相似三角形试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形单元测试卷

一、选择题(每题3分,共24分) 1. 如图,在△ABC 中,DE ∥BC ,若

1

3

AD AB =,DE =4,则BC =(??? ) A .9 ?? B .10 C .?11???????? D .12

2.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( ) A .一根火柴的长度

B .一支钢笔的长度

C .一支铅笔的长度

D .一根筷子的长度

4. 如图,用放大镜将图形放大,应该属于( )

A.相似变换 B.平移变换 C.对称变换 D.旋转变换

6. 如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC △∽ADE △的是( ) A .

AE AC AD AB = B .DE

BC

AD AB =

C .

D B ∠=∠ D .AED C ∠=∠ 7. 如图,已知

ABCD 中,45DBC =∠,DE BC ⊥于E ,BF CD ⊥于F ,

DE BF ,相交于H ,BF AD ,的延长线相交于G ,下面结论:

①2DB BE =

②A BHE =∠∠③AB BH =④BHD BDG △∽△

其中正确的结论是( ) A .①②③④

B .①②③

C .①②④

D .②③④

8. 如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD =12 m ,塔影长DE =18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20 m D .18 m 二、填空题(每题4分,共40分)

11.如图所示,在四边形ABCD 中,AD BC ∥,如果要使ABC DCA △∽△,那么还要补充的一个条件是 (只要求写出一个条件即可).

12. 如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,则ADE ABC

S

S =△△ .

14.如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F . 在不添加辅助线的情况下,请写出图中一对相似三角形: . 15. 如图是一盏圆锥形灯罩AOB ,两母线的夹角90AOB ∠=︒,

若灯炮O 离地面的高OO 1是2米时,则光束照射到地面的面积是 米2.

C

B

A E

1

2

D

M

A

B

C

D

E

F H

G

A

D

C

B

A

B

C

D

E A

B

O 1 O

16. 数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 米.

17. 如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5=_____________ .

18. 如图是一个边长为1的正方形组成的网络,ABC △与111A B C △都是格点三角形(顶点在网格交点处),并且111ABC A B C △∽△,则ABC △与111A B C △的相似比是 .

三、解答题(共86分)

19.图(1)是一个1010⨯格点正方形组成的网格.△ABC 是格点三角形(顶点在网格交点处),请你完成下面的问题:

在图(1)中画出与△ABC 相似的格点△111A B C 和△222A B C ,且△111A B C 与△ABC 的相似比是2,△222

A B C 与△ABC 的相似比是

2

; 、

20.如图,梯形ABCD 中,AD BC ∥,AC 与BD 相交于O 点,过点B 作BE CD ∥交CA 的延长线于点E .

求证:2

OC OA OE =.(8分)

22. 如图10,点O 是ABC △外的一点,分别在射线OA OB OC ,,上取一点A B C ''',,,使得

A B

D

F B

C

A

1B

1C

1A

A B

C

图(1)

C D

A O B

E

A '

3OA OB OC OA OB OC

'''

===,连结A B B C C A '''''',,,所得A B C '''△与ABC △是否相似?证明你的结论.

23.如图,在ABC △中,D 为AC 上一点,2A 45CD D BAC ==︒,∠,60BDC =︒∠, CE BD ⊥,E 为垂足,连结AE .

(1)写出图中所有相等的线段,并选择其中一对给予证明.

(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.(12

分)

24. 如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),

EF AB ⊥,EG AC ⊥,垂足分别为F G ,.

(1)求证:EG CG

AD CD

=

; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.(12分)

25. 在平面内,先将一个多边形以点O 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段OP 或其延长线上;接着将所得多边形以点O 为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为()O k θ,,其中点O 叫做旋转相似中心,k 叫做相似比,θ叫做旋转角. (1)填空:

①如图1,将ABC △以点A 为旋转相似中心,放大为原来的2倍,再逆时针旋转60,得到ADE △,这

个旋转相似变换记为A (

);

②如图2,ABC △是边长为1cm 的等边三角形,将它作旋转相似变换)A ,得到ADE △,则线段BD 的长为

cm ;

(2)如图3,分别以锐角三角形ABC 的三边AB ,BC ,CA 为边向外作正方形ADEB ,BFGC ,CHIA ,

点1O ,2O ,3O 分别是这三个正方形的对角线交点,试分别利用12AO O △与ABI △,CIB △与2CAO △之间的关系,运用旋转相似变换的知识说明线段12O O 与2AO 之间的关系.(12分)

A

D

C B E D

F A

G

C

E

D B

相关文档
最新文档