05-06-2高数AB期末试卷答案 东南大学大一上学期高等数学试卷

合集下载

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试之巴公井开创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。

(完整word版)大一第一学期期末高等数学(上)试题及答案

(完整word版)大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限lim arctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分).求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+3110、(本小题5分)求函数 的单调区间y x x =+-422 11、(本小题5分).求⎰π+202sin 8sin dx x x12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分)设函数由方程所确定求.y y x y y x dy dx =+=()ln ,22614、(本小题5分)求函数的极值y e e x x =+-2 15、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分).d cos sin 12cos x x x x⎰+求二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =2 2、(本小题3分)⎰+xx xd )1(22⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分)因为arctan x <π2而lim arcsin x x →∞=1故lim arctan arcsin x x x →∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----=⎰⎰-+-=x xx 1d d=---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分)令 1+=x u原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分)),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302lncos cos x x π=162ln 12、(本小题6分)dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)2265yy y y x '+'='=+y yx y 315214、(本小题6分)定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)原式=++++++++--→∞lim()()()()()()x x x x x x x 112131*********2222=⨯⨯⨯⨯=1011216101172 16、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21( =++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=(完整word 版)大一第一学期期末高等数学(上)试题及答案2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题 ( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03 又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。

东南大学大一公共课高等数学期末考试卷8套

东南大学大一公共课高等数学期末考试卷8套

东南大学高等数学(A )期末试卷03年——10年2003级高等数学(A )(下)期末试卷一. 填空题(每小题3分,满分15分):1.幂级数11(1)2nnn x n ∞=-⋅∑的收敛域为 。

2.当常数p 满足条件时,级数1(1)n n ∞=-∑绝对收敛。

3.设2sin ()(1)zf z z z=-,则()f z 在0z =的留数Re [(),0]s f z = 。

4.微分方程()9()0y x y x ''''-=的通解为 。

5.设C 为抛物线21y x =-上自点A (-1,0)到点B (1,0)的一段弧,则曲线积分22()()()C AB x y dx x y dy ++-⎰的值为 。

二.单项选择题(每小题4分,满分12分):1.微分方程356x y y y xe '''-+=的特解形式为(其中A 、B 为常数) ( ) (A )3x y Ae *= (B )3x y Axe *= (C )3()x y Ax B e *=+ (D )3()x y x Ax B e *=+2.设2,02()0,24x x f x x +≤<⎧=⎨≤<⎩,1()sin ()4n n n xS x b x π∞==-∞<<+∞∑,其中 401()sin (1,2,)24n n xb f x dx n π==⎰,则(2)(9)S S +-等于 ( ) (A )-1 (B )1 (C )5 (D )73.设级数1(1)n n n a ∞=-∑条件收敛,则必有 ( )(A )1n n a ∞=∑收敛 (B )21n n a ∞=∑收敛(C )11()n n n a a ∞+=-∑收敛 (D )21n n a ∞=∑与211n n a ∞-=∑都收敛三.(每小题7分,满分35分):1.计算积分10xydx dy y⎰。

2. 计算复积分2221(1)x ce dz z z --⎰,其中c 为正向圆周:3z =。

东南大学往年高数期末考试试题及答案-8篇整合

东南大学往年高数期末考试试题及答案-8篇整合

东 南 大 学 考 试 卷( A 卷))一.填空题(本题共5小题,每小题4分,满分20分) 1.22lim sin1x xx x →∞=+ 2 ; 2.当0x →时,()x α=与2()x kx β=是等价无穷小,则k =34; 3.设()1sin xy x =+,则d x yπ== d x π- ;)4.函数()e xf x x =在1x =处带有Peano 余项的二阶Taylor 公式为()223ee 2e(1)(1)(1)2x x x ο+-+-+- ; 5.已知函数32e sin ,0()2(1)9arctan ,0xa x x f xb x x x ⎧+<⎪=⎨-+≥⎪⎩可导,则a =1 ,b = -1 。

二.单项选择题(本题共4小题,每小题4分,满分16分) 6.设函数11()1ex xf x -=-,则 [ C ](A )0,1x x ==都是()f x 的第一类间断点(B )0,1x x ==都是()f x 的第二类间断点(C )0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点、(D )0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点7.设函数()y y x =由参数方程22ln(1)x t ty t ⎧=+⎨=+⎩确定,则曲线()y y x =在3x =处的切线与x 轴交点的横坐标是 [ C ] (A )1ln 238+ (B )1ln 238-+ (C )8ln 23-+ (D )8ln 23+ 8.以下四个命题中,正确的是 [ C ](A )若()f x '在(0,1)内连续,则()f x 在(0,1)内有界@(B )若()f x 在(0,1)内连续,则()f x 在(0,1)内有界 (C )若()f x '在(0,1)内有界,则()f x 在(0,1)内有界 (D )若()f x 在(0,1)内有界,则()f x '在(0,1)内有界9.当a 取下列哪个数值时,函数32()2912f x x x x a =-+-恰有两个不同的零点[ B ](A )2 (B )4 (C )6 (D )8、三.计算题(本题共5小题,每小题7分,满分35分) 10.011lim 1e x x x x -→+⎛⎫-⎪-⎝⎭()222000111e e 1lim lim lim 1e 1e x x x x x x x x x x x x x x x ----→→→++-++-+⎛⎫-== ⎪--⎝⎭ 20e 11lim xx x x -→-+=+22201()21lim x x x xο→+=+32= 11。

05-06-2高数AB期末试卷 东南大学大一上学期高等数学试卷

05-06-2高数AB期末试卷 东南大学大一上学期高等数学试卷

4.设 f 在区间[0, ]上连续,且 f (x) sin x f (x)dx ,则 f (x) 0
5.设
f
(x)
1 x2
e

,
,x0
,则
x0
3
f (x 2)dx
1

6.
sin x x2 cos
x
dx

; ;
7.曲线 y ln x 相应于1 x 3 的一段弧长可用积分
表示;
8.已知 y1 ex 与 y2 e2x 分别是微分方程 y ay by 0 的两个特解,则常数
a
,常数 b

9.f (x0 ) 0 是曲线 y f (x) 以点 (x0, f (x0 )) 为拐点的
条件。
二.计算下列各题(本题共 4 小题,每小题 7 分,满分 28 分)
1.设 f (x)
止 于 至 善
东南大学学生会 Students' Union of Southeast Univesity
05-06-2高数AB期末试卷
一.填空题(本题共 9 小题,每小题 4 分,满分 36 分)
x2 sin t2dt
1. lim 0 x0
x6

2.曲线
y
x3 2(1 x)2
的斜渐近线方程是

3.设 y y(x) 是由方程 y ln y ln x 所确定的隐函数,则 dy dx
x
t sin
x2 t2 dt ,求 f (x)
0
2.
ex 1
e2
x
4
dx
共2页
第1页
止 于 至 善
东南大学学生会 Students' Union of Southeast Univesity

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C)(0)0f '= (D)()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B)()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D)()x β是比()x α高阶的无穷小。

3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。

二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim 。

6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。

8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数。

东南大学考试卷(A)2005-2006学年高等数学期末试卷(后附答案)

东南大学考试卷(A)2005-2006学年高等数学期末试卷(后附答案)

共 6 页 第 1 页东 南 大 学 考 试 卷( A 卷)(共4页第1页)课程名称高等数学(B )期末考试学期 05-06-3得分适用专业 选学高数(B )的各专业 考试形式 闭卷考试时间长度 150分钟一、 填空题(本题共9小题,每小题4分,满分36分)1.设函数(,)z z x y =由方程e y zz x =确定,则d z = ;2.曲线23,,x t y t z t ===在对应于1t =-的点处的切线方程是 ;3.曲面e 3zz xy ++=在点(2,1,0)M 处的切平面方程为 ; 4.交换积分次序101d (,)d x x f x y y -=⎰ ;5.向量场22223342x yz xy z xyz =++A i j k 在点(2,1,1)处的散度div =A ;6.()221sin d d x y x x y x y +≤+=⎰⎰;7.空间区域Ω为2222x y z R ++≤,则V Ω的值为 ;8.已知曲线积分()()3ecos ()d e sin d xx Ly yf x x x y y ++-⎰与路径无关,则()f x = ; 9.已知()()222d 23d 3d z xy x x x y y =+++,则z = 。

二.计算下列各题(本题共4小题,每小题8分,满分32分) 10.设()20,e d x ytz f t t =⎰,其中f 具有一阶连续偏导数,求zx ∂∂及2z x y∂∂∂。

共 6 页 第 2 页第2页 11.计算二次积分:110d d x yx y ⎰12.问通过两直线223112x y z -+-==-和111121x y z -+-==-能否决定一平面?若能,则求此平面的方程。

13.设半球体:02z Ω≤-≤z μ=,试求半球体Ω的质量。

共 6 页 第 3 页三.(14)(本题满分10分)设三角形的三边长分别为a 、b 、c ,其面积记为S ,试求该三角形内一点到三边距离之乘积的最大值。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高数a大一期末考试题简单及答案

高数a大一期末考试题简单及答案

高数a大一期末考试题简单及答案一、选择题(每题4分,共40分)1. 极限的定义中,如果对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋近于a时的极限为L。

以下哪个选项不是极限的定义?A. 函数f(x)在某点a处的极限B. 函数f(x)在某点a的左极限C. 函数f(x)在某点a的右极限D. 函数f(x)在某点a处的连续性答案:D2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = |x|答案:B3. 以下哪个函数是偶函数?A. f(x) = x^3B. f(x) = x^2C. f(x) = x^4D. f(x) = |x|答案:B4. 以下哪个函数在x=0处不可导?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:B5. 以下哪个选项是正确的不定积分?A. ∫x dx = x^2 + CB. ∫x^2 dx = x^3 + CC. ∫1/x dx = ln|x| + CD. ∫e^x dx = e^x + C答案:C6. 以下哪个选项是正确的定积分?A. ∫[0,1] x dx = 1/2B. ∫[0,1] x^2 dx = 1/3C. ∫[0,1] x^3 dx = 1/4D. ∫[0,1] x^4 dx = 1/5答案:B7. 以下哪个选项是正确的微分方程的通解?A. y' = 2y => y = Ce^(2x)B. y' = 3y => y = Ce^(3x)C. y' = 4y => y = Ce^(4x)D. y' = 5y => y = Ce^(5x)答案:A8. 以下哪个选项是正确的二阶导数?A. y = x^3, y'' = 6xB. y = x^2, y'' = 2C. y = x^4, y'' = 12x^2D. y = x^5, y'' = 20x^3答案:B9. 以下哪个选项是正确的洛必达法则的应用?A. ∫0/0 型不定式,分子分母同时乘以分母的导数B. ∫∞/∞ 型不定式,分子分母同时乘以分子的导数C. ∫0/0 型不定式,分子分母同时除以分子的导数D. ∫∞/∞ 型不定式,分子分母同时除以分母的导数答案:D10. 以下哪个选项是正确的泰勒级数展开?A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^2 + 3x + 2的导数是________。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A)(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导。

2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。

3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。

(A )函数()F x 必在0x =处取得极大值; (B)函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x+(C )1x - (D)2x +。

二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim 。

6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ 。

8. =-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。

大一(第一学期)高数期末考试题及答案【呕心沥血整理版】

大一(第一学期)高数期末考试题及答案【呕心沥血整理版】

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。

(A )(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A)()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。

二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。

8. =-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。

大一(第一学期)高数期末考试题及答案(完整版).doc

大一(第一学期)高数期末考试题及答案(完整版).doc

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档