2018届高三高考数学中求轨迹方程的常见方法

合集下载

求轨迹方程的六种方法

求轨迹方程的六种方法

中学数学解题方法讨论-------求轨迹方程的方法道县五中 周昌雪内容提要:求轨迹方程是每年高考的必考内容且分值较高、难度较大,所以能否正确求轨迹方程对高考的成败至关重要。

本篇论文归纳了六种常用的求轨迹方程的方法。

曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程;直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解;若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之;当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法;若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法;如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程,“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。

曲线与方程包括求曲线的方程和由方程研究曲线的性质两个方面的内容,每年必考。

求曲线方程的一般思路是:在平面直角分会坐标系中找出动点P (x,y )的纵坐标y 和横坐标x 之间的关系式(),0f x y =,即为曲线方程,其核心步骤是建系、设点、列式、代入、化简、检验。

检验即为由曲线上的点所具备的条件确定x,y 的范围。

、交轨法等求之。

求曲线方程有两类基本题型:其一是曲线形状明确且便于使用标准形式,此时用待定系数法求方程;另一类是曲线形状不明确,或不便用标准形式表示,这时常用直译法、定义法、思恋法、参数法由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式求解,这时要加强等价转化思想的训练。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

【高考数学解题指导】高中数学轨迹方程求法梳理

【高考数学解题指导】高中数学轨迹方程求法梳理

高中数学轨迹方程求法梳理1.求轨迹方程的常用方法(1)直接法如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,只需把这种关系“翻译”成含x,y的等式,就得到曲线的轨迹方程.由于这种求轨迹方程的过程直接以曲线方程的定义为依据求解,所以称之为直接法.步骤:(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.(2)几何法若所求的轨迹满足某些几何性质(如线段的垂直平分线、角平分线的性质等),则可以用几何法,列出几何式,再代入点的坐标,较简单(一般通过几何法分析转变为直接法和定义法).几个常见定义:(1)到定点的距离等于定值的点的轨迹--------圆;(2)到定直线的距离等于定值的点的轨迹------两条平行线;(3)到两定点的距离之和为定值的点的轨迹(该和大于两定点间的距离)------椭圆(4)到两定点的距离之和为定值的点的轨迹(该和等于两定点间的距离)------线段(5)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线(6)到两定点的距离之差的为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线的一支(7)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值等于两定点间距离)-----两条射线(8)到两定点的距离之差的为定值的点的轨迹(差的绝对值等于两定点间距离)----------一条射线(9)到定点与到定直线距离相等的点的轨迹(该定点不在定直线上)------抛物线(10)到定点与到定直线距离相等的点的轨迹(该定点在定直线上)-------直线注意:1..理论上,所有的几何定义法的题目都可以用直接法解决,但往往计算量大,容易出错2.而在用几何定义法做题时,也不是万能的,一定要注意定义的细节以及等价原则3.曲线的定义与方程无关,并不是说所有题一定都是标准方程(3)定义法若动点的轨迹符合某一基本轨迹的定义,则可根据定义法直接设出所求方程,再确定系数求出动点的轨迹方程.(4)相关点法(代入法或转移法)有些问题中,若动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)的运动而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫作相关点法或坐标代入法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。

2018年高考数学常考知识点【轨迹方程的求解】.doc

2018年高考数学常考知识点【轨迹方程的求解】.doc

2018年高考数学常考知识点【轨迹方程的求解】高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为掌握的知识点不够透彻,为了帮助大家掌握好数学知识点,下面为大家带来2018年高考数学常考知识点【轨迹方程的求解】,希望大家用心记住这些知识点。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。

2018年高考数学总复习高考研究课(二)圆的方程命题3角度-求方程、算最值、定轨迹课件理

2018年高考数学总复习高考研究课(二)圆的方程命题3角度-求方程、算最值、定轨迹课件理

点的轨迹方程是
()
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4
D.(x+2)2+(y-1)2=1
解析:设圆上任意一点为(x1,y1),中点为(x,y),则
x=x1+2 4, y=y1-2 2,

x1=2x-4, y1=2y+2,
将 P,Q 两点的坐标分别代入得23DD- -4EE+-FF==-201,0.
① ②
又令 y=0,得 x2+Dx+F=0.

设 x1,x2 是方程③的两根,
由|x1-x2|=6 有 D2-4F=36,

由①②④解得 D=-2,E=-4,F=-8,或 D=-6,E=-8,F=0.
故所求圆的方程为 x2+y2-2x-4 y-8=0,或 x2+y2-6x-8y=0.
高考研究课(二)
圆的方程命题 3 角度——求方程、算最值、定轨迹
[全国卷5年命题分析]
考点
考查频度
考查角度
圆的方程
求圆的方程及先求圆 5年3考
的方程再考查应用
与圆有关的最值问题 5年1考
求范围
与圆有关的轨迹问题 未考查
圆的方程 圆的方程的求法,应根据条件选用合适的圆的方程,一 般来说,求圆的方程有两种方法: 1几何法,通过研究圆的性质进而求出圆的基本量. 2代数法,即设出圆的方程,用待定系数法求解.
角度四:距离和(差)最值问题
4.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9, M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+
|PN|的最小值为
()
A.5 2-4

高考数学知识点:动点的轨迹方程_知识点总结

高考数学知识点:动点的轨迹方程_知识点总结

高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。

1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。

要特别注意消参前后保持范围的等价性。

多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。

1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。

例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。

参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。

2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。

例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。

一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。

3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。

极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。

通过给定极径和极角的值可以唯一确定一个点的位置。

例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。

极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。

4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。

隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。

通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。

例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。

5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。

线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。

通过求解线性方程组可以得到轨迹上的点的坐标。

线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。

以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
定义法
• 若题设有动点到两点的距离之和或差为定值等条件 时,可以利用圆锥曲线的定义直接写出所求动点的 轨迹方程。此类问题相对也非常简单,因此单独出 现的可能性也很小,可能作为一个中间步骤出现。
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
• 以下举个例子说明:
3.相关点法
【例4】过双曲线x2-y2=1 上一点Q引直线x+y=2的垂线,垂足为N,求 线段QN的中点P的轨迹方程.
解:设点P,Q的坐标分别为P(x,y),Q(u,v),则N点坐标为(2x-u,2y-v).
点N在直线x+y=2上,
2x-u+2y-v=2 ①
又PQ垂直于直线x+y=2, 所以 y u 1,即x-y+v-u=0 ②
P
y B
解法二:点差法 连PO交CB于G.
设P(x,xy1)2,+G2y(x120=,y40), C(x1,y1),B(x2,y2),则 A C
x22+2y22=4 作差,得(x2-x1) (x2+x1)+
(y2-y1)
(y2+y1)=0
G o
x
即x0+y0k=0
3k 2
又k= y0 x0 3
设双曲线方程为:x 2 m2
-
y2 n2
=1,则2m=AB-AC=
a ,所以m= 2
a ,m2 = a2 ,
4
16
又n2 =c2 -m2 =(
a )2- a2 2 16
=
3a 2 16
,故动点A的轨迹方成为:x a
2 2

高中数学曲线轨迹方程的求法

高中数学曲线轨迹方程的求法

题目高中数学复习专题讲座曲线的轨迹方程的求法 高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|P A |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为 3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-答案 )4(1316162222ax a y a x >=-4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y --②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高考数学题型归纳:轨迹方程的求解

高考数学题型归纳:轨迹方程的求解

高考数学题型归纳:轨迹方程的求解高考数学题型归纳:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也确实是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】确实是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的差不多步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直截了当将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直截了当关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一样步骤①建系建立适当的坐标系;“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。

数学轨迹方程的求法

数学轨迹方程的求法

数学轨迹方程的求法在数学中,轨迹可以看做是一个物体在运动过程中留下的路径。

而轨迹方程则是描述这个路径的方程。

求解轨迹方程是数学中常见的问题之一,本文将介绍一些常用的求解轨迹方程的方法。

一、直接解轨迹方程如果轨迹已知,那么可以直接解轨迹方程。

比如,一个运动物体在平面直角坐标系中的轨迹为一个圆形。

我们可以通过圆的标准方程x²+y²=r²求得轨迹方程。

二、利用参数方程求解轨迹方程如果轨迹无法用一般函数形式表示,那么我们可以用参数方程来描述它的轨迹。

参数方程表示成x=f(t),y=g(t),t为参数。

例如,一个点沿着单位圆按逆时针方向绕圈运动,可用参数方程 x=cos(t),y=sin(t),(0≤t≤2π)来描述它运动的轨迹,则轨迹方程为 x²+y²=1。

三、使用极坐标系求解轨迹方程在一些问题中,极坐标系比直角坐标系更加有用。

例如,极坐标系对于表示圆形更加简单。

若有圆心在原点处,半径为 R 的圆,圆上点的极坐标为(R,θ),则其方程为 r=R。

四、使用微积分求解轨迹方程微积分是解决轨迹方程问题的重要工具。

通过微积分的方法,我们可以求出运动物体的速度、加速度和位移,从而得出轨迹方程。

例如,若已知一个点做匀加速直线运动的位移和速度随时间的关系为s=at²/2+vt+s₀,则通过微积分可求出物体的轨迹方程s=a*t²/2+v*t+s₀。

总之,轨迹方程的求解方法多种多样,要根据不同的问题选择合适的方法。

熟练掌握这些方法,能够让我们更好地应对解决实际问题。

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。

轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。

在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。

下面我将详细介绍一下轨迹方程的求解方法。

轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。

当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。

通过解方程可以得到轨迹方程。

例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。

2.抛物线轨迹:另一个常见的轨迹形式是抛物线。

对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。

例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。

3.圆轨迹:圆是另一种常见的轨迹形式。

当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。

当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。

在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。

另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。

除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。

求轨迹方程的常用方法

求轨迹方程的常用方法

求轨迹方程的常用方法
确定轨迹方程的常用方法有以下几种:
1.直接法:通过直接描绘或测量物体相应位置的坐标来确定轨迹方程。

这种方法适用于已知运动物体的运动轨迹形状简单且容易测量的情况。


用的直接法包括使用工具如尺子或量角器来绘制直线或角度,或者使用工
具如摄像机或激光测距仪来测量物体的位置。

2.参数方程法:将物体的位置用参数表示,通过参数方程来描述物体
的轨迹。

参数方程法常用于描述复杂的曲线或曲面轨迹,如圆、椭圆、抛
物线和螺旋线等。

以平面曲线为例,设参数为t,物体在x轴和y轴上的
坐标分别为x(t)和y(t),则轨迹方程可以表示为:x=x(t),y=y(t)。

3.方程法:通过列出满足物体位置的方程来确定轨迹方程。

方程法常
用于描述几何形状特定的轨迹,如圆、椭圆、抛物线和双曲线等。

以平面
曲线为例,设物体在x轴和y轴上的坐标分别为x和y,则轨迹方程可以
表示为一个关于x和y的方程:F(x,y)=0。

4.微分方程法:通过物理或几何相关的微分方程来确定轨迹方程。


分方程法常用于描述物体的运动过程,根据物体的运动方程可以推导出其
轨迹方程。

以平面运动为例,设物体在x轴和y轴上的位置分别为x(t)
和y(t),则可以通过物体的运动方程来求解位置关于时间的微分方程,
然后进一步解得轨迹方程。

以上是确定轨迹方程的常用方法,不同方法适用于不同的情况。

在实
际应用中,可以根据问题的具体要求和已知条件选择合适的方法来确定轨
迹方程。

高考数学常见题型解法归纳反馈训练第77讲轨迹方程的求法

高考数学常见题型解法归纳反馈训练第77讲轨迹方程的求法

第77讲轨迹方程的求法【知识要点】一、“曲线的方程”、“方程的曲线”的定义在直角坐标系中,如果曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标的点都在曲线上(完备性).那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.二、求简单的曲线方程的一般步骤:建设限代化(1)建立直角坐标系:利用垂直性和对称性建立适当的坐标系;(2)设点:用有序实数对表示曲线上任意一点的坐标(不要把其它的点的坐标设成);(3)列出动点满足的限制条件:用坐标表示条件,列出方程;(4)代点坐标到方程;(5)化简:化方程为最简形式;(6)检验:检验某些特殊点是否满足题意,把不满足的点排除,把满足的点补充上来.(可以省略)三、求轨迹方程的四种主要方法:轨迹四法待代直参(1)待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.(2)代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点的坐标,然后代入点满足的方程,即得动点的轨迹方程.(3)直接法:直接把已知的方程和条件化简即得动点的轨迹方程.(4)参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即,再消参.四、轨迹和轨迹方程轨迹和轨迹方程是两个不同的概念,轨迹表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.【方法讲评】方法一直接法使用情景已知中或图形中有动点满足的方程.解题步骤直接把动点的坐标代入已知的方程化简即可.【例1】线段与互相垂直平分于点,,,动点满足,求动点的轨迹方程.【解析】【点评】(1)这种题目由于已知中没有直角坐标系,所以首先要根据垂直性和对称性建立直角坐标系,由于建立坐标系的方法有多种,所以求出的轨迹方程有多种,但是都是对的;(2)这道题是直接用坐标化简已知中的得到的轨迹方程,运用的是直接法.【例2】已知圆:,由动点向圆引两条切线、,切点分别为、,并且,求点的轨迹.【点评】(1)这道题运用的是直接法,但是它是把已知条件转化得到的一个等式,不是现存的等式.(2)轨迹和轨迹方程是两个不同的概念,轨迹包含轨迹方程和对轨迹方程表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.所以本题要描述轨迹的基本特征.【反馈检测1】在平面直角坐标系中,两点的坐标分别为、,动点满足:直线与直线的斜率之积为.(1)求动点的轨迹方程;(2)设为动点的轨迹的左右顶点,为直线上的一动点(点不在x 轴上),连[交的轨迹于点,连并延长交的轨迹于点,试问直线是否过定点?若成立,请求出该定点坐标,若不成立,请说明理由.【反馈检测2】一条双曲线的左、右顶点分别为,点,是双曲线上不同的两个动点.(1)求直线与交点的轨迹的方程式;(2)若过点()的两条直线和与轨迹都只有一个交点,且 ,求的值.方法二待定系数法使用情景通过已知条件的分析可以得到动点满足某种曲线(圆、圆锥曲线)的定义.(1)分析出动点满足的方程;(2)证明动点满足某曲线(圆、圆锥曲线)的定义;(3)设解题步骤出该曲线的待定系数方程;(4)求出待定系数,即得所求的轨迹方程.【例3】已知动圆P与两定圆和都外切,求动圆圆心的轨迹方程.【点评】(1)此道题通过对已知的分析得到,即动点到两个定点的距离的差是一个常数,与双曲线的定义相符,所以其轨迹是双曲线的一支,利用的是待定系数法;(2)利用待定系数法求轨迹方程时,一定要比较全面地分析条件和曲线的定义,看是曲线的全部,还是曲线的部分,此题也不是双曲线的全部,是双曲线的一支.【例4】已知点到点的距离比到点到直线的距离小4;(Ⅰ)求点的轨迹的方程;(Ⅱ)若曲线上存在两点关于直线l:对称,求直线的方程.【解析】(1)结合图形知,点不可能在轴的左侧,即到点的距离等于到直线的距离的轨迹是抛物线,为焦点,为准线的轨迹方程是:(2)设则相减得又的斜率为-4则中点的坐标为,即经检验,此时,与抛物线有两个不同的交点,满足题意.【点评】(1)本题的第一问利用的就是待定系数法,通过对动点的分析,发现它满足抛物线的定义,所以动点的轨迹是抛物线.(2)第二小问利用了点差法,可以提高解题效率.【反馈检测3】已知垂直平分线与交于点.(1)求点的轨迹方程;(2)已知点,过点且斜率为()的直线与点的轨迹相交于两点,直线,分别交直线于点,,线段的中点为,记直线的斜率为.求证:为定值.方法三代入法使用情景某被动点之所以在运动,是因为主动点在某曲线上运动引起的.(1)先利用被动点的坐标表示主动点的坐标;(2)把动点的坐标代入它满足的解题步骤方程化简.【例5】已知抛物线和点,为抛物线上一点,点在线段上且,当点在该抛物线上移动时,求点的轨迹方程.【点评】点之所以在动,就是因为点在动,所以点是被动点,点是主动点,这种情景,应该利用代入法求轨迹方程.【反馈检测4】已知的顶点,顶点在抛物线上运动,求的重心的轨迹方程.方法四消参法使用情景如果动点的运动主要是由于某个参数的变化引起的.解题步骤(1)选参设参;(2)用这个参数表示动点的坐标,即;(3)消去参数,化简.【例6】已知曲线(1)证明:当时,曲线是一个圆;(2)求证圆心在一条定直线上.【点评】(1)此题求圆心在一定直线上,就是求动点的轨迹是一条直线;(2)圆心的运动主要是因为参数引起的,所以选用消参法解答.【反馈检测5】已知线段,直线垂直平分于,在上取两点,使有向线段满足,求直线与的交点的轨迹方程.高中数学常见题型解法归纳及反馈检测第77讲:轨迹方程的求法参考答案【反馈检测1答案】(1);(2)直线恒过定点.【反馈检测2答案】(1);(2).【反馈检测2详细解析】由双曲线的左、右顶点分别为得.所以两式相乘得而点在双曲线上,所以即故,即.(2)设,则由知,.将代入得,即,由与E只有一个交点知,,即.同理,由与E只有一个交点知,,消去得,即,从而,即.【反馈检测3答案】(1);(2).(2)设过点(1,0),且斜率为()的直线方程为,设点,点,将直线方程代入椭圆:,整理得:,因为点在椭圆内,所以直线和椭圆都相交,恒成立,且.直线的方程为,直线的方程为,令,得点,点,所以点的坐直线的斜率为.将代入上式得,. 所以为定值. 【反馈检测4答案】【反馈检测5答案】【反馈检测5详细解析】如图2,以线段所在直线为轴,以线段的中垂线为轴建立直角坐标系.设点,则由题意,得.由点斜式得直线的方程分别为.两式相乘,消去,得.这就是所求点的轨迹方程.。

高考数学学问点:轨迹方程的求解

高考数学学问点:轨迹方程的求解

高考数学学问点:轨迹方程的求解高考数学学问点:轨迹方程的求解符合确定条件的动点所形成的图形,或者说,符合确定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.下面我给大家介绍高考数学学问点:轨迹方程的求解,抓紧来看看吧!高考数学学问点:轨迹方程的求解轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的'方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

例谈求动点轨迹方程的几种方法

例谈求动点轨迹方程的几种方法

例谈求动点轨迹方程的几种方法求动点的轨迹方程问题是高考的热点问题,难度较大,根据近几年全国卷的相关题目的得分情况开看,得分率普遍较低.求动点轨迹方程的关键是要仔细审题,分析已知条件和动点轨迹的特点,然后将动点满足的条件用动点坐标来表示,化简要注意等价变形,并要考虑一些特殊点是否适合方程.求动点的轨迹方程的一般步骤:在平面直角坐标系中,设动点,根据题目条件,得出横坐标x与纵坐标y的关系式,即为动点的轨迹方程.简化来说,核心步骤是建系、设点、列式、代人、化简、检验.一、待定系数法当已知曲线的形状时,利用待定系数法,设出曲线方程,根据已知条件,求出未知数.此类题目一般比较简单.例1.与椭圆共焦点,且过点的双曲线方程为()A. B. C. D.【解析】由题得椭圆的焦点为,所以双曲线的焦点为,设双曲线的方程为,所以,解之得所以双曲线的方程为 .故选:B.【答案】B.二、定义法定义法往往是根据课本中椭圆、双曲线与抛物线的定义,需要利用数形结合思想,挖掘位置关系,研究动点满足的几何特征,从题目的已知条件中提取出相关定义进行求解.例2.动圆M与圆外切,与圆内切,则动圆圆心M的轨迹方程是__________.【来源】安徽省淮南市2019-2020学年高二上学期期末数学(文)试题【解析】设动圆的圆心为:,半径为,动圆与圆外切,与圆内切,所以,,,因此该动圆是以原点为中心,焦点在轴上的椭圆,且,,解得,∴,椭圆的方程为: .【答案】.名师点拨:如果动圆与两个相互内含的定圆的位置关系为一个内切,一个外切,那么动圆圆心的轨迹为椭圆.同样可得:1.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与某一个外切,某一个内切,那么动圆的圆心的轨迹为双曲线;2.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与圆M外切,与圆N内切(与圆M内切,与圆N外切),那么动圆的圆心的轨迹为双曲线的一支;3.如果动圆与两个相离的定圆的位置关系为同时外切或内切,那么动圆的圆心的轨迹为双曲线的一支.4.如果动圆与一个定圆和一条直线同时相切(直线与定圆不相切),那么动圆的圆心的轨迹为抛物线;5.如果动圆与一个定圆和一条直线同时相切(直线与定圆相切),那么动圆的圆心的轨迹为抛物线或一条射线.三、直译法根据题意中动点的几何关系,将其转化为动点坐标的关系式,化简后即为动点P的轨迹方程,在将关系式进行变形和化简的过程中,一定要注意是否等价.例3..动点与定点的距离和它到定直线的距离的比是,则动点的轨迹方程是___________.【来源】广东省阳江市第三中学2019-2020学年高二上学期第二次月考试题【解析】设,则,化简得: .【答案】 .名师点拨:已知平面内某动点P到定点F的距离与到定直线l的距离之比为e,当时,动点P的轨迹为椭圆;当时,动点P的轨迹为双曲线;当时,动点P的轨迹为抛物线.此为圆锥曲线的第二定义.例4.已知两点、,直线、相交于点,且这两条直线的斜率之积为,则点的轨迹方程为________.【来源】河南省南阳市第一中学2019-2020学年高二上学期第四次月考数学(理)试题【解析】设点,由直线、的斜率之积为,整理得,即,因此,点的轨迹方程为 .【答案】 .名师点拨:已知平面内某动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为椭圆;动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为抛物线.此为圆锥曲线的第三定义.四、相关点法(涉及点差)根据题目中的条件,无法直接列出动点的相关关系式,但是所研究的动点本身不是主动运动,而是受另一动点运动的牵制,即动点是随着另一相关点的运动而运动,一般需要将两个点的坐标都设出来,用动点的坐标表示相关点的坐标,代入相关点所满足的等式,便可得到动点的轨迹方程.例5.已知椭圆的左右焦点为、,点为椭圆上任意一点,过作的外角平分线的垂线,垂足为点,过点作轴的垂线,垂足为,线段的中点为,则点的轨迹方程为___________.【来源】邯郸市大名一中2020-2021学年高二上学期10月月考题【解析】如图,延长交的延长线于,连接.因为为的平分线且,故为等腰三角形且,,所以 .在中,因为,所以,故的轨迹方程为: .令,,则,因为线段的中点为,所以,所以,即 .【答案】 .五、参数法有些题目很难直接找出动点的横、纵坐标,如果中间借助中间参数,如斜率、变角等,可以很容易地使动点的横、纵坐标之间建立联系,消去参数,即得动点的轨迹方程.消参时一定要注意参数的取值范围对方程中的x和y的范围的影响.例6.平面直角坐标系中,已知两点,,若点满足(为原点),其中,且,则点的轨迹是()A.直线 B.椭圆 C.圆 D.双曲线【来源】陕西省渭南市临渭区2019-2020学年高一下学期期末数学试题【解析】设,则,解得:,,,整理得:,点的轨迹是直线.【答案】A.六、交轨法如果动点是两条动曲线的交点,即动点的坐标同时满足两条曲线方程,选出一个适当的参数,求出两条动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程,需注意动点的取值范围.例7.已知过点的直线与相交于点,过点的直线与相交于点,若直线与圆相切,则直线与的交点的轨迹方程为__________.【来源】江苏省南通市如皋中学2020届高三创新班下学期高考冲刺模拟(三)数学试题【解析】设直线AC,BD的斜率分别为,则直线AC,BD的方程分别为:,据此可得:,则:,直线CD的方程为:,整理可得:,直线与圆相切,则:,据此可得:,由于:,两式相乘可得:,即直线与的交点的轨迹方程为 .名师点拨:求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形,消参的途径灵活多变;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.注明:本文系2021年度河南省基础教育教学研究项目《新课标下数学思想方法在高中物理中的应用与研究》(课题编号JCJYB210609028)的研究成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例 2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x .三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例 5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠k k ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kpy k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -.由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk k p y pk k p x 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得 直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C:22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >)变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b +=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G .∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r,48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y +=整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r , ∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r=2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y , 则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =.(2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x kx x …………7分 9)4(44221222121==⋅=∴x x x x y y 646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x y x y x Θ841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y Θ又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-u u u r u u u r,且||AB ≤≤l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204y x -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u,0MN MP +=r.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =,故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =uu u r u u ur,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r , ∴ 14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u uu r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l 的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线5y x =和5y x =-上的两个动点,并且||AB =u u u r ,动点P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r , ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)3yy x x +=-,2112)3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y ab-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k的取值范围是11(,(,0)(0,)()3223-∞--+∞U U U .…………………14分17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且90EMF ∠=o,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o 当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->.20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r,求实数λ的取值范围.。

相关文档
最新文档