2020-2021学年初一数学上册测试题及答案:镇赉县镇赉镇中学
2020—2021学年人教版七年级上期中数学试卷含答案
2020—2021学年人教版七年级上期中数学试卷含答案(时刻:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中运算正确的个数是()(1)=-3(2)=-4(3)=1(4)=-3A.1B.2C.3D.42.太阳的半径约为696 000 km,把696 000那个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×1063.下列各对单项式是同类项的是()A.-x3y2与3x3y2B.-x与yC.3与3aD.3ab2与a2b4.在数轴上有两个点A,B,点A表示-3,点B与点A相距5.5个单位长度,则点B表示的数为()A.-2.5或8.5B.2.5或-8.5C.2.5D.-8.55.一个数的平方和它的倒数相等,则那个数是()A.1B.-1C.±1D.±1和06.下列各式运算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km收费7元).3 km后每千米1.4元(不足1 km按1 km算).小明坐车x(x>3)km,应对车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为()A.1B.2C.3D.49.一个多项式加上3x2y-3xy2得x3+3x2y,则那个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知x2+3x+5的值是7,则多项式3x2+9x-2的值是()A.6B.4C.2D.012.将正偶数按下表排成5列若干行,依照上述规律,2 016应为()A.第251行第1列B.第251行第5列C.第252行第1列D.第252行第4列二、填空题(每小题4分,共20分)13.已知a,b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=.14.在式子,3,m,xy2+1中,单项式有个.15.多项式x3y+2xy2-y5-12x3是次多项式,它的最高次项是.16.若有理数a,b满足|a+3|+(b-2)2=0,则a b的值为.17.规定一种新的运算:a△b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.运算(每小题4分,共24分)(1)-4÷×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×;(4)÷(-5)-2.5÷;(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:3x2y-,其中x=-1,y=2.20.(8分)下表列出国外几个都市与北京的时差(带正号的数表示同一时刻比北京早的时刻数)都市东京巴黎纽约芝加哥时差/时+1-7-13-14(1)假如现在时刻是北京时刻7:00,那么现在的纽约时刻是多少?(2)假如现在的北京时刻是7:00,小轩现在想给巴黎的姑姑打 ,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(运算结果保留π)22.(8分)观看下列式子:-a+b=-(a-b),2-3x=-(3x-2),5x+30=5(x+6),-x-6=-(x+6).由以上四个式子中括号的变化情形,说明它和去括号法则有什么不同?依照你的探究规律解决下列问题:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先运算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,运算:(1)4!;(2);(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.参考答案一、选择题1.B2.C696000=6.96×105.3.A依照所含字母相同且相同字母的指数也相同的项是同类项进行判定.4.B当点B在点A的左侧时,点B表示的数为-8.5;当点B在点A的右侧时,点B表示的数为2.5.因此点B表示的数为2.5或-8.5.5.A0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,差不多上1.6.D7.C小明坐车x(x>3)km,应对车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D非负整数即正整数和0,因此10,0,-(-3)=3,-(-42)=16属于非负整数.9.A那个多项式=(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,因此c<a<b.11.B因为x2+3x+5=7,因此x2+3x=2.因此3x2+9x-2=3(x2+3x)-2=6-2=4.12.C二、填空题13.014.3单项式有,3,m共3个.15.五-y516.9因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,因此a+3=0,b-2=0,即a=-3,b=2,因此a b=(-3)2=9.17.>(-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,因此(-3)△4>4△(-3).三、解答题18.解:(1)-4÷×(-30)=-4××30=-6-20=-26.(2)-20+(-14)-(-18)-13=-20-14+18-13=(-20-14-13)+18=-47+18=-29.(3)-22+|5-8|+24÷(-3)×=-4+3+24×=-1-=-.(4)÷(-5)-2.5÷=125×=25++1=26.(5)-5m2n+4mn2-2mn+6m2n+3mn=(-5m2n+6m2n)+(-2mn+3mn)+4mn2=m2n+mn+4mn2.(6)2(2a-3b)-3(2b-3a)=4a-6b-6b+9a=(4a+9a)+(-6b-6b)=13a-12b.19.解:原式=3x2y-(2xy-2xy+3x2y-4xy)=3x2y-2xy+2xy-3x2y+4xy=4xy.当x=-1,y=2时,原式=4×(-1)×2=-8.20.解:(1)纽约时刻是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,现在巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打.21.解:(1)(ab-πr2)m2.(2)(240000-900π)m2.22.解:四个式子中括号的变化规律事实上确实是去括号的逆运算.-1+a2+b+b2=a2+b2-1+b=(a2+b2)-(1-b).因为a2+b2=5,1-b=-2,因此原式=5-(-2)=7.23.解:(1)4!=4×3×2×1=24;(2);(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96;(4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8,因此(m+n)!≠m!+n!,等式(m+n)!=m!+n!不恒成立.。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。
2020-2021学年七年级上学期期中考试数学试题(含答案)
2020-2021学年七年级上学期期中考试数学试题一、选择题1.在1,−2,−3,4这四个数中,任取两个数相乘,所得积最大的是()A. −12B. −2C. 4D. 62.下列说法中,正确的个数是()①一个负数的相反数大于这个负数;②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数;④互为相反数的两个数的和为0.A. 1个B. 2个C. 3个D. 4个3.数轴上表示互为相反数m与−m的点到原点的距离()A. 表示数m的点离原点较远B. 表示数−m的点距原点较远C. 一样远D. 无法比较4.下列说法,错误的是()A. 所有的有理数都可以用数轴上的点表示B. 数轴上的原点表示0C. 在数轴上表示−3的点与表示+1的点的距离是2D. 数轴上表示−513的点在原点负方向513个单位5.2019年“国庆”期间,我市接待海内外游客共690000人次,将690000这个数用科学记数法表示为()A. 6.9×105B. 0.69×106C. 69×104D. 6.9×1066.下列式子中,符合书写规范的是()A. m÷nB. 235x C. yx D. a×20%7.π2与下列哪一个是同类项()A. abB. ab2 C. 22 D. m8.如图所示,边长为a的正方形中阴影部分的面积为()A. a2−π(a2)2 B. a2−πa2 C. a2−πa D. a2−2πa9.下列运算正确的是()A. 3a+2a=5a2B. 3a+3b=3abC. 2a2bc−a2bc=a2bcD. a5−a2=a310.代数式7a3−6a3b+3a2b+3a2+6a3b−3a2b−10a3的值()A. 与字母a,b都有关B. 只与a有关C. 只与b有关D. 与字母a,b都无关11.若当x=3时,代数式x2+mx+2有最小值,则当x2+mx=7时,x的值为()A. x=0或x=6B. x=1或x=7C. x=1或x=−7D. x=−1或x=7二、填空题12.如下图是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.(1)若单项式−58a2b m与−117x3y4是次数相同的单项式,则m的值为;(2)如果−axy b是关于x、y的四次单项式,且系数为7,那么a+b=.13.用含字母的式子表示:(1)若三角形的底边长是x,底边上的高是y,则该三角形的面积为________;(2)21的n倍可以表示为________;2(3)一个三位数,个位上的数字为a,十位上的数字为b,百位上的数字为c.则这个三位数为________.14.今年1~5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.50亿精确到__________,有效数字有________ 个。
2020-2021学年吉林省吉林市七年级(上)期末数学试卷(含解析)
2020-2021学年吉林省吉林市七年级(上)期末数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题2分,共12分)1.的倒数是()A.2 B.﹣2 C.D.﹣2.下列各式中不是整式的是()A.3a B.C.D.03.如图是一个正方体盒子的展开图,把展开图折叠成小正方体后,和“试”字一面的相对面上的字是()A.祝B.你C.顺D.利4.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线5.下列各组中的两项,不是同类项的是()A.2x2y与﹣x2y B.xy2z3与z3y2xC.x与3y D.1与0.46.下列运算正确的是()A.63.5°=63°50′B.18°18′18″=18.33°C.36.15°=36.15′D.28°39′+17°31'=46°10′二、填空题(每小题3分,共24分)7.如果80m表示向东走80m,那么﹣60m表示.8.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就,数据11090000用科学记数法表示为.9.用四舍五入法将3.1415精确到百分位约等于.10.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.11.如图,OA表示北偏东41°方向,OB表示南偏东54°方向,则∠AOB=度.12.已知x2+3x=1,则式子2x2+6x+2的值为.13.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.14.一列数a1,a2,a3,…,a n(n为正整数),从第一个数开始.后面的每个数等于它前一个数的相反数的2倍,即a2=﹣2a1,a3=﹣2a2,…,a n=﹣2a n﹣1,若a1=1,则a2020=.三、解答题(共78分)15.(5分)计算:﹣15+(﹣).16.(5分)计算:﹣14+2÷×|﹣9|.17.(5分)先化简,再求值.(8a+b)﹣2(3a﹣b),其中a=,b=﹣1.18.(5分)解方程:﹣1=x.19.(7分)一个角的补角比这个角的余角的3倍少50°,求这个角的度数.20.(7分)如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.21.(7分)若a,b,c为三个不相等的有理数,且a是最大的负整数,b的相反数等于它本身,c的平方等于它本身.(1)a=,b=,c=;(2)求b+c2﹣a3的值.22.(7分)某商店有两种书包,每个小书包比大书包的进价少25元,而它们的售后所获利润相同,其中,每个小书包的利润率为30%,每个大书包的利润率为20%,求两种书包的进价.23.(8分)如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,点F在线段AD上,且点F 不与点D重合,点E在线段AB上,此时∠AFE和∠AEF互为余角,若EA'恰好平分∠FEB,回答下列问题.(1)求∠AEF的度数;(2)∠A'FD=度.24.(8分)公园门票价格规定如下表:购票张数1~50张51~90张90张以上每张票的价格13元11元9元某校七年级一、二两个班共100人去游园,七年一班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1196元.问:(1)两个班各有多少学生;(2)如果两个班联合起来,作为一个团体购票,可省多少元;(3)如果七年一班单独组织去游园,作为组织者的你如何购票才最省钱.25.(10分)给出定义如下:把一对有理数x,y,记为<x,y>,当x,y满足等式x+y=1﹣xy成立时,我们称<x,y>为“共生有理数对”,其中x≠﹣1,且y≠﹣1,例如:<2,﹣>,<3,﹣>都是“共生有理数对”.(1)<0,0>,<0,1>中是“共生有理数对”的是;(2)<a,b>是“共生有理数对”,则<b,a>“共生有理数对”(填“是”或“不是”);(3)若<4,y>是“共生有理数对”,求y的值;(4)若<n,y>是“共生有理数对”,直接用含有n的式子表示y.26.(10分)如图,在数轴上点A表示数a、点B表示数b,a、b满足|6+b|+(20﹣a)2=0,点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为;(2)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A匀速移动;当点P移动到O 点时,点Q才从B点出发,并以每秒3个单位长度的速度向右匀速移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒.①当t=时,点P移动到O点;②求当t为多少时,P、Q两点相距4个单位长度.1.A.2.B.3.B.4.D.5.C.6.D.7.向西走60米.8.3.14.10.3cm.11.85.12.6.13.(240﹣150)x=150×12.14.﹣22019.15..16.53.17.﹣2.18.x=﹣1.8.19.20度.20.解:(1)如图所示:;(2)以E为顶点的角中,小于平角的角共有8个,故答案为:8.解:(1)∵a,b,c为三个不相等的有理数,b的相反数等于它本身,∴a=﹣1,b=0,故答案为:﹣3,0,1;(2)由(1)知,a=﹣4,c=1,∴b+c2﹣a2=0+14﹣(﹣1)3=5+1﹣(﹣1)=2+1+1=7.22.解:设每个小书包的进价为x元,则每个大书包的进价为(x+25)元,依题意得:30%x=20%(x+25),解得:x=50,则x+25=50+25=75.答:每个小书包的进价为50元,每个大书包的进价为75元.23.解:(1)根据折叠的性质可得∠AEF=∠A'EF,由因为EA'恰好平分∠FEB,所以∠AEF=∠A'EF=∠A'EB,因为∠AEF+A'EF+∠A'EB=180°,所以∠AEF=60°;(2)因为∠AFE和∠AEF互为余角,所以∠AFE=90°﹣∠AEF=30°,根据折叠的性质可得∠AFA'=2∠AFE=60°,所以∠A'FD=180°﹣∠AFA'=120°.故答案为:120.24.解:(1)设七年级一班x人,依题意有13x+11(100﹣x)=1196,解得x=48,则100﹣x=100﹣48=52.答:七年级一班48人,二班有52人;(2)1196﹣100×9=1196﹣900=296(元).故可省296元;(3)七(1)班单独组织去游园,如果按实际人数购票,若购买51张票,∵561<624,∴七一班单独组织去游园,直接购买51张票更省钱.25.解:(1)∵0+0=8,1﹣0×5=1,∴<0,2>不是“共生有理数对”;∵0+1=6,1﹣0×5=1,∴<0,8>是“共生有理数对”;故答案为:<0,1>.(2)∵<a,b>是“共生有理数对”,∴a+b=3﹣ab,即b+a=1﹣ba,∴<b,a>是“共生有理数对”,故答案为:是;(3)∵<4,y>是“共生有理数对”,∴7+y=1﹣4y,解得y=﹣;(4)∵<n,y>是“共生有理数对”,∴n+y=1﹣ny,∴y+ny=2﹣n,∴(1+n)y=1﹣n,∴y=.26.解:(1)∵|6+b|+(20﹣a)2=4,∴20﹣a=0,6+b=2,解得a=20,b=﹣6,AB=20﹣(﹣6)=26.故点A表示的数为20,点B表示的数为﹣6.故答案为:20,﹣6;(2)①依题意有t=0﹣(﹣6),解得t=6.故当t=6时,点P移动到O点;故答案为:6;②经过t秒后,点P表示的数为t﹣6,(i)当6<t≤6时,点Q还在点B处,∴PQ=t﹣6﹣(﹣5)=t=4;(ii)当6<x≤2时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣5)﹣6]=4,解得:t=6;(iii)当9<t≤26时,点P在点Q的左侧,∴3(t﹣8)﹣6﹣(t﹣6)=8,解得:t=11.综上所述:当t为4或7或11时,P、Q两点相距3个单位长度。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)。
2020—2021人教版七年级数学上期中试题含答案
2020-2021学年七年级(上)期中数学试卷一.选择题(共10小题)1.2的相反数是()A.﹣2 B.﹣C.D.22.下列4个数中最小的是()A.﹣|﹣2| B.﹣(﹣2)C.(﹣2)2D.﹣223.=()A.B.C.D.4.下列代数式书写规范的是()A.2m÷n B.5a C.﹣1b D.6x2y5.下列式子中,与2x2y是同类项的是()A.﹣3xy2B.2xy C.yx2D.3x26.单项式﹣xy3z4的系数及次数分别是()A.系数是0,次数是7 B.系数是1,次数是8C.系数是﹣1,次数是7 D.系数是﹣1,次数是87.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣1,b=2 C.a=﹣2,b=1 D.a=﹣1,b=﹣2 8.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=346859.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A=|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.二.填空题(共5小题)11.计算下列各题:(1)2+(﹣1)=.(2)﹣10+3=.(3)(﹣2)×(﹣3)=.(4)12÷(﹣3)=.(5)(﹣3)2×=.(6)1÷5×()=.(7)﹣3a2+2a2=.(8)﹣2(x﹣1)=.12.多项式中﹣﹣5二次项是,常数项是.13.月球的直径约为3476000米,将3476000用科学记数法表示应为,将3476000取近似数并精确到十万位,得到的值应是.14.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.15.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右移动3个单位长度,得到点C,若CO=BO,则a的值为.三.解答题(共8小题)16.计算题(1)﹣2+(﹣3)﹣4×(﹣25﹣24)(2)0﹣32÷[(﹣2)3+5)]17.已知下列有理数:﹣3、﹣4、0、5、﹣24.(1)这些有理数中,整数有个,非负数有个.(2)从中间选两个数组成一个算式,和为负数的算式是:;商最大的算式是.18.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.19.腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是分,最低分是分;(2)求腾飞小组本次数学测验成绩的平均分.20.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.21.(1)我们知道当x=时,|x|有最小值是0,所以3﹣|x+1|的最大值是;(2)我们知道|x|=2,则x=±2,请你运用“类比”的数学思想求出式子|x+3|=2中x的值.22.有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克) 1 2 3 4 …n伸长量(厘米)0.5 1 1.5 2 …总长度(厘米)10.5 11 11.5 12 …(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用代数式表示此时弹簧的总长度.(3)当x=30克时,求此时弹簧的总长度.23.观察以下一系列等式:①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;④;…(1)请按这个顺序仿照前面的等式写出第④个等式:;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:,并说明这个规律的正确性;(3)请利用上述规律计算:21+22+23+ (2100)参考答案与试题解析一.选择题(共10小题)1.2的相反数是()A.﹣2 B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.2.下列4个数中最小的是()A.﹣|﹣2| B.﹣(﹣2)C.(﹣2)2D.﹣22【分析】先根据相反数,绝对值,有理数的乘方进行计算,再根据有理数的大小比较法则比较大小,最后得出选项即可.【解答】解:﹣|﹣2|=﹣2,﹣(﹣2)=2,(﹣2)2=4,﹣22=﹣4,∵﹣4<﹣2<2<4,∴下列4个数中最小的是﹣22,故选:D.3.=()A.B.C.D.【分析】根据乘方和乘法的定义求解可得.【解答】解:=,故选:B.4.下列代数式书写规范的是()A.2m÷n B.5a C.﹣1b D.6x2y【分析】本题根据代数式的书写规则,数字应在字母前面,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、正确的书写形式为,故本选项不符合题意;B、正确书写形式为a,故本选项不符合题意,C、正确的书写形式为﹣b,故本选项不符合题意;D、数字应写在前面,书写正确,故本选项符合题意.故选:D.5.下列式子中,与2x2y是同类项的是()A.﹣3xy2B.2xy C.yx2D.3x2【分析】所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:与2x2y是同类项的是yx2,故选:C.6.单项式﹣xy3z4的系数及次数分别是()A.系数是0,次数是7 B.系数是1,次数是8C.系数是﹣1,次数是7 D.系数是﹣1,次数是8【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣xy3z4的系数是﹣1,次数1+3+4=8,故选:D.7.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣1,b=2 C.a=﹣2,b=1 D.a=﹣1,b=﹣2 【分析】由|a|=﹣a,|b|=b知a≤0,b≥0,结合a+b<0得|a|>|b|,从而得出答案.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,又a+b<0,∴|a|>|b|,故选:C.8.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A=|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】(1)数轴上一个数所对应的点与原点的距离就叫该数的绝对值.(2)正数的绝对值大于零,负数的绝对值是它的相反数.【解答】解:依题意,m,n(m>n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.二.填空题(共6小题)11.计算下列各题:(1)2+(﹣1)= 1 .(2)﹣10+3=﹣7 .(3)(﹣2)×(﹣3)= 6 .(4)12÷(﹣3)=﹣4 .(5)(﹣3)2×= 5 .(6)1÷5×()=﹣.(7)﹣3a2+2a2=﹣a2.(8)﹣2(x﹣1)=﹣2x+2 .【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的加减运算法则计算得出答案;(3)直接利用有理数的乘除运算法则计算得出答案;(4)直接利用有理数的乘除运算法则计算得出答案;(5)直接利用有理数的乘除运算法则计算得出答案;(6)直接利用有理数的乘除运算法则计算得出答案;(7)直接合并同类项得出答案;(8)直接去括号得出答案.【解答】解:(1)2+(﹣1)=1.(2)﹣10+3=﹣7.(3)(﹣2)×(﹣3)=6.(4)12÷(﹣3)=﹣4.(5)(﹣3)2×=5.(6)1÷5×()=﹣.(7)﹣3a2+2a2=﹣a2.(8)﹣2(x﹣1)=﹣2x+2.故答案为:(1)1;(2)﹣7;(3)6;(4)﹣4;(5)5;(6)﹣;(7)﹣a2;(8)﹣2x+2.12.多项式中﹣﹣5二次项是2xy,常数项是﹣5 .【分析】根据多项式的次数和项的定义即可解答.【解答】解:多项式中﹣﹣5二次项是 2xy,常数项是﹣5.故答案为:2xy,﹣5.13.月球的直径约为3476000米,将3476000用科学记数法表示应为 3.476×106,将3476000取近似数并精确到十万位,得到的值应是 3.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据3476000用科学记数法表示应为3.476×106;将3476000取近似数并精确到十万位,得到的值应是3.5×106.故答案为:3.476×106,3.5×106.14.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3本归还1本,求出20与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:1915.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右移动3个单位长度,得到点C,若CO=BO,则a的值为﹣5或﹣1 .【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【解答】解:由题意知:A点表示的数为a,B点表示的数为2,C点表示的数为a+3因为CO=BO,所以|a+3|=2,解得a=﹣5或﹣1故答案为:﹣5或﹣1三.解答题(共8小题)16.计算题(1)﹣2+(﹣3)﹣4×(﹣25﹣24)(2)0﹣32÷[(﹣2)3+5)]【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算除法,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)﹣2+(﹣3)﹣4×(﹣25﹣24)=﹣2﹣3﹣4×(﹣32﹣16)=﹣2﹣3﹣4×(﹣48)=﹣2﹣3+192=187;(2)0﹣32÷[(﹣2)3+5)]=0﹣9÷(﹣8+5)=0﹣9÷(﹣3)=0+3=3.17.已知下列有理数:﹣3、﹣4、0、5、﹣24.(1)这些有理数中,整数有 5 个,非负数有 2 个.(2)从中间选两个数组成一个算式,和为负数的算式是:(﹣3)+(﹣4)=﹣7(不唯一);商最大的算式是.【分析】(1)根据整数和非负数的概念求解可得;(2)根据有理数的加法以及有理数的除法计算即可.【解答】解:(1)这些有理数中,整数有:﹣3、﹣4、0、5,﹣24共5个,非负数有:0、5,共2个.故答案为:5,2;(2)和为负数的算式可以是:(﹣3)+(﹣4)=﹣7;商最大的算式是:.故答案为:(﹣3)+(﹣4)=﹣7(不唯一);.18.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.19.腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是100 分,最低分是80 分;(2)求腾飞小组本次数学测验成绩的平均分.【分析】(1)根据正数和负数表示相反意义的量,可得答案;(2)根据有理数的运算,可得答案.【解答】解:(1)本次数学测验成绩的最高分是 100分,最低分是 80分,故答案为:100,80;(2)﹣7+(﹣10)+9+2+(﹣1)+5+(﹣8)+10=0,平均分是90+=90.20.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.【分析】(1)利用两个正方形的面积减去3个空白三角形的面积即可;(2)把x的值代入求出答案.【解答】解:阴影部分(三角形)的面积S=42+x2﹣(4+x)×4﹣x2﹣×4×(4﹣x)=x2;(2)当x=3时,(cm2).21.(1)我们知道当x=0 时,|x|有最小值是0,所以3﹣|x+1|的最大值是 3 ;(2)我们知道|x|=2,则x=±2,请你运用“类比”的数学思想求出式子|x+3|=2中x的值.【分析】(1)根据绝对值的定义即可得到结论;(2)由绝对值的定义即可得到结论.【解答】解:(1)当x=0时,|x|有最小值是0,∴3﹣|x+1|的最大值是3,故答案为:0 3;(2)∵|x+3|=2,∴x+3=±2,∴x=﹣1或x=﹣5.22.有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克) 1 2 3 4 …n伸长量(厘米)0.5 1 1.5 2 …总长度(厘米)10.5 11 11.5 12 …(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用代数式表示此时弹簧的总长度.(3)当x=30克时,求此时弹簧的总长度.【分析】(1)当弹簧上挂1g重物后,弹簧伸长0.5cm,变为10.5cm,即可得出使弹簧伸长5厘米,应挂重物的克数;(2)当弹簧上挂1g重物后,弹簧伸长0.5cm,变为10.5cm,那么弹簧不挂重物时长10cm,挂1g在10的基础上加1个0.5,挂xg,就在10的基础上加x个0.5;(3)把x=30代入计算即可.【解答】解:(1)由表格可知弹簧每伸长1厘米,需挂2克重物,所以要使弹簧伸长5厘米,应挂重物10克.(2)弹簧的总长度为10+0.5x.(3)将x=30代入10+0.5x.得弹簧的总长度为25厘米.23.观察以下一系列等式:①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;④25﹣24=32﹣16=24;…(1)请按这个顺序仿照前面的等式写出第④个等式:25﹣24=32﹣16=24;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:2n+1﹣2n=2n,并说明这个规律的正确性;(3)请利用上述规律计算:21+22+23+ (2100)【分析】(1)根据题目中的式子,可以写出第④个等式;(2)根据题目中式子的特点可以写出第n个等式;(3)根据发现的规律,可以计算出所求式子的值.【解答】解:(1)∵①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;则第④个等式是:25﹣24=32﹣16=24,故答案为:25﹣24=32﹣16=24;(2)第n个等式是:2n+1﹣2n=2n,故答案为:2n+1﹣2n=2n,∵2n+1﹣2n=2×2n﹣2n=(2﹣1)×2n=2n,∴2n+1﹣2n=2n;(3)根据规律:21+22+23+ (2100)=(22﹣21)+(23﹣22)+(24﹣23)+…+(2101﹣2100)=22﹣21+23﹣22+24﹣23+…+2101﹣2100=2101﹣21=2101﹣2.。
人教版学年7年级上册测试题及答案:吉林省镇赉县镇赉镇中学
2020-2021年七年级上册期中测试题 数学(人教版)一、 选择题(每小题2分,共12分)1. 7的相反数是( )A.-7B.7C.-71D. 71 2.数轴上的点A 到原点的距离是5,则点A 表示的数为( )A.-5B.5C.5或-5D.2.5或-2.53.某地区一月份的平均气温为-19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )A.17℃B.21℃C.-17℃D.-21℃4.下列各式中,正确的是( )A.223-2-)()(B.223-2-C.233-2- )( D.223-2- 5.光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( )A.131095.0⨯ ㎞B.12105.9⨯ ㎞C.111095⨯ ㎞D.1010950⨯ ㎞6.橡皮的单价是x 元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为( )A.2.5x 元B.0.4x 元C.(x +2.5)元D.(x -2.5)元二、填空题(每小题3分,共24分) 7.a =51,则a1= . 8.下列各数:-1,-3,0,2中,最大的数是 . 9.如图,数轴上点A 所表示的数是 . 10.1.4249≈ (精确到百分位).11.多项式:22x -1+3x 是 次 项式. 12.当2,1==b a 时,整式ab a 212+的值是 . 13.一批运动服,原价每套x 元,现按原价的九折出售,则现在每套售价是 元.14.若“*”是一种新的运算符号,并且规定bb a b a +=*,则〔2*(-2)〕*(-2)= . 三、解答题(每小题5分,共20分)15.计算:-27-(-12)16.计算:3201021-7--+)(.17.计算:53.87×47-538.7×3.9+5387×0.92.A 1-39题图18.计算:223--22131-)(⨯÷+.四、解答题(每小题7分,共28分)19.用式子表示:(1)m 的2倍与n 的3倍的差.(2)一个两位数,它的个位数字是a ,十位数字是b .20.已知(a -1)2x 1+a y 是关于x 、y 的五次单项式,试求下列式子的值.(1)2a +2a +1; (2)2)1+a (21.先化简,再求值..34)324()212(2222222b b a b ab b ab +-+--其中,31,23-==b a .22.若2b a 3和-3y x b a 是同类项,求多项式2)(3)(2222xy y x xy y x ---的值.五、解答题(每小题8分,共16分)23.如图,梯形的上底为2a +2a -10,下底为32a -5a -80,高为40.( 取3)(1)用式子表示图中阴影部分的面积;(2)当a =10时,求阴影部分面积的值.24.有理数x 、y 在数轴上的对应点如图所示.(1)用“<”、“>”或“=”填空:①y 0;②x +y 0;③y x ____-;(2)在数轴上标出表示-x 、-y 的点;(3)把x 、y 、0、-x 、-y 这五个数从小到大用“<”连接起来.0x23题图 24题图。
2020-2021学年吉林市七年级上学期期末数学试卷(附答案解析)
2020-2021学年吉林市七年级上学期期末数学试卷一、选择题(本大题共6小题,共12.0分)1. 有理数−15的倒数为( ) A. 5B. 15C. −15D. −5 2. 下列说法:①a 为任意有理数,a 2+1总是正数;②若|a −b|+a −b =0,则b >a ;③若ab >0,a +b <0,则,a <0,b <0;④代数式t 2、a+b 3、2b 都是整式;⑤若a 2=(−2)2,则a =−2.其中错误的有( ) A. 4个B. 3个C. 2个D. 1个 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“抗”字所在面相对的面上的汉字是( )A. 一B. 定C. 胜D. 利4. 下列说法错误的是( )A. 连接两点的线段叫两点之间的距离B. 经过两点有一条直线,并且只有一条直线C. 两点的所有连线中,线段最短D. 同角(等角)的补角相等5. 如果单项式x 2y m+2与x n y 的和仍然是一个单项式,则(m +n)2019等于( )A. 1B. −1C. 2019D. −2019 6. 下列说法正确的有( )个(1)绝对值是本身的数是正数(2)近似数2.85×104精确到千位(3)35.5°>35°5′(4)圆锥的侧面展开图是扇形A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)7.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作______m. 8. 据中新社报道:2019年黑龙江省粮食产量将达到202 000 000 000吨,用科学记数法表示这个粮食产量为______吨.9. 根据要求,用四舍五入法取下列各数的近似数.(1)146491≈ ______ (精确到万位);(2)3952≈ ______ (精确到百位)10. 两根直木条,一根长60cm ,另一根长100cm ,将他们的一端重合,顺才放在同一条直线上,则两根木条的中点间的距离是______11. 如图,若灯塔在货轮的南偏东50°,40nmile 处,则货轮在灯塔的北偏西______ ,40nmile 处.12. 已知多项式mx 5+nx 3+4,当x =−2时,此多项式的值为5,则当x =2时,此多项式的值为______ .13. 在植树节活动中,A 班有35人,B 班有16人,现要从A 班调一部分人去支援B 班,使B 班人数为A 班人数的2倍,那么应从A 班调出多少人?如设从A 班调x 人去B 班,根据题意可列方程:______.14. 在一次猜数字游戏中,小红写出如下一组数:0,32,4,152,…小明猜想出第六个数字是352,也是正确的,根据此规律,第n 个数是 .三、计算题(本大题共2小题,共12.0分)15. 计算(1)−9÷3+(12−23)×12+(−3)2; (2)−12−16×[(−2)3+(−3)2]; (3)−14−(1−0.5)×13×[2−(−32)];(4)−72+2×(−3)2+(−6)÷(−13)2.16. 计算题:(1)−16−(−34)−12×|−34|;(2)−32−|−6|−3×(−13)+(−2)2÷12.四、解答题(本大题共10小题,共72.0分)17. 如果一个三位正整数是19的倍数,且它的个位、十位、百位上的数字之和是6的倍数,那么我们把这样的三位正整数叫“天天数”.例如:912是一个“天天数”(1)请写出最小的“天天数”.(2)若一个三位正整数的百位上的数字比1大,且百位上的数字与十位上的数字相等、百位上的数字与十位上的数字的和是个位上的数字的一半,请判断这个三位正整数是否是“天天数”.18. 大客车上原有(3a −b)人,中途一半人下车,又上车若干人,这时车上共有乘客(8a −5b)人,问上车乘客是多少人(用含a 、b 的代数式表示)?当a =10,b =8时,上车乘客是多少人?19. 利用等式的性质解下列方程.(1)5x −7=3.(2)−3x +6=8.(3)12y +2=3.(4)0.2m −1=2.4.20. 如图①至图③,⊙O 均作无滑动滚动,⊙O 1,⊙O 2,⊙O 3,⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:材料一:如图①,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB =c 时,⊙O 恰好自转1周.材料二:如图②,与∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A−B−C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转了n360周.根据你对上面的理解填空:(1)在阅读理解材料一中,若AB=2c,则⊙O自转了______ 周;若AB=l,则⊙O自转了______ 周.在阅读理解材料二中,若∠ABC=120°,则⊙O在点B处自转了______ 周;若∠ABC=60°,则⊙O 在点B处自转了______ 周;c,⊙O从⊙O1的位置出发,在∠ABC外部沿A−B−C滚动(2)如图③,∠ABC=90°,AB=BC=12到⊙O4的位置,则⊙O自转了______ 周.21.已知四点A,B,C,D(如图),根据下列要求,画出相应图形:(1)画直线BC;(2)画射线BA、CD,交于点P;(3)连接AC、BD,相交于点O.22.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等。
2020-2021学年人教版七年级数学上册第一阶段测验数学试卷含答案
2020-2021学年七年级(上)第一阶段数学试卷(试卷满分:120分 考试时间:60分钟)一、选择题(本大题有10小题,每小题3分,共30分) 1.在有理数-3,0,23,-85,3.7中,属于负数的个数有( )A.1个B.2个C.3个D.4个2.有理数-6的倒数是( ) A.6 B.-6 C.61 D.-613.某种药品说明书上标明保存温度是(20±3)℃,则该药品在( )范围内保存最合适。
A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃4. 一个物体作左右方向的运动,我们规定,向右为正,向左为负.如果物体先向右运动5米,再向左运动3米,那么可以表示两次运动最后结果的算式是( )A. (+5)+(+3)B.(+5)−(−3)C.(−5)+(−3)D.(+5)+(−3)5.有理数a 、b 互为相反数,c 是绝对值为1的负数,则a +b +c 的值为( )A.1B.−1C.±1D. 06.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A. a >c >bB.a >b >cC.a <c <bD.a <b <c7.下列算式正确的是( )A.34)32(2= B.23=2×3=6 C.-2-2=0 D.(-6)+5=-18.已知数轴上A 点为-7,B 点为1,C 点为数轴上的一点,且A 、B 两点到C 点的距离均为4,则C 点为( ) A.-3 B.3 C.4 D.-49.下列说法不正确的是:( ) ①a 一定是正数; ②0的倒数是0; ③最大的负整数−1;④只有负数的绝对值是它的相反数; ⑤相反数等于本身的有理数只有0.A. ①②④B.①②④⑤C. ②③④⑤D. ②③④10.如图, 从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等。
若前m 个格子中所填整数之和是1684,则m 的值可以是( )A. 1015B.1010C.1012D.1018二、填空题(本大题有6小题,第11小题12分,其它各小题每题3分,共27分)11.计算下列各题: (1)4+(−1)=___ ; (2)−3−(−2)=___; (3)−2×4=___; (4)−6÷(−2)=___;(5)5+(−1)2=___; (6)1÷3×)31(-=___.12.某天最低气温是-1℃,最高气温比最低气温高9℃,则这天的最高气温是___.13. 将1040000用科学记数法表示为_______________.14.比较大小:-3___-3.4(填“>”或“<”)15.已知x,y 都是整数,若x,y 的积等于6,且x,y 的和是负数,则x+y 的值是______.16.计算:10242-128×(-43)×(-3)=__________.17.(本题满分26分,(5)、(6)各5分,其余每小题4分) 计算下列各题:(1)1-4+3-0.5 (2)(612332--)×6(1)若n=7时,则S的值为___.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=___.根据上题的规律计算:300+302+304+…+2016+2018+2020的值.1.解答:答案:B.在有理数-3,0,23,-85,3.7中,属于负数有-3,-85,共2个. 故选B.2.解答:答案:D.20-3=17,20+3=23故该药品在17℃~23℃范围内保存最合适。
2020-2021学年度第一学期七年级数学期末教学质量监测试卷含答案共三套
2020-2021学年度第一学期期末教学质量监测试卷七年级数学总分120分时间90分钟一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应的位置上.1. 3的倒数等于( )A.3 B.13C.﹣3 D.﹣132.习近平同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589 730 000人,将589 730 000用科学记数法表示为( )A.589 73×104 B.589.73×106 C.5.8973×108 D.0.58973×1083.如图,它需再添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B.C.D.4.下列运算正确的是( )A.4m﹣m=3 B.2a3﹣3a3=﹣a3 C.a2b﹣ab2=0 D.yx﹣2xy=xy5.若x=2是方程4x+2m-14=0的解,则m的值为( )A.10 B.4 C.3 D.﹣36.单项式﹣25πx2y的系数和次数分别是( )A.﹣25π,3 B.25,4 C.25π,4 D.﹣25,47.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30° B.45° C.50° D.60°8.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为( ) 7题图A.12B.1 C.32D.29.右图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元 B.23元 C.24元 D.26元10.找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )……(1) (2) (3) (4) (5)A.149 B.150 C.151 D.152二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知23x y是同类项,则式子m+n的值是.2n3mx y和212.在数轴上,与表示数﹣1的点的距离是三个单位长度的点表示的数是.13.若∠1=35°21′,则∠1的余角是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD= 度.题15图15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.16.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:()411293⎛⎫-+-÷--- ⎪⎝⎭.18.解方程:72122x x +=-.19.化简:5(a 2b 3+ab 2)﹣(2ab 2+a 2b 3).四、解答题(二)(本大题3小题,每小题7分,共21分)20.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):+26,-32,-15,+34,-38,-20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?21.当x 为何值时,整式x 12++1和2x4-的值互为相反数?22.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC . (1)求∠DOE 的度数;(2)如果∠COD=65°,求∠AOE 的度数. 解:(1)如图,因为OD 是∠AOC 的平分线, 所以∠COD=12∠AOC . 因为OE 是∠BOC 的平分线, 所以∠COE=12.所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.24.某市居民用水实行阶梯水价,实施细则如下表:例如,某户家庭年使用自来水200 m3,应缴纳:180×5+(200-180)×7=1040元;某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.(1)小刚家2017年共使用自来水170 m3,应缴纳元;小刚家2018年共使用自来水260 m3,应缴纳元.(2)小强家2018年使用自来水共缴纳1180元,他家2018年共使用了多少自来水?25.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
吉林省2020-2021学年七年级上学期期中数学试题
吉林省2020-2021学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣52的绝对值是( ) A .﹣25 B .52 C .25 D .﹣522.下列各式中,是一元一次方程的是( )A .4x +2y =3B .y +5=0C .x 2=2x ﹣1D .14x ﹣4 3.若使等式(﹣10)□(﹣5)=2成立,则□中应填入的运算符号是( ) A .+ B .﹣ C .× D .÷ 4.方程5x +1=x ﹣7的解是( )A .x =﹣2B .x =2C .x =﹣1D .x =1 5.若ma mb =,那么下列等式不一定成立的是( )A .22ma mb +=+B .a b =C .ma mb-=- D .66ma mb -=- 6.下列说法中正确的是( )A .2t 不是整式B .﹣3x 9y 的次数是10C .4ab 与4xy 是同类项D .1y是单项式二、填空题 7.截至2021年4月份,全国参加汉语考试的人数约为3490000人,数据3490000用科学记数法表示为__.8.关于x 的多项式6x 2﹣11x +10的一次项系数是___.9.“x 的19与7的差等于x 的2倍与5的和”用方程表示为___. 10.已知3x =是关于x 方程810mx -=的解,则m =__________. 11.长方形的长是3a ,宽是2a -b ,则长方形的周长是___________.12.方程312x x =+的解是___. 13.已知a 与b 的和是最小的正整数,则(a +b ﹣4)3的值为__.三、解答题14.化简:1(93)2(1)3x x --+.15.计算:()2211236⎡⎤--⨯--⎣⎦. 16.化简:5x 2﹣3y ﹣3(x 2﹣2y ).17.解方程:4x ﹣7=﹣32﹣x .18.先化简再求值:(b+3a )+2(3﹣5a )﹣(6﹣2b ),其中:a =﹣1,b =2.19.已知关于x 、y 的多项式21222313852m x y x y y +-+-+是八次四项式,单项式5x n y 6﹣m 的次数与该多项式的次数相同,求m 、n 的值.20.种一批树苗,如果每人种7棵,则剩余3棵树苗没有种,如果每人种9棵,则缺少7棵树苗,有多少人种树?共有多少棵树苗?21.已知A =﹣3x 2﹣2mx +3x +1,B =2x 2+2mx ﹣1.若4A +6B 的值与x 的取值无关,求m 的值.22.在某地区,夏季高山上的温度从山脚起每升高40米平均降低0.3℃,已知山脚的温度是23℃,山顶的温度是2℃,求这座山的高度.23.已知y 1=﹣2x +3,y 2=3x ﹣2.(1)当x 取何值时,y 1=y 2?(2)当x 取何值时,y 1比y 2小5?24.如图(图中单位长度:cm )求:(1)阴影部分面积(用含x 的代数式表示);(2)当x=89求阴影部分的面积(π取3.14,结果糟确到0.01).25.数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x是方程2x=-x-9的解,求纸片①上代数式的值.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)数轴上点B表示的数是,点P表示的数是;(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P、Q之间的距离恰好等于2;(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,直接写出多少秒时,P、Q之间的距离恰好等于2.参考答案1.B【解析】【分析】根据绝对值的性质:负数的绝对值是它的相反数即可得出答案.【详解】﹣52的绝对值是52,故选:B.【点睛】本题主要考查绝对值,掌握绝对值的性质是解题的关键.2.B【分析】根据一元一次方程的定义:含有一个未知数,并且所含未知数的项的次数也是1的方程叫一元一次方程,逐一进行判断即可.【详解】A、4x+2y=3,有两个未知数,不是一元一次方程,故不符合题意;B、y+5=0,是一元一次方程,故符合题意;C、x2=2x﹣1,未知数的最高次数是2,不是一元一次方程,故不符合题意;D、14x﹣4,不是等式,不是一元一次方程,故不符合题意;故选:B.【点睛】本题主要考查一元一次方程的概念,掌握一元一次方程的概念是解题的关键.3.D【分析】根据有理数的运算即可确定出符号.【详解】2(5)10⨯-=-∴若使等式(﹣10)□(﹣5)=2成立,则□中应填入的运算符号是÷,故选:D .【点睛】本题主要考查有理数的乘除运算,掌握有理数的乘除运算是解题的关键.4.A【分析】按照移项,合并同类项,系数化为1的步骤解题即可.【详解】方程移项得,571x x -=--合并同类项得:4x =﹣8,系数化为1得:x =﹣2,故选:A .【点睛】本题主要考查解一元一次方程,掌握一元一次方程的解法是解题的关键.5.B【解析】试题解析:0m =时,a b =不一定成立.故错误.故选B.6.B【分析】逐一对选项进行判断即可.【详解】A .2t 是整式,故本选项不符合题意; B .﹣3x 9y 的次数是10,正确,故本选项符合题意;C .4ab 与4xy 所含字母不同,不是同类项,故本选项不符合题意;D .1y不是整式,所以不是单项式,故本选项不符合题意. 故选:B .【点睛】本题主要考查整式,单项式,同类项的概念及单项式的次数,掌握整式,单项式,同类项的概念及单项式的次数的求法是解题的关键.7.3.49×106.【分析】用科学记数法表示较大数时的形式是10n a ⨯ ,其中110a ≤< ,n 比整数位数小1,即可确定a,n 的值.【详解】3490000=3.49×106,故答案为:3.49×106.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.8.﹣11【分析】先找到多项式中的一次项,然后找到它的系数即可.【详解】多项式6x 2﹣11x +10的一次项系数是:﹣11.故答案为:﹣11.【点睛】本题主要考查多项式中某一项的系数,掌握多项式的有关概念是解题的关键.9.19x ﹣7=2x +5. 【分析】根据列代数式的方法将等号左右两边的代数式表示出来,然后用等号连接即可.【详解】 由题意可得:19x ﹣7=2x +5. 故答案为:19x ﹣7=2x +5. 【点睛】本题主要考查列一元一次方程,掌握列代数式的方法是解题的关键.10.6【分析】将x =3代入原方程即可求出答案.【详解】将x=3代入mx−8=10,∴3m=18,∴m=6,故答案为6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.11.10a-2b【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b)=2(5a-b)=10a-2b,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题关键. 12.x=2.【分析】按照移项,合并同类项,系数化为1的步骤解一元一次方程即可.【详解】3x=x+1,23x﹣x=1,21x=1,2x=2,故答案为:x=2.【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.-27.【分析】先根据最小的正整数为1得出a +b =1,然后整体代入即可求出代数式的值.【详解】∵a 与b 的和是最小的正整数,∴a +b =1,则原式=(1﹣4)3=(﹣3)3=-27,故答案为:-27.【点睛】本题主要考查代数式求值,掌握整体代入法和最小的正整数是解题的关键.14.3x -【分析】根据整式的加减运算法则即可求解.【详解】1(93)2(1)3x x --+ 3122x x =---3x =-【点睛】此题主要考查整式的加减,解题的关键是熟知其运算法则.15.16【分析】根据有理数的混合运算顺序依次计算即可.【详解】 原式()11296=--⨯- ()1176=--⨯- 16= 16.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.17.x =﹣5.【分析】按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】方程移项得,4327x x +=-+合并同类项得:5x =﹣25,系数化为1得:x =﹣5.【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.18.﹣7a+3b ,13.【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】(b +3a )+2(3﹣5a )﹣(6﹣2b )=b +3a +6﹣10a ﹣6+2b=3a ﹣10a +b +2b +6﹣6=﹣7a +3b当a =﹣1,b =2时,原式=﹣7×(﹣1)+3×2=7+6=13.【点睛】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解答此题的关键.19.m =5,n =7.【分析】先根据多项式为八次四项式,求出m 的值,再根据5x n y 6﹣m 的次数与该多项式的次数相同说明5x n y 6﹣m 的次数也是八次,即可求出n 的值.【详解】 ∵多项式21222313852m x y x y y +-+-+是八次四项式, 所以2+m +1=8,解得m =5又因为5x n y 6﹣m 的次数与该多项式的次数相同,所以n +6﹣m =8即n =7.【点睛】本题主要考查多项式和单项式的次数,掌握多项式和单项式次数的求法是解题的关键. 20.应该有5人种树,共有38棵树苗.【分析】设有x 人种树,根据等量关系“每人种7棵,则剩3棵树苗未种;每人种9棵,则缺7棵树苗”列方程求解即可.【详解】设有x 人种树,根据题意,得:7x +3=9x ﹣7解得:x =5.所以7x +3=7×5+3=38(棵).答:应该有5人种树,共有38棵树苗.【点睛】本题考查了一元一次方程的应用,关键是找出等量关系.21.m =﹣3.【分析】先对4A +6B 进行合并同类项化简,再根据4A +6B 的值与x 的取值无关,令x 这一项前的系数为0即可求出m 的值.【详解】∵A =﹣3x 2﹣2mx +3x +1,B =2x 2+2mx ﹣1,∴4(﹣3x 2﹣2mx +3x +1)+6(2x 2+2mx ﹣1)=﹣12x 2﹣8mx +12x +4+12x 2+12mx ﹣6=(﹣12x 2+12x 2)+(﹣8mx +12mx +12x )+(4﹣6)=(4m +12)x ﹣2,∵4A +6B 的值与x 的取值无关∴4m +12=0,解得:m =﹣3.【点睛】本题主要考查整式的化简,掌握整式中不含某一项说明某一项的系数为0是解题的关键. 22.这座山的高度是2800米.【分析】先求出山脚与山顶的温差,然后除以0.3算出有多少个40米,再乘以40即可求出答案.【详解】根据题意得:(23﹣2)÷0.3×40=2800(米),则这座山的高度是2800米.【点睛】本题主要考查有理数的混合运算的应用,掌握有理数的混合运算顺序和法则是解题的关键. 23.(1)x =1;(2)x =2.【分析】(1)根据“y 1=y 2”建立一个关于x 的方程,解方程即可;(2)根据“y 1比y 2小5”建立一个关于x 的方程,解方程即可.【详解】(1)根据题意得:﹣2x +3=3x ﹣2,移项得,2323x x --=--合并同类项得,55x -=-解得:x =1;(2)根据题意得:﹣2x +3+5=3x ﹣2,移项得,23235x x --=---合并同类项得,510-=-x解得:x =2.【点睛】本题主要考查一元一次方程的简单应用,能够根据题意列出方程是解题的关键. 24.(1)x +19−18π;(2)0.61.【解析】【分析】根据“阴影部分面积=两个矩形的面积和-半圆的面积”列式,化简即可得;将x 的值代入计算可得.【详解】解:(1)阴影部分面积=13×(x+13)+23×(x+13﹣13)﹣12×π×[12×(13+23)]2=x+19﹣18π; (2)当x=89时,阴影部分的面积为89+19﹣18π≈1﹣18×3.14≈0.61(cm 2).【点睛】本题考查的知识点是列代数式,解题关键是根据题意列出式子进行作答.25.(1)244x x ++;(2)1.【分析】(1)由①=②+③即可求解;(2)由方程2x =-x -9求出x 值,再代入纸片①上的代数式求值即可.【详解】解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++;(2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点睛】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.26.(1)﹣12;8﹣5t;(2)若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2;(3)若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2.【分析】(1)根据A点表示的数和AB=20即可求出点B表示的数;同样可以利用点A和A,P之间的距离求P点表示的数;(2)分两种情况:两点相遇之前和相遇之后,相遇之前有3t+2+5t=20,相遇之后有3t﹣2+5t =20,分别解方程即可(3)同样分两种情况:点P追上点Q之前和点P追上点Q之后,追上之前有5x﹣3x=20﹣2,追上之后有5x﹣3x=20+2,分别解方程即可.【详解】(1)∵数轴上点A表示的数为8,AB=20,AP=5t,∴数轴上点B表示的数为8﹣20=﹣12;点P表示的数为8﹣5t;故答案是:﹣12;8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P追上点Q之前,则5x﹣3x=20﹣2,解得:x=9;②点P追上点Q之后,则5x﹣3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2.【点睛】本题主要结合数轴考查动点问题,一元一次方程的应用,掌握数轴的知识和行程问题的解法是解题的关键.。
〈最新〉2020-2021学年七年级上学期期中考试数学试题部分附答案共3份
七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.武昌八校2018-2019七(上)期中联合测试数学试卷(附答案)一、选择题(每小题3分,共30分)1.在-2,-1,0,2四个数中,最小的数是( ) A. -1 B. -2 C. 0 D. 2 2.下列运算中结果正确的是( )A. -3-(-3)=0B. -3+3=-6C. 3-(-3)=0D.-3-(+3)=0 3.如图,有理数a 、b 在数轴上的位置如下图,则下列说法错误的是( )A .b <aB .a +b <0C .ab <0D .b -a >04.下列各组中的两项是同类项的是( )A. 0和-5B. 22和x 2C. x 3和3xD. 2x 和2x 2 5.下列是关于x 的一元一次方程的是( )A. x(x -1)=xB. x +1x=2 C. x =1 D. x +25.下列是关于x 的一元一次方程的是( )A. x(x -1)= xB. x +1x=2 C. x =1 D. x +2 6.下列运算结果正确的是( )A. 5a -3a =2 B. 22223x y xy x y -+= C. 243x x x -= D. 2226612a b a b a b --=- 7.下列由等式的性质进行的变形,错误的是( )A .如果a =b ,那么a -5=b -5B .如果a =b ,那么22b a -=- C .如果a =3,那么a 2=3aD .如果bca c =,那么a =b 8.若2x +5y +3=0,则10y -(-1-4x )的值是( )A . -2B .6C .-5D .79. 如果对于某一特定范围内x 的任意允许值,s =|2-2x|+|2-3x|+|2-5x|的值恒为一常数,则此常数值为( ) A .4 B .2 C .6 D .0 10.下列说法:① 若a 为有理数,且a≠0,则a <a 2; ② 若a a=1,则a =1; ③ 若a 3+b 3=0,则a 、b 互为相反数; ④ 若|a|=-a ,则a <0;⑤ 若b <0<a ,且|a|<|b|,则|a +b|=-|a|+|b|,其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共18分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是 吨12.室内温度是15 0C ,室外温度是-3 0C ,则室外温度比室内温度低________0C 13.已知x =1是方程(2k +1)x -1=0的解,则k =_________. 14.已知abc >0,ab >0,则cc b b a a ||||||++=__________ 15.有一串数:-2018,-2014,-2010,-2006,-2002……按一定的规律排列,那么这串数中前__________个数的和最小16.如果有理数x ,y 满足:x+3y+|3x -y|=19,2x+y =6.那么xy =__________三、解答题 (共8题,共72分) 17.计算:(每小题4分,共12分) (1) -20+(-14)-(-18)-13(2) -22+8÷(-2)3-2×(2181-)(3) 8)23()121()12161211(2⨯-+-÷-+18.解方程:(每小题4分,共8分)(1)9-3y =5y+5 (2)x x 2113834-=-19.(本题6分)先化简,再求值:)21(4)3212(22---+-x x x x ,其中21-=x20.(本题8分)已知02)3(2=-+-b a ,c 和d 互为倒数,m 和n 的绝对值相等, 且mn <0,y 为最大的负整数。
(精编)吉林省镇赉县胜利中学2020-2021七年级上期中数学试题
七 年级|上期中月考数学试题一、填空 (每空2分 ,总计42分 ) 1. 21-与31的和的倒数是 . :-3.147 , +32.8 , +3 ,419- ,-1 ,38 ,0 ,分数有 ,非负整数有 .3.在数轴上与表示 -1的点相距3个单位长度的点所表示的数是 .41 ,0 ,32- ,251⎪⎭⎫ ⎝⎛- ,()23-用 "<〞号按从小到大的顺序排列是 . 0232=+-a x 是关于x 的一元一次方程 ,那么a 的值等于 .8次计算 ,用科学记数法表示它工作15分钟可做 次计算.32-中底数是 ,指数是 ,读作 .020122=-+n m ,那么n m = .式-2x +4x 2y -54x -1中 ,次数是 ,最|高次项的系数是 ;常数项是 .a 、b 互为倒数 ,c 、d 互为相反数 ,m 为最|大的负整数 ,那么:md c ab m 43+++ = . 2m -2m =1 ,那么22m -4m +2021 = .351y x a -与-3b y x 2是同类项 ,那么a +b = . 2a +2k a b 与2b -2a b 的和不含a b 项 ,那么k = .a 减去它的相反数 ,所得差的绝|对值是 .a m ,宽为b m 的一块草坪上修一条宽1m 的笔直小路 ,那么余下草坪面积可表示为 2m (图1 );现为了增加美感 ,把这条小路改为宽恒为1m 的弯曲小路 (如图2 )那么此时余下草坪的面积为 2m .二、选择题 (每题3分 ,共27分 )16.以下等式不成立的是 ( ) A. 333)3(-=- B. 44)2(2-=- C. 33=- D. 1001003)3(=-17.如果一个数的平方等于它的绝|对值 ,那么这个数是 ( ),±1 D.-118.对于用四舍五入法得到的近似数9万 ,以下说法中正确的选项是 ( )A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位19.以下说法中正确的选项是 ( )A.单项式32-2y x 的系数是-2 ,次数是3 B.单项式a 的系数是0 ,次数是1 C.-32x y +4x -1是三次三项式 ,常数项是1 D.单项式23-2ab 的次数是2 ,系数是29- 20.多项式52x y +3233x xy y --按x 的升幂顺序排列正确的选项是 ( )A. 332235x y xy y x -++B. 322353x y x xy y -+-C. 323235y xy x y x +--D. 322335y xy y x x +-+-21.某市出租车的起步价为10元 (行程不超过3千米 ) ,以后每增加1千米加价1.8元 ,现在某人乘出租车行驶P 千米的路程 (P >3 )所需的费用是 ( )A. ( )元B. ( )元C. ( )元D.〔 (P -3 )〕元22.以下运用等式性质对等式进行的变形中正确的选项是 ( )A.假设x =y ,那么x -7 =y +7B.假设a =-b ,那么-3a =3b1m ba 1mb a 图1图2C.假设-21x =-21y ,那么x =-y D.假设x +4 =y +4 ,那么x =-y23.:a =-a ,那么a 的值 ( )A.正数B.负数C.非负数D.非正数24.从边长为 (a +5 )的正方形纸片中剪去一个边长为 (a +1 )的正方形 (a >0 ) ,剩余局部沿虚线又剪拼成一个矩形 (不重叠无缝隙 ) ,那么矩形的周长为 ( )a a a +14 D. 4a +20三、解答题 (1~4题每题5分 ,5题6分 )25.计算:①32112.051-1717)()(-⨯-÷+②)()()(85.224322141-⨯-⨯-⨯+--③化简:4 (22x -3x +1 )-2 (42x -2x +3 )④32a +2a - (22a -2a ) + (3a -2a )24题图⑤化简: (72x -4x y +22y )-2 (2x -232y ) ,并求当x =1 ,y =-1时 ,其值为多少 ?26.利用等式性质解方程 (每题3分 ,共6分 )①-31x -5 =4 ②4x -2 =2四、解答题 (27题5分 ,28~29题每题7分 )27.:a 、b 在数轴上位置如图.化简:b a b a a b ++-+--0b27题图场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数,-,-,-,-3(1 )仓库上午存货物60吨,下午运完货物后存货多少吨?(2 )如果货车的运费为每吨10元,那么下午货车共得运费多少元?29.某校七年级|四个班级|的学生在植树节这天义务植树,一班植树x棵,二班植树的棵树比一班的2倍少40棵,三班植树的棵树比二班的一半多30棵;四班植树的棵树比三班的一半多30棵.(1 )求四个班共植树多少棵(用含x的式子表示)(2 )当x=60时,四个班中哪个班植的树最|多?答案:一、1. -6 ,2. -3.14 , +32.8 , -941,8.002; +3 , 38 , 03. 2 , -44. 223-41051--32-)()(5. 等于16. 91010⨯7. 2 ,3 ,二的三次方的相反数8. 09. 4 , -5 , -1 10. 3211. 202112. 513. 114. -2a15. (a b -a ) ; (a b -a )二、16.B 17.C 18.D 19.D 20.B 21. D 22.B 23.D 24. D 三、25. ①0.2 ② -40 ③ -8x -2 ④ 2a +5a ⑤解:原式 =72x -4x y +22y -22x +32y=72x -22x -4x y +22y +32y= 52x -4x y +52y当x =1 ,y = -1时原式 =5×21 -4×1× ( -1 ) +5×21)(-=5 +4 +5=1426. ①解两边同时加5得-31x -5 +5 =4 +5两边同时乘以 -3得-31x × ( -3 ) =9× ( -3 )x = -27②解:两边同时加2得4x -2 +2 =2 +24x =4两边同时除以4得4x ÷4 =4÷4x =1四、27. 解:原式 = ( -b ) -a + (a -b ) + ( -a -b )= -b -a +a -b -a -b= -b -b -b -a +a -a= -3b -a ;28. ①60 +5.5 -4.6 -5.3 +5.4 -3.4 +4.8 -3=65.5 -4.6 -5.3 +5.4 -3.4 +4.8 -3=59.4 (吨 )② (5.5 +4.6 +5.3 +5.4 +3.4 +4.8 +3 )×10=32×10=320 (元 )29. ①解:由题意得:一班植树x 棵 ,二班植树2x -40棵 , 三班植树 (x +10 )棵 ,四班植树 (21x +35 )棵 x +2x -40 +x +10 +21x +35 =x +2x +x +21x -40 +10 +35 x +5 )棵;②当x =60时 ,一班植树60棵 ,二班植树2×60 -40 =80棵 ,三班植树61 +10 =70棵 ,四班植树60÷2 +35 =65棵.∵80棵>70棵>65棵>60棵∴二班植树最|多.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021年七年级上册期中测试题 数学(人教版)
选择题(每小题2分,共12分)
一、1. 7的相反数是( )A.-7 B.7 C.-71 D. 7
1
2.数轴上的点A 到原点的距离是5,则点A 表示的数为( )
A.-5
B.5
C.5或-5
D.2.5或-2.5
3.某地区一月份的平均气温为-19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )
A.17℃
B.21℃
C.-17℃
D.-21℃
4.下列各式中,正确的是( )
A.223-2-)()(
B.223-2-
C.
233-2- )( D.223-2- 5.光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( )
A.131095.0 ㎞
B.12105.9 ㎞
C.111095 ㎞
D.1010950 ㎞
6.橡皮的单价是x 元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为( )
A.2.5x 元
B.0.4x 元
C.(x +2.5)元
D.(x -2.5)元
二、填空题(每小题3分,共24分)7.a =51,则a 1= .
8.下列各数:-1,-3,0,2中,最大的数是 .
9.如图,数轴上点A 所表示的数是 .
10.1.4249≈ (精确到百分位).
11.多项式:22x -1+3x 是 次 项式.
12.当2,1 b a 时,整式
ab a 212 的值是 .13.一批运动服,原价每套x 元,现按原价的九折出售,则现在每套售价是 元.
14.若“ ”是一种新的运算符号,并且规定
b b
a b a ,则〔2 (-2)〕 (-2)= .
三、解答题(每小题5分,共20分)
15.计算:-27-(-12)
A 9题图
16.计算:3
201021-7- )(.
17.计算:53.87×47-538.7×3.9+5387×0.92.
18.计算:223--22131-)( .
四、解答题(每小题7分,共28分)
19.用式子表示:
(1)m 的2倍与n 的3倍的差.
(2)一个两位数,它的个位数字是a ,十位数字是b .
20.已知(a -1)2x 1 a y 是关于x 、y 的五次单项式,试求下列式子的值.
(1)2a +2a +1; (2)
2)1 a (21.先化简,再求值.
.34)324()212(2222222b b a b ab b ab 其中,31,23 b a .
22.若2b a 3和-3y x b a 是同类项,求多项式2
)(3)(2222xy y x xy y x 的值.五、解答题(每小题8分,共16分)
23.如图,梯形的上底为2a +2a -10,下底为32a -5a -80,高为40.(
取3)(1)用式子表示图中阴影部分的面积;
(2)当a =10时,求阴影部分面积的值.
24.有理数x 、y 在数轴上的对应点如图所示.
(1)用“<”、“>”或“=”填空:
①y 0;②x +y 0;③y x ____-;
(2)在数轴上标出表示-x 、-y 的点;
(3)把x 、y 、0、-x 、-y 这五个数从小到大用“<”连接起来.0x
40
3a 2-5a-80
4a
+2a-10
a 223题图
24题图
六、解答题(每小题10分,共20分)
25.八年新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,请根据图中所给出的数据信息,解答下列问题:
(1)若课本数m(本),请写出整齐叠放在桌面上的数学距离地面的高度的整式(用含m的整式表示);
(2)现课桌面上有56本与题(1)中规格相同的数学课本,整齐叠放成一摞,若从中取出14本,求余下的数学课本距离地面的高度.
88cm
86.5cm
25题图
26.迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);
(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?
(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.。