点求值2.(1)已知a=4.5,b=2,c是a,b的比例中项,求c;(2)如图,C 是AB 的黄金分割点,且AC >BC ,AB =4,求AC 的长.【答案】(1)3c =±;(2)2 【分析】(1)由c 是a ,b 的比例中项,可得29c ab ==,由此求解即可; (2)根据黄金分割点的定义进行求解即可. 解:(1)∴a =4.5,b =2,c 是a ,b 的比例中项,∴29c ab ==, ∴3c =±;(2)∴C 是AB 的黄金分割点,且AC >BC ,∴2AC AB ==. 【点拨】本题主要考查了黄金分割点以及比例中项,正确理解比例中项和黄金分割点的定义是解题的关键.【变式1】如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求AM DM ,的长;(2)点M 是AD 的黄金分割点吗?为什么?【答案】(1)AM 1,DM =32)是,理由见分析 【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =,则1AM AF =,3DM AD AM =-=(2)根据(1)中的数据得:AM AD =M 是AD 的黄金分割点.解:(1)在Rt APD 中,1AP =,2AD =,由勾股定理知PD1AM AF PF AP PD AP ∴==-=-,3DM AD AM =-=故AM 1,DM 的长为3 (2)点M 是AD 的黄金分割点.由于AMAD= ∴点M 是AD 的黄金分割点.【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM ,DM 的长,然后求得线段AM 和AD ,DM 和AM 之间的比,根据黄金分割的概念进行判断.【变式2】如图,设线段AC =1.(1)过点C 画CD∴AC ,使CD 12=AC ;连接AD ,以点D 为圆心,DC 的长为半径画弧,交AD 于点E ;以点A 为圆心,AE 的长为半径画弧,交AC 于点B .(2)在所画图中,点B 是线段AC 的黄金分割点吗?为什么?【答案】(1)作图见分析;(2)是,理由见分析 【分析】(1)根据几何语言画出对应的几何图形;(2)设AC =1,则DE =DC 12=,利用勾股定理得到AD AE则AB B 是线段AC 的黄金分割点. 解:(1)如图,点B 为所作;(2)点B 是线段AC 的黄金分割点.理由如下:设AC =1,则CD 12=,∴DE =DC 12=,=∴AE =AD ﹣DE 12,∴ABBC ,BC AB =21AB AC == 即BC ABAB AC=, ∴点B 是线段AC 的黄金分割点. 【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.求出线段长是解决问题的关键类型三、证明黄金分割点3.已知线段MN = 1,在MN 上有一点A ,如果AN=352,求证:点A 是MN的黄金分割点【分析】首先得出AM 的长,进而得出2AM AN MN =求出即可. 证明:作下图:线段1MN =,在MN 上有一点A ,AN , 1AM ∴== 22AM ∴= 2AM AN MN ∴=,∴点A 是MN 的黄金分割点.【点拨】本题主要考查了黄金分割,解题的关键是根据已知得出2AM AN MN =. 【变式1】如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF =EB .类似的,在AB 上折出点M 使AM =AF .则M 是AB 的黄金分割点吗?若是请你证明,若不是请说明理由.【答案】是,证明见分析【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AM的长,二者相比即可得到黄金比.解:M是AB的黄金分割点,理由如下:∴正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE∴EF=BE=1,∴AF=AE﹣EF=1,∴AM=AF=1,∴AM:AB1):2,∴点M是线段AB的黄金分割点.【点评】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫)叫做黄金比.【变式2】阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.=的矩形叫黄金矩形.如图1,已知黄金矩形ABCD的宽AB(1)求黄金矩形ABCD 中BC 边的长;(2)如图2,将图1中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论.【答案】是黄金矩形,见分析 【分析】(1)根据黄金矩形的定义,列出比例式计算即可.(2)求得CD ,EC =BC -AB EC DC =即可.解:(1)∴ 的矩形叫黄金矩形,黄金矩形ABCD 的宽AB =∴AB BC ==,∴BC == (2)矩形DCEF 是黄金矩形.理由如下:∴ 黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,∴CD =AB =,EC =BC -AB∴EC DC=,故矩形DCEF 是黄金矩形.【点拨】本题考查了黄金矩形,二次根式的分母有理化,熟练掌握有理化的方法,理解定义是解题的关键.类型四、黄金分割点的应用4.梯形ABCD 中,AD//BC ,对角线AC 和BD 相交于点O ,G 1和G 2分别为三角形AOB 和三角形COD 的重心.(1)求证:G 1G 2//AD ;(2)延长AG 1交BC 于点P ,当P 为BC 的黄金分割点时,求ADBC的值.【答案】(1)证明见分析;(2)AD BC 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P为黄金分割点,可得PC BC 解:(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心, 所以点E 、F 为AO 、DO 的中点, 所以EF 为AOD △的中位线, 所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G , 所以12G G //AD . (2)因为点P 为黄金分割点,所以PC BC 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =, 因为AD//PQ , 所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC 【点拨】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【变式1】如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】88##88+885【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离即可解答.解:设腰节到脚尖的距离为x cm ,根据题意,得:176x =,解得:88x =,∴腰节到脚尖的距离为(88)cm ,故答案为:88.=较长线段:全线段是解答的关键.【变式2】(1)数学活动一的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,都采用了黄金矩形的设计.在数学活动课上,小红按如下步骤折叠出一个矩形:第一步,在一张矩形纸片的一端,利用图∴的方法折出一个正方形ABCD ,然后把纸片展平;第二步,如图∴,把这个正方形ABCD 对折成两个完全重合的矩形,再把纸片展平; 第三步,如图∴,折出内侧矩形EFBC 的对角线CF ,并把CF 折到图中所示FN 处; 第四步,如图∴,展平纸片,按照点N 折出NM ,得到矩形BNMC .若2AD =,请证明矩形BNMC 是黄金矩形.(2)数学活动二如图∴,点C 在线段AB 上,且满足::AC BC BC AB =,即2BC AC AB =⋅,此时,我们说点C 是线段AB 的黄金分割点,且通过计算可得BC AB =.小红发现还可以从活动一的第三步开始修改折叠方式,如图∴,折出右侧矩形EFBC 的对角线EB ,把AB 边沿BG 折叠,使得A 点落在对角线BE 上的K 点处,若2AD =,请通过计算说明G 点是AD 的黄金分割点.【答案】(1)证明见分析,(2)证明见分析【分析】(1)由正方形ABCD 的边长为2,根据折叠可知FB ,由勾股定理可得FC ,易得出BN 的值,再求BN :BC 的值即可判断;(2)如图,连接,GE 设,AG x 则,2,GK x GD x 再利用轴对称的性质与勾股定理求解52,KE 再利用勾股定理建立方程求解x ,从而可得答案.证明:(1)根据第一步折叠可知,ABCD 是正方形,由正方形边长为2, 根据第二步可知,1,FB在∴FCB 中,根据勾股定理, 得22215,FC 根据第三步可知,5,FCFN ∴51,BN∴ 51.2BNBC ∴矩形BNMC 是黄金矩形.(2)如图,连接,GE 正方形的边长2,AD由对折可得:1,2,,90,AFBF CE DE BA BK AG GK A GKB 22215,52,90,BE EK GKE设,AG x,2,GK x GD x所以由勾股定理可得:22222152,x x解得:1,x = 51,2AGAD 所以G 点是AD 的黄金分割点. 【点拨】本题考查的是成比例线段,黄金分割点的含义,正方形的性质,轴对称的性质,勾股定理的应用,理解题意利用轴对称的性质逐步计算是解本题的关键.。
专题07-黄金分割-同步学与练-(含解析)数学苏科版九年级下册
专题07黄金分割(2个知识点2种题型1个中考考点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.黄金分割(重点)知识点2.黄金矩形(拓展)【方法二】实例探索法题型1.与黄金分割有关的计算题型2.黄金分割的实际应用【方法三】仿真实战法考法:利用黄金分割的概念计算【方法四】成果评定法【学习目标】1.通过建筑、艺术上的实例了解黄金分割、黄金比、黄金分割点、黄金矩形的定义.2.会一条线段的黄金分割点.3.了解黄金分割在生活中的应用,会运用黄金比解决实际问题.【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1.黄金分割(重点)黄金分割:一般地,点C 把线段AB 分成两条线段AC 和BC (如图AC BC >),如果AC BC AB AC=,则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中0.618AC AB =≈,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)注意!!!一条线段有两个黄金分割点,因此,一般说点P 是线段AB 的黄金分割点时,需加注 AP PB >或AP < BP ,否则在已知AB 的长度求AP (或BP )的长度时,会有两种情况,此时应分情况讨论.【例1】1.已知线段AB 的长度为l ,点P 在线段上,PB AP AP AB=,求线段AP 的长.【变式1】2.(1)点P 是线段AB 的黄金分割点,AP BP >,6AB =厘米,求BP 的长;(2)已知点P 是线段AB 的黄金分割点,1AB =,求AP 的值.【变式2】3.如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD .在BA 的延长线上取点F ,使PF PD =.以AF 为边作正方形AMEF ,点M 在AD 上.(1)求线段AM 、DM 的长;(2)求证:2AM AD DM =⋅;(3)请指出图中的黄金分割点.知识点2.黄金矩形(拓展)【例2】4的矩形叫黄金矩形.如图:如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.【变式】.(绵阳)5.黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD 的底边BC 取中点E ,以E 为圆心,线段DE 为半径作圆,其与底边BC 的延长线交于点F ,这样就把正方形ABCD 延伸为矩形ABFG ,称其为黄金矩形.若4CF a =,则AB =( ).A .)1a -B .()2aC .)1aD .()2a 【方法二】实例探索法题型1.与黄金分割有关的计算(芦溪县期中)6.已知线段AB 的长度为2,点C 是线段AB 的黄金分割点,则AC 的长度为( )A B C 1或3D 2(瑞安市期末)7.已知P 为线段AB 的黄金分割点,4AB =,AP BP >,则AP 的长为( )A .2B .4C .1D .6-题型2.黄金分割的实际应用(安庆期中)8.大自然巧夺天工,一片小树叶也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP PB >),如果AP 的长度为10cm ,那么AB 的长度是( )A .5B .15-C .5D .15+(沈河区期末)9.如图,冬奥会吉祥物“冰墩墩”意喻敦厚,健康,可爱,活泼,它泛着可爱笑容的嘴巴位于黄金分割点处,若玩偶身高6cm ,则玩偶嘴巴到脚的距离是( )A .3)cmB C D .(9-(天长市期中)10.大自然是美的设计师,即使是一个小小的盆景,经常也会产生最具美感的黄金分割比(黄金分割比约为0.618).如图,点B 为AC 的黄金分割点(AB BC >),若100AC =cm ,则BC 约为( )A .42cmB .38cmC .62cmD .70cm(酒泉期中)11.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图),若车头与倒车镜的水平距离为1.58米,则该车车身总长约为( )米.A .4.14B .2.56C .6.70D .3.82【方法三】 仿真实战法考法:利用黄金分割的概念计算(黄石)12.关于x 的一元二次方程210x mx +-=,当1m =时,该方程的正根称为黄金分割数.宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的巴特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.(1)求黄金分割数;(2)已知实数a ,b 满足:221,24a ma b mb +=-=,且2b a ≠-,求ab 的值;(3)已知两个不相等的实数p ,q 满足:2211p np q q nq p +-=+-=,,求pq n -的值.【方法四】 成果评定法一.选择题(共8小题)(杨浦区期末)13.已知P 是线段AB 的黄金分割点,且AP>BP ,那么下列比例式能成立的是( )A .AB AP AP BP =B .AB BP AP AB =C .BP AB AP BP =D .AB AP =(开化县模拟)14.美是一种感觉,当人体下半身长与身高的比值接近0.618时,越给人一种美感.某女士身高 165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm(会同县期末)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是( )cm .A .4-B .4C .4+D .4-(八步区期中)16.若线段MN 的长为1cm ,点P 是线段MN 的黄金分割点,MP NP >,则较长的线段MP 的长为( )A .1)cmB .(3CD (鄞州区期中)17.点P ,点Q 是线段AB 的黄金分割点,若2AB =,则PQ 长度是( )A .1B .C .4-D (福鼎市期中)18.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示以线段AB 为边作正方形ABCD ,取AD 的中点E ,连接BE ,延长DA 至F ,使得EF BE =,以AF 为边作正方形AFGH ,则点H 即是线段AB 的黄金分割点.若记正方形AFGH 的面积为1S ,矩形BCIH 的面积为2S ,则1S 与2S 的比值是( )A B C D .1(盐湖区校级期中)19.如图,正五边形ABCDE 的几条对角线的交点分别为,,,,M N P Q R ,它们分别是所在对角线的黄金分割点.若2AB =,则MN 的长为( )A .3B .3C 1D 1(和平区期末)20.如果一个等腰三角形的顶角为36︒,我们把这样的等腰三角形称为黄金三角形.如图,在ABC 中,1AB AC ==,36A ∠=︒,ABC 看作第一个黄金三角形;作ABC ∠的平分线BD ,交AC 于点D ,BCD △看作第二个黄金三角形;作BCD ∠的平分线CE ,交BD 于点E ,CDE 看作第三个黄金三角形……以此类推,第2024个黄金三角形的腰长是( )A .2023B .2024C .2023D .2024二.填空题(共8小题)(沈北新区校级月考)21.如果点C 是线段AB 的黄金分割点,2cm =AC ,AC BC >,那么AB 的长为 .(平川区校级期末)22.若点P 为线段AB 的黄金分割点,且AP BP <,10BP =,则AP = .(吉安期中)23.如图,线段10cm AB =,点C 是线段AB 的黄金分割点,且AC BC >,设以AC 为边的正方形的面积为1S ,以BC 为一边,AB 长为另一边的矩形BCFG 的面积为21S S , 2S (填:“>”、“=”或“<”).(高港区期中)24.我们把宽与长的比是1):2的矩形叫做黄金矩形,从外形看它最具美感.小明想制作一张“黄金矩形”的贺卡,已知贺卡长为20cm ,那么贺卡的宽为 cm .(结果保留根号).(朝阳一模)25.如图,在某校的2022年新年晚会中,舞台AB 的长为20米,主持人站在点C 处自然得体,已知点C 是线段AB 上靠近点B 的黄金分割点,则此时主持人与点A 的距离为 米.(徐汇区期末)26.已知点P 是线段AB 的黄金分割点()AP BP >,如果2AB =,那么BP 的长是 .(达州)27.如图,乐器上的一根弦80cm AB =,两个端点,A B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,,C D 之间的距离为 .(天府新区期中)28.黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD 的底边BC 取中点E ,以E 为圆心,线段DE 为半径作圆,其与底边BC 的延长线交于点F ,这样就把正方形ABCD 延伸为矩形ABFG ,称其为黄金矩形.若4CF a =,则AB = .三.解答题(共5小题)(市南区校级期中)29.如图,点C 是线段AB 的黄金分割点,AC BC >,计算线段AB 的黄金比AC AB 的值.(瑞安市期中)30.(1)已知 4.5a =,2b =,c 是a ,b 的比例中项,求c ;(2)如图,C 是AB 的黄金分割点,且AC BC >,4AB =,求AC 的长.(金安区校级期中)31.已知顶角为36︒的等腰三角形称为黄金三角形(底边与腰的比值为黄金分割比),如图,ABC ,BDC ,DEC 都是黄金三角形,已知36A ∠=︒,1AB =,求DE 的长度.(上城区校级期中)32.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?(兰山区期中)33.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计多高?参考答案:1.AP=【分析】由题意得点P是线段AB的黄金分割点,再列式计算即可.=,【详解】解: 点P在线段AB上,PB APAP AB∴点P是线段AB的黄金分割点,且AP BP>,PB AP∴==AP AB线段AB的长度为l,AP∴.【点睛】本题考查了黄金分割点的定义,解题的关键是掌握黄金分割的几何含义并熟记其比值.2.(1)(9BP=-厘米;(2)2AP=或1AP=-.【分析】(1)根据条件建立等式AP AB=,求解即可;(2然后建立等式求解.【详解】解:(1)根据黄金分割点定义,且AP BP>,可知AP AB=,此时(BP AB69===-厘米;(2故2AP ABAP=.==或1【点睛】本题考查了黄金分割点,解题的关键是注意黄金分割点和黄金分割的区别,一条线段的黄金分割点有两个,满足黄金分割黄金比的只有一个.3.(1)1DM=AM=-,3(2)见解析(3)见解析【分析】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =,则1,3AM AF DM AD AM ===-=(2)根据(1)所求分别求出2AM AD DM ⋅,的值即可证明结论;(3)根据(1)中的数据得:AM AD M 是AD 的黄金分割点.【详解】(1)解:在Rt APD 中,1,2AP AD ==,由勾股定理知:PD∴1AM AF PF AP PD AP ==-=-=,∴3DM AD AM =-=(2)证明:由(1)得)(2216236AM AD DM ==-⋅=⨯=-∴2AM AD DM =⋅;(3)解:∵AM AD =∴点M 是AD 的黄金分割点.4.是;见解析【分析】本题主要考查了黄金分解的定义,根据黄金矩形的定义去计算宽与长之比即可得出答案.【详解】解:是,证明如下:∵四边形ABEF 是正方形,∴AB AF =,∵四边形ABCD 是矩形 ,∴AB CD =,∴AF CD =,又∵AB AD =∴AF AD =, 即点F 是AD 的黄金分割点,∴AF AD =,∴DF AD AF AD =-=,∴DF AF =,即DFDC=∴矩形CDEF 是黄金矩形.5.D【分析】本题考查了黄金分割,正方形的性质,矩形的性质,解题的关键是掌握A BB F =计算即可.【详解】解:设AB x =,四边形ABCD 是正方形,AB BC x ∴==,矩形ABFG 是黄金矩形,A B B F \=4x x a \=+解得:(2x a =+,经检验:(2x a =+是原方程的根,(2A B a \=+,故选:D .6.C【分析】分AC <BC 、AC >BC 两种情况,根据黄金比值计算即可.【详解】解:当AC <BC 时,∵点C 是线段AB 的黄金分割点,∴1BC AB ==,同理当AC >BC 时,1AC AB ==,∴)213BC AB AC =-=-=故选C .【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线)叫做黄金比.7.A【分析】本题考查了黄金分割的概念.黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值【详解】解: 点P 是线段AB 上的一个黄金分割点,且4AB =,AP BP >,42AP ∴==.故选:A .8.A【分析】本题考查黄金分割的应用;由黄金分割知:AP AB =,由此可求得AB 的长.【详解】解:∵P 为AB 的黄金分割点,∴AP AB =,即105)cm AB ==+,故选:A .9.A【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.根据黄金分割的定义进行列式计算即可解答.【详解】解:由题意得玩偶嘴巴到脚的距离为:()63cm =故选:A .10.B【分析】本题考查黄金分割.根据黄金分割点的定义,列出比例式进行求解即可.熟练掌握黄金分割中的比例关系,是解题的关键.【详解】解:由题意,得:0.618ABAC≈,100AC =cm ,∴61.8cm AB ≈,∴38cm BC AC AB =-≈;故选B .11.A【分析】设整个车身长为AB ,点C 表示倒车镜位置,根据题意,确定BC 的长,继而确定车身长,对照选项判断即可.【详解】如图,设整个车身长为AB ,点C 表示倒车镜位置,根据题意,AC =1.58米,∴BC =1.58÷0.618=2.56米,故车长为1.58+2.56=4.14米,故选:A .【点睛】本题考查了线段的黄金分割点,准确理解黄金分割点的意义并灵活计算是解题的关键.12.(2)2(3)0【分析】(1)依据题意,将1m =代入然后解一元二次方程210x x +-=即可得解;(2)依据题意,将224b m b -=变形为21022b b m ⎛⎫⎛⎫-+⋅--= ⎪ ⎪⎝⎭⎝⎭,从而可以看作a ,2b -是一元二次方程210x mx +-=的两个根,进而可以得解;(3)依据题意,将已知两式相加减后得到,两个关系式,从而求得pq ,进而可以得解.【详解】(1)依据题意,将1m =代入210x mx +-=得210x x +-=,解得x =,∵黄金分割数大于0,∴(2)∵224b m b -=,∴2240b m b --=,则21022b b m ⎛⎫⎛⎫-+⋅--= ⎪ ⎪⎝⎭⎝⎭.又∵2b a ≠-,∴a ,2b-是一元二次方程210x mx +-=的两个根,则12b a ⎛⎫⋅-=- ⎪⎝⎭,∴2ab =.(3)∵21p np q +-=,21q nq p +-=;∴()()2211p np q nq q p +-++-=+;即()()222p q n p q p q +++-=+;∴()()222p q pq n p q p q +-++-=+.又∵()()2211p np q nq q p +--+-=-;∴()()()22p q n p q p q -+-=--;即()()10p q p q n -+++=.∵p ,q 为两个不相等的实数,∴0p q -≠,则10p q n +++=,∴1p q n +=--.又∵()()222p q pq n p q p q +-++-=+,∴()()212121n pq n n n ---+---=--,即0pq n -=.【点睛】本题考查的是一元二次方程根与系数的关系,解题的关键是掌握根与系数的关系,灵活运用所学知识解决问题.13.A【分析】由于点P 是线段AB 的黄金分割点,且AP>BP ,故有AP 2=BP×AB ,那么AB APAP BP=.【详解】∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,即AB APAP BP=,故A正确,B、C错误;BP APAP AB==D错误;故答案为A.【点睛】本题考查了黄金分割的知识,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.14.C【分析】本题考查了黄金分割的应用.先求得下半身的实际高度,再根据黄金分割的定义求解即可.【详解】根据已知条件得下半身长是1650.6099⨯=,设需要穿的高跟鞋是y,根据黄金分割的定义得:990.618 165yy+=+,解得:8y≈.故选:C.15.B【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:∵P为AB的黄金分割点(AP>PB),∴AP AB,∵AB的长度为8cm,∴AP×8=4(cm).故选:A.【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.16.C【分析】本题考查了黄金分割.利用黄金分割的定义进行计算,即可解答.【详解】解: 点P 是线段MN 的黄金分割点,MP NP >,1cm MN =,)cm MP ∴==,故选:C .17.C【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解答本题的关键.根据黄金分割的定义,得到AQ BP AB AB ==【详解】如图,点P ,点Q 是线段AB 的黄金分割点,若2AB =,∴AQ BP AB AB ==∴1AQ BP ==,∴1124PQ AQ BP AB =+-=---=,故选:C .18.D【分析】根据H 是AB 的黄金分割点求出2AH BH AB =⋅,求出21S AH =,2S BH BC BH AB =⋅=⋅,再得出答案即可.【详解】解:H 是AB 的黄金分割点,2AH BH AB ∴=⋅,21S AH = ,2S BH BC BH AB =⋅=⋅,12S S ∴=,即121S S =,故选:D .【点睛】本题考查了黄金分割,能熟记黄金分割的性质是解此题的关键.19.A【分析】本题主要考查了正多边形的相关性质,平行四边形的性质及判定,首先根据正五边形的相关性质判定四边形ABME 为平行四边形,进而求出BM 的长度,再根据黄金分割点进行计算即可得到MN 的长.黄金分割点等相关内容,熟练掌握黄金分割点的计算方法是解决本题的关键.【详解】解:∵五边形ABCDE 为正五边形∴2AE AB ==,()180521085EAB ABC ︒⨯-∠=∠==︒,∴36AEB ABE ∠=∠=︒同理可得36CBD ∠=︒∴1083672ABD ∠=︒-︒=︒∵10872180EAB ABD ∠+∠=︒+︒=︒∴AE BD同理可证明EC AB ∥∴四边形ABME 为平行四边形∴2EM AB ==,2BM AE ==,同理:2DN =,∵M 、N 为BD 的黄金分割点∴BD =21=+,∴DM BD BM =-=1,∴21)3MN DN DM =-=-=故选:A .20.A【分析】本题考查了黄金三角形,规律型等知识;由黄金三角形的定义得BC AB =,同理求出2CD =,3DE =,可得第1个黄金三角形的腰长为1AB AC ==,第2,第3个黄金三角形的腰长是2,第4个黄金三角形的腰长是3,得出规律第n 个黄金三角形的腰长是1n -,即可得出答案.【详解】解:∵ABC 是第1个黄金三角形,第1个黄金三角形的腰长为1AB AC ==,∴BC AB =,BC AB ∴==,∵BCD △是第2个黄金三角形,∴CD BC =第2,2CD ∴==,∵CDE 是第3个黄金三角形,∴DE CD 第3个黄金三角形的腰长是2,3DE ∴==,∴第4个黄金三角形的腰长是3,…∴第n 个黄金三角形的腰长是1n -,∴第2024个黄金三角形的腰长是202412023-=,故选:A .21.(1cm【分析】本题考查黄金分割.根据黄金分割比“将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,”结合题意AC BC >,且2cm =AC ,即可列出关于线段AC 长的等式,解出AC 即可.【详解】解:∵点C 是线段AB 的一个黄金分割点,且AC BC >,∴AC AB =,∴2AB∴)1cm AC =+.故答案为:(1cm .22.5-+5【分析】本题考查了黄金分割的定义,解题的关键是熟练掌握黄金分割的定义及黄金比值.设AP x =,则10AB x =+,根据黄金分割的定义得到AP BP BP AB =即101010x x =+,解方程即可得到答案.【详解】解:设AP x =,则10AB AP BP x =+=+,∵点P 为线段AB 的黄金分割点,∴AP BP BP AB =,即101010x x =+,∴2101000x x +-=,解得5x =-+或5x =--(舍去),经检验,5x =-+∴5AP =-+故答案为:5-+23.=【分析】根据黄金分割的定义,即可得到答案.【详解】解:∵点C 是线段AB 的黄金分割点,且AC BC >,∴AC BC AB AC=,∴2AC AB BC =⋅,∵212,S AC S AB BC ==×,∴12S S =,故答案为:=.【点睛】本题主要考查黄金分割的定义,记住公式即可.24.)101【分析】本题主要考查的是黄金分割的概念和性质,根据黄金比值求解即可.【详解】解∶ 宽与长的比是1):2-,∵贺卡长为20cm∴贺卡宽为)20101=,故答案为:)101.25.()10##(10-+【分析】本题考查了黄金分割,熟练掌握黄金分割点的定义是解题的关键.由黄金分割点的定义得AC AB =,再代入AB 的长计算即可.【详解】解: 点C 是线段AB 上靠近点B 的黄金分割点,20AB =米,2010)AC ∴===(米),故答案为:10).26.3##3+【分析】本题考出来黄金分割,解一元二次方程组.由题意知,2BP AB AP AP =-=-,由点P 是线段AB 的黄金分割点,可得=AP BP AB AP ,即22AP AP AP -=,整理得2240AP AP -+=,计算求出满足要求的解即可.【详解】解:由题意知,2BP AB AP AP =-=-,∵点P 是线段 AB 的黄金分割点,∴=AP BP AB AP ,即22AP AP AP-=,整理得2240AP AP -+=,解得:1AP =-1AP =-,∴(2213BP AP =-=--=故答案为:327.160)cm-【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分,由此即可求解.【详解】解:弦80cm AB =,点C 是靠近点B 的黄金分割点,设BC x =,则80AC x =-,∴8080x -=120x =-点D 是靠近点A 的黄金分割点,设AD y =,则80BD y =-,∴8080y -=120y =-,∴,C D 之间的距离为8080120120160x y --=-++=,故答案为:160)cm .【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.28.()2a【分析】结合题意可得,DE 和EF 是扇形DEF 的边,则DE EF CE CF ==+,根据正方形性质可得BC CD AB ==,90ECD ∠=︒,因为E 是BC 的中点,则12CE BE BC ==;根据勾股定理可得,直角CDE 中,222CD CE DE +=,即DE =CE CF +=AB 的值.【详解】解:依题得:DE EF =,设2AB x =,则正方形ABCD 中,2BC CD AB x ===,90ECD ∠=︒,E 是BC 的中点,12CE BE BC x ∴===,又4CF a = ,4EF CE CF x a DE ∴=+=+=,在直角CDE 中,222CD CE DE +=,即()()22224x x x a +=+2225816x x ax a =++2224x ax a -=()225x a a -=)11x a ∴=,()21x a =,40CF a => ,即0a >,()210x a ∴=<,2x ∴舍去,)()2212AB x a a ∴===+.故答案为:()2a .【点睛】本题考查的知识点是正方形的性质、圆的性质、勾股定理、一元二次方程的解,解题关键是找到DE EF CE CF ==+和222DE CE CD =+两个等量关系式列一元二次方程.29即可解答,熟练掌握黄金分割的定义是解题的关键.【详解】解: 点C 是线段AB 的黄金分割点,AC BC >,∴AC AB =,∴线段AB 的黄金比AC AB .30.(1)c 为3或3-;(2)2AC =【分析】本题主要考查了黄金分割点以及比例中项,正确理解比例中项和黄金分割点的定义是解题的关键.(1)由c 是a ,b 的比例中项,可得29c ab ==,由此求解即可;(2)根据黄金分割点的定义进行求解即可.【详解】解:(1)∵c 是,a b 的比例中项,∴2 4.529c ab ==⨯=∴13c =,23c =-∴c 为3或3-;(2)∵C 是AB 的黄金分割点,且AC BC >,4AB =,∴4 2.AC AB ===31【分析】证明ABC BDC ∽△△,可得2BC AB CD =⨯,从而得到221CD BC AD CD AD AC ==+==①,②,进而得到CD =【详解】解:∵ABC ,BDC ,DEC 都是黄金三角形,∴,,AB AC BD BC AD DE CD ====,36A CBD CDE ∠=∠=∠=︒,∵C C ∠=∠,∴ABC BDC ∽△△,∴AC BC BC CD=,∴2BC AB CD =⨯,∵1AB =,∴221CD BC AD CD AD AC ==+==①,②,∴1AD CD =-③,代入①整理得,()21CD CD =-,解得:CD =∵1CD <,∴CD =,∵DE CD =,∴DE =【点睛】本题考查了相似三角形的判定和性质,黄金三角形的定义,解题的关键是理解黄金三角形的定义.32.(1)AM 1,DM 的长为3(2)点M 是AD 的黄金分割点,理由见解析【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ===,则1,3AM AF DM AD AM ==-=-=(2)根据(1)中的数据得:AM AD M 是AD 的黄金分割点.【详解】(1)在Rt APD 中,1,2AP AD ==,由勾股定理知∶PD∴1AM AF PF AP PD AP ==-=-=,3DM AD AM =-=故AM 1,DM 的长为3(2)点M 是AD 的黄金分割点.∵AM AD =∴点M 是AD 的黄金分割点.【点睛】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段,AM DM 的长,然后求得线段AM 和AD 之间的比,根据黄金分割的概念进行判断.33.1)m【分析】本题考查了黄金分割,解题的关键是设雕像的下部高为x m ,则上部长为(2)m x -,然后根据题意列出方程求解即可.【详解】解:设雕像的下部高为x m ,则题意得:22x x x -=,整理得:2240x x +-=,解得11x =,21x =-(舍去),答:雕像的下部高为1)m -.。
【精品】北师大版数学六年级(下册)比例 经典易错题型
【精品】北师大版数学六年级(下册)比例经典易错题型一、比例1.已知AB=K, =D,(ABCD都是大于0的自然数),那么下列比例中正确的是()A. B. C. D.【答案】 D【解析】【解答】解:是正确的。
故答案为:D。
【分析】AB=K,=D,那么=D,所以AB=CD,据此作答即可。
2.如果甲数的等于乙数的,那么甲数:乙数等于()A. 6:15B. 10:9C. 15:6D. 9:10【答案】 D【解析】【解答】如果甲数×=乙数×,则甲数:乙数=:=():()=9:10。
故答案为:D。
【分析】根据条件先列出等式,然后根据比例的基本性质,相乘的两个数同时作外项或内项,写出比例,然后化简即可。
3.下面()能和:4组成比例。
A. 5:10B.C.【答案】 C【解析】【解答】:4=÷4=;选项A,5:10=5÷10=,≠,不能组成比例;选项B,:=÷=,≠,不能组成比例;选项C,:=÷=,=,能组成比例。
故答案为:C。
【分析】表示两个比相等的式子叫比例,判断两个比是否能组成比例,用前项÷后项=比值,分别求出比值,如果比值相等,就能组成比例,否则,不能组成比例,据此解答。
4.下面各组的两个比,可以组成比例的是()A. :和:B. 12:9和9:6C. 8.4:2.1和1.2:8.4【答案】 A【解析】【解答】解:A、,=2,能组成比例;B、12:9=, 9:6=,不能组成比例;C、8.4:2.1=4,1.2:8.4=0.25,不能组成比例。
故答案为:A。
【分析】比值相等的两个比能组成比例,计算出每个选项中两个比的比值即可作出选择。
5.把一个长8m,宽6m的长方形画在作业本上,选择比例尺比较合适的是()。
A. 1:10B. 1:100C. 1:10000【答案】 B【解析】【解答】解:8m=800cm,A、800×=80(cm),不合适;B、800×=8(cm),合适;C、800×=0.08(cm),不合适。
2020年中考复习--黄金分割专题训练(一)(有答案)
2020中考复习--黄金分割专题训练(一)一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
4.1 比例线段 第3课时 比例中项与黄金分割练习题 2021—2022学年浙教版九年级数学上
第3课时比例中项与黄金分割【基础练习】知识点1比例中项1.如果a︰b=3︰2,且b是a,c的比例中项,那么b︰c等于()A.4 3B.3 4C.2 3D.3 22.如果a=3,b=2,且b是a,c的比例中项,那么c=.3.已知三个数a,b,c,其中a=1,b=4,c是a,b的比例中项,则c=.4.已知线段a=2 cm,b=8 cm,它们的比例中项c为cm.知识点2黄金分割5.已知点C是线段AB的黄金分割点,且AC>BC,则下面的等式成立的是()A.AB2=AC·BCB.BC2=AC·ABC.AC2=BC·ABD.AC2=2AB·BC6.图5是意大利著名画家达·芬奇的名画《蒙娜丽莎》.画中脸部被围在矩形ABCD内,点F 是AB的黄金分割点,BF>AF,若AB=10,则BF的长为.图57.已知点E是线段AB的黄金分割点,且BE>AE,若AB=2,则AE=.【能力提升】8.已知线段AB及AB上一点P,再添加一个条件,使P为AB的黄金分割点,其中错误的是()A.AP=√5-12AB B.PB=3-√52AB C.APPB=√5-12D.ABAP=√5-129.如果三条线段的长a,b,c满足ba =cb=√5-12,那么a,b,c叫做“黄金线段组”.黄金线段组中的三条线段()A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10.如图6,已知P是线段AB的黄金分割点,且P A>PB,若S1表示以P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2(填“>”“=”或“<”).图611.已知顶角为36°的等腰三角形称为黄金三角形(底边长与腰长的比值为黄金分割比).如图7,△ABC,△BDC,△DEC都是黄金三角形,已知AB=1,求CE的长度.图712.如图8,用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置B',因而EB'=EB.类似地,在AB上折出点B″,使AB″=AB'.这时点B″就是线段AB的黄金分割点.请你证明这个结论.图8答案1.D [解析] ∵a ∶b=3∶2,b 是a ,c 的比例中项,∴a ∶b=b ∶c ,∴b ∶c=3∶2. 2.433.±2 [解析] 根据比例中项的概念,得c 2=a ×b=4×1,解得c=±2.4.4 [解析] 根据比例中项的概念得c 2=ab ,则c 2=2×8,解得c=±4. ∵线段长是正数,∴c=4 cm .5.C6.5√5-5 [解析] ∵点F 是AB 的黄金分割点,BF>AF , ∴BF=√5-12AB=√5-12×10=5√5-5. 7.3-√5 [解析] ∵E 是线段AB 的黄金分割点,且BE>AE , ∴BE AB =√5-12,则BE=√5-12AB=√5-12×2=√5-1,故AE=AB -BE=3-√5.8.D9.D [解析] ∵ba =cb =√5-12, ∴b=√5-12a ,c=√5-12b=3-√52a , ∴b+c=√5-12a+3-√52a=a , ∴长为a ,b ,c 的三条线段不能构成三角形. 故选D .10.= [解析] ∵P 是线段AB 的黄金分割点,且P A>PB ,∴P A 2=PB ·AB.又∵S 1表示以P A 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积, ∴S 1=P A 2,S 2=PB ·AB ,∴S 1=S 2.11.解:∵△ABC ,△BDC ,△DEC 都是黄金三角形, ∴DE=CD ,BC AB =√5-12,CD BC=√5-12,CE CD =√5-12. ∵AB=1, ∴BC=√5-12AB=√5-12, ∴CD=√5-12BC=√5-122=3-√52, ∴CE=√5-12CD=√5-12×3-√52=√5-2.12.证明:设正方形ABCD的边长为2.∵E为BC的中点,∴BE=1,∴AE=√AB2+BE2=√5.又∵B'E=BE=1,∴AB'=AE-B'E=√5-1,∴AB″=AB'=√5-1,∴AB″∶AB=(√5-1)∶2,∴点B″是线段AB的黄金分割点.。
线段的比、黄金分割(培优训练)
线段的比、黄金分割知识要点◆要点1 线段的比(1) 线段的比:在同一单位下,两条线的长度的比叫做这两条线段的比。
(2) 成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段成比例线段,当b =c 时,有db b a =,称b 为a 与d 的比例中项。
(3) 比例尺:比例尺=图上距离:实际距离★说明:判断四条线段是否成比例,首先要把四条线段的单位化成同一单位,再计算它们的比值来判断,要注意它们的顺序。
◆要点2 比例的性质a . 比例的基本性质:()()0,02≠=⇔=≠=⇔=d c b a ac b cb b a dc b a bc ad d c b a 、、、、、、 b . 合比性质:(两边都加1或减1)dd c b b a d c b a ±=±⇒= c . 等比性质:如果()0≠+++===m d b n m d c b a ,那么b a n d b m c a =++++++ 。
◆要点3 黄金分割概念:若点C 把线段AB 分成两条线段AC 、BC (AC >BC),若ACBC AB AC =,我们称线段AB 被点C 黄金分割,C 点为该条线段的黄金分割点,较短线段与较长线段(或较长线段与原线段)的比叫做黄金比⎪⎪⎭⎫ ⎝⎛≈-618.0215。
★说明:(1)一条线段有两个黄金分割点。
黄金分割比是两个线段的比,没有单位;(2) 一条线段黄金分割后,原线段、较长线段、较短线段有其固定关系:若AB =1,.253,215-=-=BC AC 则(3)作一条线段的黄金分割点一般有两种方法,如右图XS —01、XS —02:易错易混点 (1)求线段的比时,忽视了单位的统一;(2) 不按顺序写成比例线段;运用等比性质时,忽略了成立的条件;(3) 没有理解黄金分割的定义;XS —02 XS —01例☆ 已知:k zy x y z x x z y =+=+=+,求k 的值。
分割黄金智力测试题(3篇)
第1篇一、选择题1. 下列关于黄金分割的描述,正确的是:A. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。
B. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为1:1。
C. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为2:1。
D. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为3:2。
2. 黄金分割的比值约为:A. 1.618B. 2.618C. 0.618D. 1.4143. 黄金分割在以下哪个领域有广泛的应用?A. 数学B. 物理C. 建筑D. 以上都是4. 下列哪个不是黄金分割的应用实例?A. 斐波那契数列B. 古希腊建筑C. 印度教神像D. 荷兰风车5. 黄金分割在音乐中的运用体现在:A. 旋律B. 和弦C. 节奏D. 以上都是6. 黄金分割在艺术创作中的运用体现在:A. 形状B. 色彩C. 线条D. 以上都是7. 下列哪个不是黄金分割的特点?A. 比例关系B. 美学价值C. 经济效益D. 生物学意义8. 黄金分割在建筑设计中的运用体现在:A. 室内布局B. 外观造型C. 结构设计D. 以上都是9. 黄金分割在植物生长中的运用体现在:A. 叶片排列B. 花朵形态C. 果实分布D. 以上都是10. 下列哪个不是黄金分割的应用领域?A. 设计B. 科学研究C. 农业种植D. 医学治疗二、填空题1. 黄金分割的比值是__________。
2. 黄金分割在数学中被称为__________。
3. 黄金分割在自然界中普遍存在,如__________、__________等。
4. 黄金分割在艺术创作中的应用实例有__________、__________等。
5. 黄金分割在建筑设计中的应用实例有__________、__________等。
黄金分割及答案
黄金分割(一)、主要知识点: 1.黄金分割的定义在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中215-=AB AC ≈0.618. ABC推导黄金比过程。
设AB=1,AC=x ,则BC=1-x ,所以xxx -=11,即x x -=12,用配方法解得x=215-≈0.618 . 注意:(1)一条线段有2个黄金分割点。
(2)较长线段较短线段原线段较长线段黄金比==(3)宽与长的比等于黄金比的矩形称为黄金矩形 (4)黄金分割点把线段分成一长一短,则较长线段较短线段原线段较长线段=,即:点C 是线段AB 的黄金分割点:①若AC>BC,则ACBCAB AC = ;②若AC<BC,则BCACAB BC = . 2.如何作一条线段的黄金分割点. 如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD=21AB. (2)连接AD ,在DA 上截取DE=DB.(3)在AB 上截取AC=AE.则点C 为线段AB 的黄金分割点.作图原理:可设AB=1,,则BD=21,则由勾股定理可知25=AD .可进一步求出AE, AC.从而解决问题。
3.比例的基本性质:如果a b cd =,那么ad=bc ,逆命题也成立。
4.合比性质:如果a b c d =,那么a b b c d d +=+;如果a b c d =,那么a b b c dd -=-。
5.等比性质:如果a b c d ==……=mn(b +d +……+n ≠0);那么,a c m b d n ab ++++++=(二)、典型习题: 一、选择题1.等边三角形的一边与这边上的高的比是_________. A .3∶2 B .3∶1 C .2∶3 D .1∶32.下列各组中的四条线段成比例的是_________. A .a =2,b =3,c =2,d =3 B .a =4,b =6,c =5,d =10 C .a =2,b =5,c =23,d =15 D .a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是_________. A .a ∶d =c ∶b B .a ∶b =c ∶dC .d ∶a =b ∶cD .a ∶c =d ∶b4.若ac =bd ,则下列各式一定成立的是_________.A .d c b a =B .c c b d d a +=+C .c d b a =22D .dacd ab =5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是_________.A .AM ∶BM =AB ∶AM B .AM =215-AB C .BM =215-AB D .AM ≈0.618AB 二、填空题6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________.7.正方形ABCD 的一边与其对角线的比等于________. 8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则b a=________. 10.若AE ACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 三、解答题 11.已知342=+x y x ,求y x .12.在同一时刻物高与影长成比例,如果一古塔在地面上的影长为50 m ,同时高为1.5 m 的测杆的影长为2.5 m ,那么古塔的高是多少?13.在△ABC 中,D 是BC 上一点,若AB =15 cm ,AC =10 cm ,且BD ∶DC =AB ∶AC ,BD -DC =2 cm ,求B C .14.如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图1),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.分式(一)、主要知识点: 1.分式的定义分母中含有字母的式子叫做分式,成立的条件:分母不为0 。
苏教版九年级下册数学[比例线段及黄金分割(提高)-知识点整理及重点题型梳理]
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习相似形和比例线段(提高) 知识讲解学习目标】1、了解两条线段的比和比例线段的概念并能根据条件写出比例线段;2、会运用比例线段解决简单的实际问题;3、掌握黄金分割的定义并能确定一条线段的黄金分割点.【要点梳理】要点一、比例线段【 394495 图形的相似 预备知识】1.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.2.比例的性质:(1)基本性质:如果a cb d=,那么ad bc =. (2)合比性质:如果++==.a c a b c d b d b d,那么 如果--==.a c a b c d b d b d ,那么 要点诠释:(1)两条线段的长度必须用同一长度单位表示,若单位长度不同,先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.要点二、黄金分割1.定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BC AB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:12AC AB =≈(12叫做黄金分割值). 2.作一条线段的黄金分割点:图4-7如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释:一条线段的黄金分割点有两个.【典型例题】类型一、比例线段1. (2016春•上海校级月考)已知,(1)求的值; (2)如果,求x 的值. 【思路点拨】(1)令===k ,则x=2k ,y=3k ,z=4k ,再代入代数式进行计算即可;(2)把x=2k ,y=3k ,z=4k 代入=y ﹣z ,求出k 的值即可.【答案与解析】解:(1)∵==,∴令===k ,则x=2k ,y=3k ,z=4k ,∴===﹣1;(2)∵x=2k ,y=3k ,z=4k ,=y ﹣z ,∴x+3=(y ﹣z )2,即2k+3=(3k ﹣4k )2,解得k=﹣1或k=3(舍去),∴x=﹣2.【总结升华】本题考查的是比例的性质,根据题意得出x=2k ,y=3k ,z=4k 是解答此题的关键. 举一反三:【394495 图形的相似 预备知识 练习2】【变式】(2015春•扶沟县期中)若=,则=( ).A. B. C. D. 无法确定【答案】C.2. 已知:a b ckb c a c a b===+++.求k值.【思路点拨】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=aa-=-1;②a+b+c≠0时,k=12()2a b c a b cb c c a a b a b c++++==+++++++.∴k=-1或1 2 .【总结升华】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.类型二、黄金分割3. 宽与长之比为5-1:12的矩形叫黄金矩形.如图:如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是黄金矩形吗请证明你的结论.【答案与解析】∵四边形ABEF是正方形,∴AB=DC=AF,又∵512ABAD=,∴512AFAD=,即点F是AD的黄金分割点,∴512AF AD=,即352DF AD=∴512DFAF=,即512DFDC=,∴矩形CDEF是黄金矩形.【总结升华】根据黄金矩形的定义去计算宽与长之比即可.4.(2014春•南京校级月考)(1)已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长;(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项.求线段c的长.【思路点拨】(1)根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的倍,可得AC=10×,计算即可;(2)根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=36,故c的值可求.注意线段不能为负..【答案与解析】解:(1)∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×=15﹣5(cm);(2)∵线段c是线段a和b的比例中项,a=4cm,b=9cm,∴c2=ab=36,解得c=±6,又∵线段是正数,∴c=6cm.【总结升华】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的倍,较长的线段=原线段的倍.也考查了比例中项的概念..举一反三:【变式】(2014秋•章丘市校级期末)已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B. C. 或 D.以上都不对【答案】C.提示:∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=AB=;当AC<BC,∴BC=AB=,∴AC=AB﹣BC=1﹣=.。
黄金分割专项练习题有答案
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC•AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD•AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE•AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD 为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD•AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD 的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△AB C的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF 是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.黄金分割专项练习30题参考答案:1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)•10(3﹣)=(400﹣800)cm2.∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=,∴AD2=AC•CD.∴点D是线段AC的黄金分割点.(2)∵点D是线段AC的黄金分割点,∴AD=AC,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB作为三角形底边;②取AB的一半作AB的垂线AC,连接BC,在BC上取CD=CA.③分别以A点和B点为圆心、以BD为半径划弧,交点为E;④分别连接EA、EB,则△ABE即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC﹣CD=﹣1,=.5.解:(1)由于P为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣;(2)如图,点P是线段AB的一个黄金分割点.6.解:(1)设AC=x,则BC=AB﹣AC=1﹣x,∵AC2=BC•AB,∴x2=1×(1﹣x),整理得x2+x﹣1=0,解得x1=,x2=(舍去),所以线段AC的长度为;(2)设线段AD的长度为x,AC=l,∵AD2=CD•AC,∴x2=l×(l﹣x),∴x1=,x2=(舍去),∴线段AD的长度AC;(3)同理得到线段AE的长度AD;上面各题的结果反映:若线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),则C点为AB的黄金分割点7.解:D是AC的黄金分割点.理由如下:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC•CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB•HB=2×(3﹣)=6﹣2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC•DC,∵BC=AD,∴AD2=AC•DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD•AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB•HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在R t△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.(9分)。
比例线段与黄金分割典型例题讲解与练习
⽐例线段与黄⾦分割典型例题讲解与练习个性化辅导讲义(2012 ~ 2013 学年第 1 学期)任教科⽬:数学授课题⽬:相似图形1年级:⼋年级任课教师:教导主任签名:__________⽇期:2013、4、28⼀.知识的回顾⽐例定义:表⽰两个⽐相等的式⼦叫⽐例.1、如果a与b的⽐值和c与d的⽐值相等,那么a c=b d或a∶b=c∶d,这时组成⽐例的四个数a,b,c,d叫做⽐例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 2、如果选⽤同⼀个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的⽐AB∶CD=m∶n,或写成AB m=CD n,其中,线段AB、CD分别叫做这两个线段⽐的前项和后项.3、如果把mn表⽰成⽐值k,则AB=CDk或AB=k?CD.4、四条线段a,b,c,d中,如果a与b的⽐等于c与d的⽐,即a c=b d,那么这四条线段a,b,c,d叫做成⽐例线段,简称⽐例线段.5、黄⾦分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果AC BC那么称线段AB被点C黄⾦分割(golden section),点C叫做线段AB的黄⾦分割点,AC与AB的⽐叫做黄⾦⽐.其中AC∶AB≈0.618.6、引理:平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例.相似三⾓形:三⾓对应相等,三边对应成⽐例的两个三⾓形叫做相似三⾓形.相似多边形:各⾓对应相等、各边对应成⽐例的两个多边形叫做相似多边形。
相似⽐:相似多边形对应边的⽐叫做相似⽐.⼆、⽐例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么a c=b d。
如果a c=b d(b,d都不为0),那么ad=bc.2、合⽐性质:如果a c=b d,那么a b c b=b d±±。
3、等⽐性质:如果a c m==b d n(b+d++n≠0),那么a+b+=b+d+bm an4、更⽐性质:若a c=b d,那么a b=c d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例各类题型展1.已知bc ad =(a 、b 、c 、d 不等于零),那么下列各式中不正确的是( )A .d d c b b a +=+B .d d b c c a +=+C .d d b c c a -=-D .dd b a c a -=- 2.下列a 、b 、c 、d 四条线段,不成比例线段的是………………( )A. a=2cm b=5cm c=5cm d=12.5cmB. a=5cm b=3cm c=5mm d=3mmC. a=30mm b=2cm c= cm d=12mmD. a=5cm b=0.02m c=0.7cm d=0.3dm3、如果四条线段a 、b 、c 、d 成比例,即a c b d=,m >0,那么下面结论中正确的个数是( ) (1)a cm b dm = (2)77a a cm b b dm +=+ (3)a c m b d m +=+ (4)a b a cm b dm=++ A 、1个 B 、2个 C 、3个 D 、4个4.已知23y x =,那么下列式子中一定成立的是( ) A .y x 32= B .y x 23= C .y x 2= D .xy=65、把 写成比例式,下列写法不正确的是 ( ) A 、 B 、 C 、 D 、 6.已知32=b a ,那么=+bb a ___________. 7.已知432∶∶=x ,那么x = .8.若线段a =3,b c =2,则比例式a cb d =中,d =___________. 9.若357x y z ==,则x y z z++=_____________. 10.已知532z y x ==,且15=++z y x ,则x= ,y= ,z= . 11.如果5:4:3::=c b a ,那么=+--+cb ac b a 3532 ; 12.若)0(32≠+==q n q p n m ,则=++q n p m . 13、已知线段a =4,b =6,c =8,线段a 、b 、c 、d 是成比例线段,则d 等于____________.14.已知,求的值。
15.已知b a c c a b c b a x +=+=+=,求x 的 值.16、若15c a 10c b 11b a +=+=+,则求 a:b:c 的值? 17.已知a:b:c=2:3:4,且2a+3b-2c=10,求a,b,c 的值。
黄金分割1.把长为5cm 的线段黄金分割后,较长线段的长等于 cm .2.已知P 为线段AB 的黄金分割点,且AP <PB ,则 ( )A 、 ;B 、 ;C 、 ;D 、 3.已知P 、Q 是线段AB 的两个黄金分割点,且AB =10cm ,则PQ 长为 ( )A 、B 、C 、D 、4.把长度为4m 的铝线按黄金分割切断后,其中较长的一段长度是( )A 、2)mB 、2)mC 、(3m -D 、(6m - 前三章易错点及经典题1、计算:22221111(1)(1)(1)(1)23910----=___________. 2、若分式212x x m-+不论x 取任何实数总有意义,则m 的取值范围是( )3、观察下列等式是否成立:①311;(2)(5)25x x x x =-++++ ②711;(1)(8)18x x x x =-++++ ③611;(3)(9)39x x x x =-++++ …… (1)若成立,请写出它们的规律:()()m n x n x m -++=_______________. (2)根据这个规律化简:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x +++=+++++++4、请你仔细观察下述材料:方程1111123x x x x-=-+--的解为x=1,方程1111134x x x x-=----的解为x=2方程11111245x x x x-=-----的解这x=3;(1)请你观察方程与解的特征,写出能反映上述方程一般规律的方程,并写出这个方程的解。
(2)根据(1)中所得的结论,写出一个解为x=-5的分式方程.5.(2009年南充)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?6.(2009年莆田)面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的.....13%...给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?相似三角形09中考1.(2009年上海市)如图1,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BC DF CE= B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF =2.(2009年滨州)如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠;③AC AB CD BC=; ④2AC AD AB =. 3.(2009年江苏省)如图,在55⨯方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格4(2009恩施市)如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2BC .D . 5.(2009年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个6.(2009年济宁市)如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 27、一个多边形的边长分别是4cm,5cm,6cm,4cm,5cm 和它相似的一个多边形最长边为8cm ,那么这个多边形的周长是( ) A 、12cmB 、18cmC 、32cmD 、48cm 8、下列说法正确的是( )A BDC EF 图1 A C D B (第2题图) 4题(10)两个相似三角形的相似比系数为2=k ,如果它们的周长之差4cm ,那么这两个相似三角形的周长分别是 ;3. 如图,在⊿ABC 中,D 、E 分别是AB 、AC 的中点,那么⊿ADE与四边形DBCE 的面积之比是---------------------------------------( ) D EA 1:1B 2:1C 3:1D 4:1 B C4. 下列图形一定相似的是---------------------------------------------( )A 两个矩形B 两个等腰梯形C 有一个内角相等的菱形D 对应边成比例的两个四边形八年级第二学期成比例线段试题(训练题)2 姓名一、填空题:(每小题3分,共30分)(1)若53=-y y x ,则=yx ; 1l A E (2)线段a ,b 的积是625,则a 、b 的比例中项是 ;2l B F(3)如果5:4:3::=c b a ,那么=+--+c b a c b a 3532 ; C (4)如图,1l ∥2l ∥3l ,那么______=BD AB ,______=FG EG ; 3l G D (5)⊿ABC 中,如果4:3:=CB AC ,∠C 的内角平分线交AB 于P ,那么=PB PA :(6)若0622=+-y xy x ,则=y x : ; A(7)如图,⊿ABC 中,DE ∥BC ,AD = 3k ,BD = 3k , D E那么=BC DE : ; B C(8)如图,⊿ABC 中,∠C = 090,CD 是斜边AB 上的高, CAD = 9,BD = 4,那么 CD = ;AC = ;(9)已知⊿ABC 中,P 是AB 上的一点,∠ACP = ∠B ,AB = c ,BC = a ,那么CP = ; A D B二、选择题:(每小题6分,共30分)1. 如果bc ax =,那么将x 作为第四比例项的比例式是---------------------------( )A x a c b =B b c x a =C x c b a =D ca b x = 2. 三线段a 、b 、c 中,a 的一半的长等于b 的四分之一长,也等于c 的六分之一长,那么这三条线段的和与b 的比等于------------------------------------------------------( )A 6:1B 1:6C 3:1D 1:3 AA5. 如图,O 是⊿ABC 内任意点D 、E 、F 分别在线段OA 、OB 、OC D上,且AD =31AC ,BE =31BC ,CF =31CD ,那么⊿ABC 与⊿DEF E O FA 1:2B 1:3C 1:4D 2:3三、计算题:(每小题9分,工8分)1. 如图,已知⊿ABC 中,∠C 的平分线交AB 于点D ,过D 作BC 的平行线交AC 于E ,若AC =a ,BC =b ,求DE的长;AD EB C2. 如图,G 为⊿ABC 的重心,GF ∥AC ,求DF :FC 、BC :BF 的值;AG EB D F C四、证明题:(1题10分,2题12分)1. 如图,在⊿ABC 中,∠A 与∠B 互余,CD ⊥AB ,垂足是D ,DE ∥BC ,交AC 于E ,求证:BD CE AC AD ::=2. 如图,在⊿ABC 中,AM 平分∠BAC ,D 为AM 的中点,DN ⊥AM ,DN 交BC 的延长线于N ,求证:CN BN MN ∙=2(篇幅不够,请贴纸)C AE DA DB B MC N九年级上册第4章4.1比例线段水平测试题A 组1.正方形的对角线与它的边长之比是( )A .2∶1B .1∶2C .1∶2D .2∶1 2.已知32=b a ,那么=+b b a ( ) A .23 B .34 C .53 D .351. 如图13-5,在Rt ⊿ABC 中,CD 是斜边AB 上的高线,试猜想线段AC 、AB 、CD 、BC 是否对应成比例?如果对应成比例,请写出这个比例式,并进行验证;如果不能,请说明理由.学校的距离为800米 8.能.根据物高与影长对应成比例可得,1505.1=古塔高度,∴古塔高度=75米. B 组1.一、选择题(每题3分,共30分)1、在比例尺为1:400000的地图上,量得AB 两地距离是24cm ,则A 、B 两地实际距离为( )A 、960mB 、9600mC 、96000mD 、960000m2、把 写成比例式,下列写法不正确的是 ( )A 、B 、C 、D 、3、已知P 为线段AB 的黄金分割点,且AP <PB ,则 ( )A 、 ;B 、 ;C 、 ;D 、4、已知P 、Q 是线段AB 的两个黄金分割点,且AB =10cm ,则PQ 长为 ( )A 、B 、C 、D 、5、若 ,则 ( )A 、11:10:15B 、8:3:7;C 、3:2:5;D 、6:7:86、某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是 ( )A 、12米B 、11米C 、10米D 、9米7、两直角边为3和4的直角三角形的斜边和斜边上高线的比是…… ( )A. 5:3B. 5:4C. 5:12D. 25:128、已知 ,则在① ② ③ ④ 这四个式子中正确的个数是…………………………… ( )A. 1个B. 2个C. 3个D. 4个9、已知 ,则下列等式中不成立的是…………………………( )A. B. C. D.10、假如a:b=12:8,且b是a和c的比例中项,那么b:c等于………()A. 4:3B. 3:2C. 2:3D. 3:4二、填空题(每空3分,共24分)1、已知,则。