2020中考数学操作探究专题复习(含解析)

合集下载

中考数学专题复习——操作探究(详细答案)

中考数学专题复习——操作探究(详细答案)

中考数学专题复习——操作探究一.选择题1.(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.102. (2018•嘉兴•3 分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)3. (2018•广西南宁•3 分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△CDP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c os∠ADF 的值为()A.1113B.1315C.1517D.17194.(2018•海南•3 分)如图1,分别沿长方形纸片A BCD 和正方形纸片E FGH 的对角线A C,EG 剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形O PQR 恰好是正方形,且▱KLMN 的面积为50,则正方形E FGH 的面积为()A.24 B.25 C.26 D.27二、填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A落在D C 边上的点F处,折痕为D E,点E在A B 边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在直线A E 上的点H处,折痕为D G,点G在B C 边上,若AB=AD+2,EH=1,则A D= 。

2.(2018•临安•3 分.)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).3.(2018•金华、丽水•4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形A BCD内,装饰图中的三角形顶点E,F分别在边A B,BC上,三角形①的边G D在边A D上,则ABBC的值是.4. (2018·湖北省恩施·3 分)在Rt△ABC 中,AB=1,∠A=60°,∠AB C=90°,如图所示将R t△ABC沿直线l无滑动地滚动至R t△DE F,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)5.(2018•贵州贵阳•8 分)如图①,在 R t△ABC 中,以下是小亮探究sin a A 与sin bB之间关系 的方法:∵sin A=a c ,sinB=b c ∴c =sin a A ,c=sin b B∴sin a A =sin b B根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究sin a A 、sin b B 、sin cC之间的关 系,并写出探究过程.三.解答题1.(2018•江苏无锡•10 分)如图,平面直角坐标系中,已知点 B 的坐标为(6,4). (1)请用直尺(不带刻度)和圆规作一条直线 A C ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使∠AB C=90°,△ABC 与△AOC 的面积相等.(作图不必写作法,但要保留作图痕迹.) (2)问:(1)中这样的直线 A C 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出 所有这样的直线 A C ,并写出与之对应的函数表达式.2.(2018•江苏徐州•7 分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在 建立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为(1,0)①画出△A BC 关于 x 轴对称的△A 1B 1C 1;②画出将△ABC 绕原点 O 按逆时针旋转 90°所得的△A 2B 2C 2;③△A 1B 1C 1 与△A 2B 2C 2 成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1 与△A 2B 2C 2 成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.3.(2018•山东东营市•10 分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△A BC 中,点O在线段B C 上,∠BA O=30°,∠O AC=75°,AO=BO:CO=1:3,求A B 的长.经过社团成员讨论发现,过点B作B D∥A C,交A O 的延长线于点D,通过构造△A BD 就可以解决.问题(如图2)请回答:∠ADB= 75 °,AB= .(2)请参考以上解决思路,解决问题:在四边形A BCD 中,对角线A C 与B D 相交于点O,A C⊥AD,A O=ABC=∠A CB=75°,如图3,BO:OD=1:3,求D C 的长.4.(2018•山东济宁市•7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T 型尺(CD 所在的直线垂直平分线段AB).(1)在图1 中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N 之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.5.一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3.你能求出∠A PB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△B PC 绕点B逆时针旋转90°,得到△BP′A,连接P P′,求出∠APB的度数;思路二:将△A PB 绕点B顺时针旋转90°,得到△CP'B,连接P P′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形A BCD 外一点,PA=3,PB=1,PB 的度数.答案详解一.选择题(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左1.图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在【解析】正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△C DP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c o s∠ADF 的值为()A.1113B.1315C.1517D.1719【分析】根据折叠的性质可得出DC=DE.CP=EP,由∠EOF=∠B OP、∠B=∠E.OP=OF 可得出△OE F≌△OBP(AAS),根据全等三角形的性质可得出O E=OB.EF=BP,设E F=x,则B P=x、DF=4﹣x、BF=PC=3﹣x,进而可得出A F=1+x,在R t△DAF 中,利用勾股定理可求出x的值,再利用余弦的定义即可求出c o s∠A DF 的值.【解答】解:根据折叠,可知:△D CP≌△DE P,∴DC=DE=4,CP=EP.在△O EF 和△O BP 中,EOF BOPB EOP OF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△O EF≌△OB P(AAS),∴OE=OB,EF=BP.设E F=x,则B P=x,DF=DE﹣EF=4﹣x,又∵B F=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在R t△DAF中,AF 2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴co s∠AD F=AD DF=1517.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理 结合 A F=1+x ,求出 A F 的长度是解题的关键.4.(2018•海南•3 分)如图 1,分别沿长方形纸片 A BCD 和正方形纸片 E FGH 的对角线 A C ,EG 剪开,拼成如图 2 所示的▱KLMN ,若中间空白部分四边形 O PQR 恰好是正方形,且▱KLMN 的面 积为 50,则正方形 E FGH 的面积为( )A .24B .25C .26D .27【分析】如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b ,构建方程即可解决问题; 【解答】解:如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b .由题意:a 2+b 2+(a+b )(a ﹣b )=50, ∴a 2=25,∴正方形 E FGH 的面积=a 2=25, 故选:B .【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用 参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点 A 落在 D C 边上的点 F 处,折痕为 D E ,点 E 在 A B 边上;②把纸 片展开并铺平;③把△CDG 翻折,点 C 落在直线 A E 上的点 H 处,折痕为 D G ,点 G 在 B C 边上, 若 AB=AD+2,EH=1,则 A D= 。

2020年中考数学真题分类汇编第二期专题37操作探索试题含解析

2020年中考数学真题分类汇编第二期专题37操作探索试题含解析

操作探究一.选择题1.(2018•临安•3分.)z如图,正方形硬纸片ABCD的边长是4,点E.F分别是AB.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系%@z#step~.co& 2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE.CP=EP,由∠EOF=∠BOP、∠B=∠E.OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB.EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.4.(2018•海南•3分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A 落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。

2020年中考数学专题复习教学案--动手操作题(附答案)

2020年中考数学专题复习教学案--动手操作题(附答案)
【分析与解答】本题开放性较强,可以充分发挥我们的想象力,答案千变万化,如图15就是一种作图方案:以O为位似中心把Rt△OAB放大2倍→沿y轴翻折→向右平移4个单位→向上平移5个单位.
同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.

【名师整理】2020年中考数学冲刺专题卷专题09 操作型问题(解析版)

【名师整理】2020年中考数学冲刺专题卷专题09 操作型问题(解析版)

2020年中考数学冲刺专题卷09 操作型问题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,直线m,n相交于O,所夹的锐角是53°,点P,Q分别是直线m,n上的点,将直线m,n按照下面的程序操作,能使两直线平行的是A.将直线m以点O为中心,顺时针旋转53°B.将直线n以点Q为中心,顺时针旋转53°C.将直线m以点P为中心,顺时针旋转53°D.将直线m以点P为中心,顺时针旋转127°【答案】C【解析】将直线m以点O为中心,顺时针旋转53°,有交点不平行,故错误;将直线n以点Q为中心,顺时针旋转53°,有交点不平行,故错误;将直线m以点P为中心,顺时针旋转53°,平行,正确;将直线m以点P为中心,顺时针旋转127°,同位角不相等不平行,故错误,故选C.2.(2019·四川中考模拟)在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是图①图②A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【答案】D【解析】由图可知,图①中的图形N 向下移动2格后得到图②。

故选D 。

3.(2019·湖北初二期末)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .【答案】C【解析】 重新展开后得到的图形是C ,故选C .4.(2019·浙江中考真题)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若75BDE ∠=︒,则CDE ∠的度数是( )A .60°B .65°C .75°D .80°【答案】D【解析】∵OC CD DE ==, ∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.故答案为:D.5.(2019·湖北中考真题)如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0)【答案】A【解析】如图,在Rt OCB ∆中,30BOC ∠=︒Q ,3331BC ∴===, Rt OCB ∆Q 绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为3,1)-.故选:A .6.用一条直线m 将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙都正确D .甲、乙都不正确【答案】C 【解析】如图2中,直线m 经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半减去添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C .7.(2019·广西中考真题)将一条宽度为2cm 的彩带按如图所示的方法折叠,折痕为AB ,重叠部分为ABC ∆(图中阴影部分),若45ACB ∠=︒,则重叠部分的面积为( )A .222cmB .223cmC .24cmD .242cm【答案】A【解析】解:如图,过B 作BD AC ⊥于D ,则90BDC ∠=︒,∵45ACB ∠=︒,∴45CBD ∠=︒,∴2BD CD cm ==,∴Rt BCD ∆中,()222222BC cm =+=, ∴重叠部分的面积为()1222222cm ⨯⨯=, 故选:A. 8.如图,一张三角形纸片ABC ,其中∠C =90°,AC =4,BC =3.现小林将纸片做三次折叠:第一次使点A 落在C 处;将纸片展平做第二次折叠,使点B 落在C 处;再将纸片展平做第三次折叠,使点A 落在B 处.这三次折叠的折痕长依次记为a ,b ,c ,则a ,b ,c 的大小关系是A .c >a >bB .b >a >cC .c >b >aD .b >c >a【答案】D 【解析】第一次折叠如图1,折痕为DE ,由折叠的性质得:AE =EC =12AC =2,DE ⊥AC ,∵∠ACB =90°,∴DE ∥BC ,∴a =DE =12BC =12×3=32.第二次折叠如图2,折痕为MN ,由折叠的性质得:BN =NC =12BC =12×3=32,MN ⊥BC ,∵∠ACB =90°,∴MN ∥AC ,∴b =MN =12AC =12×4=2.第三次折叠如图3,折痕为GH,由勾股定理得:AB=2234+=5,由折叠的性质得:G=BG=12AB=12×5=52,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠ACB.∴△AGH∽△ACB,∴AG GHAC CB=,∴5243c=,∴158c=.∴b c a>>,故选D.二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为__________.【答案】90°【解析】∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.10.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是__________.【答案】(4,2)或(4-,2-)【解析】符合题意与△ABC相似,且相似比为2的三角形有2个,如图所示,△A1B1C1和△A′B′C′均与△ABC 的相似比为2,点B的对应点B1的坐标是:(4,2),点B的对应点B′的坐标是:(4-,2-),故答案为:(4,2)或(4-,2-).11.在Rt△ABC中,∠C=90°,cos B=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D∶CD=__________.【答案】0.35【解析】作CH⊥AB于H,先在Rt△ABC中,根据余弦的定义得到cos B=BCAB=0.6=35,设BC=3x,则AB=4x,再根据勾股定理计算出AC=4x,在Rt△HBC中,根据余弦的定义可计算出BH=95 x,接着根据旋转的性质得CA′=CA=4x,CB′=CB,∠A′=∠A,所以根据等腰三角形的性质有B′H=BH=95x,则AB′=75x,然后证明△ADB′∽△A′DC,再利用相似比可计算出B′D与DC的比值720=0.35,故答案为:0.35.12.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A落在点P处,且点P在射线CB上,当△PNC为直角三角形时,PN的长为__________.【答案】209或207【解析】在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴22345AC=+=,设AN=PN=x,则CN=5=x,①当∠NPC=90°时,如图1,∵∠NPC=∠B=90°,∠C=∠C,∴△NPC∽△ABC,∴PN CNAB AC=,∴545x x-=,209x=,即209PN=.②当∠PNC=90°时,如图2,∵∠PNC=∠ABC=90°,∠C=∠C,∴△NPC∽△ABC,∴PN NCAB AC=,∴543x x-=,207x=,即207PN .综上,PN的长为209或207,故答案为:209或207.三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.(2019·江苏中考真题)如图,AD是ABC△的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)【答案】(1)见解析;(2)菱形.【解析】(1)如图,直线EF即为所求作的垂直平分线.(2)根据AD是ABC△的角平分线,且EF是AD的垂直平分线,可知四边形AEDF的对角线互相垂直,因此为菱形.14.(2019·江苏中考真题)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:①如图2,在□ABCD中,E为CD的中点,作BC的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH【答案】(1)见解析;(2)①见解析;②见解析.【解析】(1)如图所示,四边形ABCD即为所求;(2)①如图所示,点F即为所求;②如图所示,AH即为所求.=,点P在15.(2019·辽宁中考真题)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE CF射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90︒得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E 是CD 的中点,点P 在线段BF 上,线段BP ,QC ,EC 的数量关系为 . (2)如图2,若点E 不是CD 的中点,点P 在线段BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD 的边长为6,3AB DE =,1QC =,请直接写出线段BP 的长.【答案】(1)BP QC EC +=;理由见解析;(2)(1)中的结论仍然成立,理由见解析;(3)线段BP 的长为3或5.【解析】(1)BP QC EC +=;理由如下:Q 四边形ABCD 是正方形,BC CD ∴=,90BCD ∠=︒,由旋转的性质得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥Q ,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,又90EPQ PEC ∠+∠=︒Q ,90PEC GED ∠+∠=︒,EPQ GED ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GED EP EGPEQ G ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=, BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;故答案为:BP QC EC +=;(2)(1)中的结论仍然成立,理由如下:由题意得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥Q ,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,Q 四边形ABCD 是正方形,90DCB ∴∠=︒,BC DC =,90EPQ PEC ∴∠+∠=︒,90PEC GED ∠+∠=︒Q ,GED EPQ ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GED EP EGPEQ G ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=, BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=; (3)分两种情况:①当点P 在线段BF 上时,点Q 在线段BC 上,由(2)可知:BP EC QC =-,36AB DE ==Q ,2DE ∴=,4EC =,413BP ∴=-=;②当点P 在射线FC 上时,点Q 在线段BC 的延长线上,如图3所示: 同(2)可得:()PEQ EGD AAS ∆≅∆,PQ ED ∴=,BC DC =Q ,DC EC DE =+,BP BC PC DC PC EC DE PC EC PQ PC EC QC ∴=+=+=++=++=+, 145BP QC EC ∴=+=+=;综上所述,线段BP 的长为3或5.。

2020年中九年级数学中考二轮——动点探究题(含详细解答)

2020年中九年级数学中考二轮——动点探究题(含详细解答)

2020年中九年级数学中考二轮——动点探究题类型一单动点1.已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D 出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.第1题图解:(1)BG∥CD;【解法提示】∵四边形EFGC是正方形,∴CG=CE,∠GCE=∠GFE=∠FEC=90°,∵∠ACB =∠GCE=90°,∴∠GCB=∠ECA,∵GC=CE,CB=CA,∴△CBG≌△CAE.∴∠CBG=∠CAE,又∵∠ACB=90°,BC=AC,D是AB的中点,∴∠CBG=∠CAE=45°,∠BCD=45°,∴∠CBG=∠BCD,∴BG∥CD.(2)∵CB=CA,CD⊥AB,∠ACB=90°,∴CD=BD=AD=3,∠CBA=∠A=45°,易得△CAE≌△CBG,∴∠CBG=∠A=45°,∴∠GBA =∠GBC +∠CBA =90°.∵∠BEN +∠BNE =90°,∠BEN +∠CED =90°, ∴∠BNE =∠CED , ∵∠EBN =∠CDE =90°, ∴△NBE ∽△EDC , ∴BN DE =BE DC, ∴y x =3-x 3, ∴y =-13(x -32)2+34,∵-13<0,∴当x =32时,y 的最大值为34;(3)如解图,过点F 作FH ⊥AB 于点H .∵CB =CA ,BD =CD ,∠BCA =90°, ∴CD ⊥AB ,CD =BD =AD =3,第1题解图∴tan ∠DCE =DE CD =33,∴∠DCE =30°,∵四边形EFGC 是正方形, ∴EF =EC ,∵∠CDE =∠EHF =90°,易证∠DCE =∠HEF , ∴△CDE ≌△EHF ,∴∠DCE =∠HEF =30°,FH =DE ,CD =EH ,∵CD=BD,∴BD=EH,∴BH=DE=FH,∴△BHF是等腰直角三角形,∴∠BFH=45°,∵∠EFH=90°-∠HEF=60°,∴∠BFE=∠BFH+∠EFH=105°.2.如图,在正方形ABCD中,动点P在边BC上移动(不与端点B、C重合),作点B关于直线AP的对称点E,连接PE,AE,DE,延长DE交直线AP于点F.(1)若∠P AB=15°,AB=4,求DE的长;(2)连接BF,动点P在移动的过程中,∠APB-∠CBF的值是否为定值?若为定值,求出其值;若非定值,请说明理由.第2题图备用图解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵点B和点E关于直线AP对称,∴AB=AE,∠P AB=∠P AE=15°,∴AE=AD,∠DAE=90°-∠BAE=90°-2×15°=60°,∴△ADE是等边三角形,∴DE=AD=AB=4;(2)值为定值,∠APB-∠CBF=45°.理由如下:如解图,设DF与BC交于点K,第2题解图∵点B和点E关于直线AP对称,∴AB=AE=AD,∠ABP=∠ADC=∠AEP=90°,∠PBF=∠PEF,∵由(1)得AE=AD,∴∠AED=∠ADE,∴∠PEF+∠AED=90°,∠ADF+∠CDF=90°,∴∠PEF=∠CDF=∠CBF,∵∠CKD=∠BKF,∴∠BFK=∠C=90°,×∠BFE=45°.∴∠APB-∠CBF=∠PFB=123.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动.M,N分别是AD,CD的中点,连接MN.设点D运动的时间为t.(1)MN与AC的位置关系为________;(2)求点D在由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN 是等腰三角形,求t 的值.第3题图解:(1)MN ∥AC ;【解法提示】在△ADC 中,∵M 是AD 的中点,N 是DC 的中点,∴MN 是△ADC 的中位线,∴MN ∥AC .(2)如解图①,分别取△ABC 三边中点E ,F ,G ,并连接EG ,FG ,第3题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积. ∵AC =6,BC =8, ∴AE =3,GC =4, ∵∠ACB =90°, ∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =12AD ,DN =12DC ,MN =12AC =3.分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6, ∴t =6.(ⅱ)当MD =DN 时,AD =DC .第3题解图②如解图②,过点D 作DH ⊥AC 于点H ,则AH =12AC =3,∵cos A =AH AD =ACAB ,AB =10,即3AD =610. ∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC , 如解图③,连接MC ,则CM ⊥AD . ∵cos A =AM AC =AC AB ,即 AM 6=610,∴AM =185,第3题解图③∴t =AD =2AM =365.综上所述,当t =5或6或365时,△DMN 为等腰三角形.4.如图①,在矩形ABCD 中,AB =16,BC =8,在AD 边上取一点E ,使AE =3,点F 是AB 边上的一个动点,以EF 为一边作菱形EFMN ,使点N 落在CD 上,点M 落在矩形ABCD 内或其边上,连接BM .(1)当四边形EFMN 是正方形时,求AF 的长;(2)设△BFM 的面积为S ,AF =x . ①写出S 与x 之间的函数关系式;②在图②中画出S 取得最大值和最小值时相应的图形,当S 由最大值变到最小值时,求点M 运动的路线长.第4题图解:(1)在正方形EFMN 中,∵∠FEN =90°,EF =EN , ∴∠DEN +∠AEF =90°,在矩形ABCD 中,∵∠A =∠D =90°, ∴∠AEF +∠AFE =90°, ∴∠DEN =∠AFE , 在△DEN 与△AFE 中, ⎩⎪⎨⎪⎧∠D =∠A ∠DEN =∠AFE EN =FE, ∴△DEN ≌△AFE (AAS). ∴AF =DE =8-3=5, ∴AF 的长为5;(2)①如解图①,过点M 作MH ⊥AB 于点H ,连接NF.第4题解图①在矩形ABCD 中, ∵AB ∥CD , ∴∠DNF =∠NFB . ∵四边形EFMN 是菱形, ∴NE ∥MF ,NE =MF , ∴∠ENF =∠MFN ,∴∠DNF -∠ENF =∠NFB -∠MFN , 即∠DNE =∠MFB , 在△DEN 与△HMF 中, ⎩⎪⎨⎪⎧∠D =∠MHF ∠DNE =∠MFB EN =MF, ∴△DEN ≌△HMF (AAS),∴MH =DE =5, 又∵BF =16-x ,∴S =12BF ·MH =12(16-x )×5=-52x +40;第4题解图②②如解图②,当点D 与N 重合时,S 最大, 此时DE =EF 1=5,由勾股定理得AF 1=4, 当点M 落在BC 上时,S 最小, 由①得M 2B =DE =5,∵点M 2到AB 的距离是定值5, ∴点M 运动的路径是一条线段M 1M 2, ∴M 1M 2=F 1B =16-4=12. ∴点M 运动的路线长为12.5.如图①,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t =12秒时,则OP =______,S △ABP =______;(2)当△ABP 是直角三角形时,求t 的值;(3)如图②,当AP =AB 时,过点A 作AQ ∥BP ,并使得 ∠QOP =∠B ,求证:AQ ·BP =3.图① 图②第5题图(1)解:1,334;【解法提示】因为动点P 以每秒2个单位长度的速度从点O 出发,故当t =12秒时,OP =12×2=1.如解图①,过点P 作△ABP 的高h ,由于∠BOC =60°,OP =1,故h =OP ·sin60°=32,即S △ABP =12AB ·h =12(OA +OB )·h =12×(2+1)×32=334.图①图②第5题解图(2)解:∵∠BAP<∠BOP=60°,∴∠A不可能为直角;如解图②,当∠B=90°时,∵∠BOC=60°,∴∠OPB=30°,∴OP=2OB=2,即2t=2,∴t=1;当∠APB=90°时,如解图③,过点P作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°.第5题解图③∵OP=2t,∴OD=t,PD=3t,AD=2+t,BD=1-t,∴BP2=BD2+PD2=(1-t)2+3t2,AP2=AD2+PD2=(2+t)2+3t2,∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t 2+t -2=0,解得t 1=-1+338,t 2=-1-338(舍去).综上所述,当△ABP 是直角三角形时,t 的值为1或-1+338;(3)证明:∵AP =AB ,第5题解图④∴∠APB =∠B .如解图④,作OE ∥AP 交BP 于点E , ∴∠OEB =∠APB =∠B , ∵AQ ∥BP ,∴∠QAB +∠B =180°, 又∵∠3+∠OEB =180°, ∴∠3=∠QAB ,又∵∠AOC =∠2+∠B =∠1+∠QOP , ∠B =∠QOP , ∴∠1=∠2, ∴△QAO ∽△OEP ,∴AQ EO =AOEP ,即AQ ·EP =EO ·AO , ∵OE ∥AP , ∴△OBE ∽△ABP , ∴OE AP =BE BP =BO BA =13,∴OE =13AP =1,BP =32EP ,∴AQ ·BP =AQ ·32EP =32AO ·OE =32×2×1=3.类型二 双点问题6.如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由); (3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点, 当S △P AB =S △OAB 时,求△P AB 周长的最小值.第6题图 备用图(1)证明:∵四边形ABCD 是正方形, ∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =14AB ,∴AE AB =12,AF BG =12, ∴AE AB =AF BG, 又∵∠EAF =∠ABC =90°, ∴△AEF ∽△BAG , ∴∠AEF =∠BAG , 又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°, ∴∠EOA =90°,即EF ⊥AG ; (2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接P A ,第6题解图∵P 是正方形ABCD 内一点,S △P AB =S △OAB , ∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P , 此时P A +PB =P A ′+PB =BA ′最小,即△P AB 的周长最小. ∵正方形ABCD 的边长为4,点E 为AD 的中点, ∴AE =12AD =2,又∵AF =14AB =1,∴EF =AE 2+AF 2=5,OA =AE ·AF EF =255,∵∠AMO =∠EOA ,∠EAO =∠EAO , ∴△EOA ∽△OMA , ∴AE OA =OAAM , ∴OA 2=AM ·AE , ∴AM =OA 2AE =25,∴A ′A =2AM =45,∴BA ′=A ′A 2+AB 2=4265, ∴△P AB 周长的最小值为4+4265. 7.如图①,在Rt △ABC 中,∠C =90°,AC =8 cm ,BC =6 cm ,点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s.以AQ 、PQ 为边作平行四边形AQPD ,连接DQ ,交AB 于点E .设运动的时间为t (单位:s )(0<t ≤4),解答下列问题: (1)用含有t 的代数式表示AE =________; (2)如图②,当t 为何值时,四边形AQPD 为菱形;(3)在运动过程中,t 为何值时四边形AQPD 的面积最大,求出这个最大值.图① 图②第7题图解:(1)(5-t )cm ;【解法提示】∵在Rt △ABC 中,∠C =90°,AC =8 cm ,BC =6 cm ,∴由勾股定理得:AB =10 cm ,∵点P 由B 出发沿BA 方向向点A 匀速运动,速度为2 cm/s ,∴BP =2t cm ,∴AP =AB -BP =(10-2t )cm ,∵四边形AQPD 为平行四边形,∴AE =12AP =(5-t )cm.(2)如解图①,当四边形AQPD 是菱形时,DQ ⊥AP ,则cos ∠BAC =AE AQ =ACAB ,即5-t 2t =810,解得t =2513, ∴当t =2513时,四边形AQPD 是菱形;(3)如解图②,作PM ⊥AC 于点M ,设平行四边形AQPD 的面积为S .∴△APM ∽△ABC ,∴AP AB =PM BC ,即10-2t 10=PM 6,∴PM =65(5-t )cm , ∴S =AQ ·PM =2t ·65(5-t )=-125t 2+12t =-125(t -52)2+15(0<t ≤4),∵-125<0,∴当t =52时,S 有最大值,最大值为15 cm 2.图① 图②第7题解图8.如图,在△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4). (1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值; (3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.第8题图 备用图解:(1)由题意知BP =2t cm ,AP =(10-2t ) cm ,AQ =2t cm ,∴△APQ ∽△ABC , ∴AP AB =AQ AC, 即10-2t 10=2t 8,解得t =209, 即当t 为209 s 时,PQ ∥BC ;(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm , AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∠C =90°, 如解图,过点P 作PD ⊥AC 于点D ,第8题解图则PD ∥BC , ∴△APD ∽△ABC , ∴AP AB =PD BC, ∴10-2t 10=PD 6,∴PD =35(10-2t ) cm ,∴S =12AQ ·PD =12·2t ·35(10-2t )=-65t 2+6t =-65(t -52)2+7.5,∵-65<0,∴当t =52s 时,S 有最大值,最大值是7.5 cm 2;(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =12S △ABC ,即-65t 2+6t =12×12×8×6,整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0, ∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.9.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)①求线段CD 的长; ②求证:△CBD ∽△ABC ;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (3)在运动过程中,t 为何值时△CPQ 为等腰三角形?请直接写出t 的值.第9题图 备用图(1)①解:∵∠ACB =90°,AC =8,BC =6, ∴AB =10, ∵CD ⊥AB ,∴S △ABC =12BC ·AC =12AB ·CD ,∴CD =BC ·AC AB =6×810=245,∴线段CD 的长为245;②证明:∵∠B =∠B ,∠CDB =∠BCA =90°, ∴△CBD ∽△ABC ;(2)解:如解图②,过点P 作PH ⊥AC ,垂足为H , 由题可知DP =t ,CQ =t , 则CP =245-t ,∵∠ACB =∠CDB =90°, ∴∠HCP =90°-∠DCB =∠B , ∵PH ⊥AC , ∴∠CHP =90°, ∴∠CHP =∠ACB , ∴△CHP ∽△BCA , ∴PH AC =PC AB , 即PH 8=245-t10, ∴PH =9625-45t ,∴S =12CQ ·PH =12t (9625-45t )=-25(t -125)2+288125,∵-25<0,∴当t =125时,S 最大=288125;(3)解:当t 的值为125秒或14455秒或2411秒时,△CPQ 为等腰三角形.【解法提示】①若CQ =CP ,如解图①,则t =245-t .解得:t =125;②若PQ =PC ,如解图②.∵PH ⊥QC ,∴QH =CH =12QC =t 2.∵△CHP ∽△BCA .∴CH BC =CP BA .即t 26=245-t10,解得t =14455;③若QC =QP ,如解图③,过点Q 作QE ⊥CP ,垂足为E ,同理可得:t =2411.综上所述:当t为125秒或14455秒或2411秒时,△CPQ为等腰三角形.图①图②图③第9题解图10.已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,AP=PO;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)当运动到某一时刻t,OD恰好平分∠COP,求出此时的t值.第10题图备用图解:(1)∵在矩形ABCD中,AB=6 cm,BC=8 cm,∠ABC=90°,∴AC=10 cm,AO=12AC=5 cm,如解图①,过点P作PM⊥AO,∵AP=PO=t,∴AM=12AO =52cm,∵∠PMA =∠ADC =90°,第10题解图①∠P AM =∠CAD , ∴△APM ∽△ACD , ∴AP AC =AMAD , 即t 10=528, 解得t =258,即t =258s 时,AP =PO ;(2)如解图②,过点O 作OH ⊥BC 于点H ,则OH =12CD = 12AB =3 cm.第10题解图②由矩形的性质可知∠PDO =∠EBO ,DO =BO , 在△DOP 和△BOE 中, ⎩⎪⎨⎪⎧∠PDO =∠EBOOD =OB∠DOP =∠BOE , ∴△DOP ≌△BOE (ASA),∴BE =PD =(8-t )cm ,则S △BOE =12BE ·OH =12×(8-t )×3=12-32t . ∵FQ ∥AC , ∴△DFQ ∽△DOC ,相似比为DQ DC =t 6, ∴S △DFQS △DOC =t 236, ∵S △DOC =14S 矩形ABCD =14×6×8=12 cm 2, ∴S △DFQ =12×t 236=t 23, ∴S 五边形OECQF =S △DBC -S △BOE -S △DFQ =12×6×8-(12-32t )-t 23=-13t 2+32t +12, ∴S 与t 的函数关系式为S =-13t 2+32t +12; (3)如解图③,过点D 作DM ⊥PE 于点M ,作DN ⊥AC 于点N ,第10题解图③易证△ADN ∽△ACD ,∴DN CD =AD AC ,即DN 6=810, ∴DN =245, ∵∠POD =∠COD ,∴DM =DN =245, ∴OM =ON =OD 2-DN 2=75, ∵S △POD =12OP ·DM ,S △POD =12PD ·12DC , ∴OP ·DM =3PD ,∴OP=5-58t,∴PM=185-5 8t,∵PD2=PM2+DM2,即(8-t)2=(185-58t)2+(245)2,解得t1=16(不合题意,舍去),t2=11239,∴当t=11239s时,OD平分∠COP.。

【中小学资料】中考数学专题复习 探索性问题复习学案 (新版)新人教版

【中小学资料】中考数学专题复习 探索性问题复习学案 (新版)新人教版

探索性问题【学习目标】1.通过观察、类比、操作、猜想、探究等活动,了解探索性数学问题中的常见四大类型,并体会解题策略.2.能够根据相应的解题策略解决探索性问题.3.使学生会关注探索性数学问题,提高学生的解题能力. 【重点难点】重点:条件探索型、结论探索型、规律探索型的问题. 难点:对各探索型问题策略的理解. 【知识回顾】1._____.2. 观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 3. 观察算式:224135-=⨯; 225237-=⨯; 226339-=⨯ 2274311-=⨯;…………则第n (n 是正整数)个等式为________. 4.如图,在△ABC 中,AB =AC ,AD ⊥BC 于D . 由以上两个条件可得________.(写出一个结论)【综合运用】例1抛物线y =ax 2+bx +c 的部分图象如图所示,根据这个函数图象,你能得到关于该函21 D CB A数的那些性质和结论?例2(1)探究新知:如图①,已知△ABC与△ABD的面积相等,试探究AB与CD的位置关系,并说明理由.(2)结论应用:①如图②,点M,N在反比例函数kyx(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试探究MN与EF的位置关系.②若①中的其他条件不变,只改变点M,N的位置如图③所示,试探究MN与EF的位置【直击中考】1. 对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.(1)证明:∠ABE=30°;(2)证明:四边形BFB′E为菱形.2. 已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1上,(1)求抛物线的对称轴;(2)若B点与A点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B的直线?如果存在,求符合条件的直线;如果不存在,说明理由.【总结提升】1.请你画出本节课的知识结构图.2.通过本课复习你收获了什么?【课后作业】一、必做题:1、如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5 2、已知(x 1,y 1),(x 2,y 2)为反比例函数xky图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的值可为___________.(只需写出符合条件的一个..k 的值)二、选做题:3、(2010.山东临沂)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB =2AD. (1)判断△ABC 的形状,并说明理由;(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线段AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2 中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.探索性问题复习学案答案综合运用例1.对称轴是x = -1,开口向下,与y 轴交于(0,3)点等 例2. (1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90°. ∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ∴ 四边形CGHD 为平行四边形. ∴ AB ∥CD .(2)①证明:连结MF ,NE .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2). ∵ 点M ,N 在反比例函数(k >0)的图象上,∴∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2.∴ S △EFM = 111122x y k = S △EFN = 221122x y k =∴S △EFM =S △EFN .由(1)中的结论可知:MN ∥EF . ② MN ∥EF . 直击中考1. 证明:(1)∵对折AD 与BC 重合,折痕是MN , ∴点M 是AB 的中点, ∴A ′是EF 的中点, ∵∠BA′E=∠A =90°, ∴BA ′垂直平分EF , ∴BE =BF ,∴∠A′BE =∠A′BF ,由翻折的性质,∠ABE =∠A′BE , ∴∠ABE =∠A′BE =∠A′BF , ∴∠ABE =×90°=30°;(2)∵沿EA ′所在的直线折叠,点B 落在AD 上的点B′处,∴BE=B′E,BF=B′F,∵BE=BF,∴BE=B′E=B′F=BF,∴四边形BFB′E为菱形.2. (1)把点A的坐标代入抛物线方程并解得k=-3或k=1. ∵k2-1≠0 ∴k=1舍去∴y=8x2+10x+1 ∴对称轴为x=5 8 -(2)设点B坐标为(a,b)∵点B与A(-1,-1)关于x=58-对称.∴a58-=58--(-1)得a=14-,b=-1∴点B坐标为(14-,-1)假设存在直线y=mx+n与抛物线y=8x2+10x+1只交于点B(14-,-1),则14-m+n=-1…………①又由解得8x2+(10-m)x+1-n=0∵直线与抛物线只交于一点,即上述方程的两根相等,∴△=0 即(10-m)2-32(1-n)=0…………②另一方面,当直线过B(14-,-1)且与y轴平行时,直线与抛物线只有一个交点,此直线为x=1 4 -综上,符合条件的直线存在,并且有两条,分别为y=6x+12和x=14-.课后作业必做题:1.C 2.略选做题:3. (1)△ABC为等腰直角三角形. 如图1,在矩形ABED中,∵点C是边DE的中点,且AB=2AD,∴AD=DC=CE=EB,DD=DE=90°,∴Rt△ADC≌Rt△BEC,∴AC=BC,∠1=∠2=45°,∴∠ACB=90°,∴△ABC为等腰直角三角形;(2)DE=AD+BE;如图2,在Rt△ADC和Rt△CEB中,∵∠1+∠CAD=90°,∠1+∠2=90°,∴∠CAD=∠2,又∵AC=CB,∠ADC=∠CEB=90°,∴Rt△ADC≌Rt△CEB,∴DC=BE,CE=AD,∴DC+CE=BE+AD,即DE=AD+BE;(3)DE=BE-AD.如图3,Rt△ADC和Rt△CEB中,∵∠1+∠CAD=90°,∠1+∠2=90°,∴∠CAD=∠2,又∵∠ADC=∠CEB=90°,AC=CB,∴Rt△ADC≌Rt△CEB,∴DC=BE,CE=AD,∴DC-CE=BE-AD,即DE=BE-AD.。

2020届中考数学专题复习测试题(专题一:动点探究)含答案

2020届中考数学专题复习测试题(专题一:动点探究)含答案

中考总复习专题一动点探究一、单动点1.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A 作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.解:①当BA=BP时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,答案为:8,,.2.(2015•连云港)已知如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.解:(1)原点O在⊙P外.理由:∵直线y=x﹣2与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,﹣2),在Rt△OAB中,tan∠OBA===,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠OBA=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP•tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).3.(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x 轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6<t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APM﹣S△CPM===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t<8时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>8时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=144.(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图1:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.图1③当3<t≤4时,如图2:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t ﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.综上所述,S与t之间的函数关系式为S=.图2图3图4(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图3:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图4:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).5.(2015•绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 的最大值.(1)解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;当点M为CG的中点时,AM=BM,则△ABM 为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN;如图1所示:∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∴∠CDG=90°,∵BK=AB﹣AK,ND=AD﹣AN,∴BK=DN,∵DH平分∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°﹣∠AKN=135°,∴∠BKN=∠NDH,在Rt△ABN中,∠ABN+∠ANB=90°,又∵BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°﹣∠BNH=90°,∴∠ABN=∠DNH,在△BNK和△NHD中,,∴△BNK≌△NHD(ASA),∴BN=NH;(3)解:①当M在AC上时,即0<t≤2时,△AMF为等腰直角三角形,∵AM=t,∴AF=FM=t,∴S=AF•FM=×t×t=t2;当t=2时,S的最大值=×(2)2=2;②当M在CG上时,即2<t<4时,如图2所示:CM=t﹣AC=t﹣2,MG=4﹣t,在△ACD和△GCD中,,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°﹣∠GCD=45°,∴△MFG为等腰直角三角形,∴FG=MG•cos45°=(4﹣t)•=4﹣t,∴S=S△ACG﹣S△CMJ﹣S△FMG=×4×2﹣×CM×CM﹣×FG×FG=4﹣(t﹣2)2﹣(4﹣)2=﹣+4t﹣8=﹣(t﹣)2+,∴当t=时,S的最大值为.6.(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G 点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴解得∴抛物线的解析式是:y=﹣x2﹣x+8.(2)如图①,作DM⊥抛物线的对称轴于点M,,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C (0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,4),点E的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,12),点E的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).二、双动点1.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.选:B.2.(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A 点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.解:(1)如图1,过点B作BM⊥AC于点M,∵AC=9,S△ABC=,∴AC•BM=,即×9•BM=,解得BM=3.由勾股定理,得AM===4,则tanA==;(2)存在.如图2,过点P作PN⊥AC于点N.依题意得AP=CQ=5t.∵tanA=,∴AN=4t,PN=3t.∴QN=AC﹣AN﹣CQ=9﹣9t.根据勾股定理得到:PN2+NQ2=PQ2,S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).∵﹣==在t的取值范围之内,∴S最小值===;(3)①如图3,当点E在边HG上时,t1=;②如图4,当点F在边HG上时,t2=;③如图5,当点P边QH(或点E在QC上)时,t3=1④如图6,当点F边C上时,t4=3.(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D 出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.解:(1)如图1,当x=时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=,QR=PQ,∴QR=,∴n=S=×()2=×=.(2)如图2,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ,AP=2+,AQ=2﹣,∵△AQE∽△AQ 1R1,,∴QE=,设FG=PG=a,∵△AGF∽△AQ1R1,,∴AG=2+﹣a,∴a=,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=﹣x2+∴S=﹣x2+.综上,可得S=4.(2015•宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.5.(2015•荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,在Rt△DBP和Rt△DEQ中,,∴△DBP≌△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).三、面动探究1.(2015•青岛)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.解:(1)在Rt△ABC中,AC==4,由平移得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PD⊥BC于D,∵△CPD∽△CBA,∴=,∴=,∴PD=﹣t,∵PD∥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PD=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PDQ,∵∠MPQ=∠PQD,∴△PDQ∽△MQP,∴=,∴PQ2=MP•DQ,∴PD 2+DQ2=MP•DQ,∵CD=,∴DQ=CD﹣CQ=﹣t=,∴()2+()2=5×,∴t1=0(舍去),t2=,∴t=时,PQ⊥MQ.2.(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=12cm.解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.第二问方法二:因角C与角O和为180度,所以角CAO与角CBO和为180度,故A,O,B,C四点共圆,且AB为圆的直径,故弦CO的最大值为12.3.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠C EF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.4.(2015•温州)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).解:(1)在Rt△ABQ中,∵AQ:AB=3:4,AQ=3x,∴AB=4x,∴BQ=5x,∵OD⊥m,m⊥l,∴OD∥l,∵OB=OQ,∴=2x,∴CD=2x,∴FD==3x;(2)∵AP=AQ=3x,PC=4,∴CQ=6x+4,作OM⊥AQ于点M(如图1),∴OM∥AB,∵⊙O是△ABQ的外接圆,∠BAQ=90°,∴点O是BQ的中点,∴QM=AM=x∴OD=MC=,∴OE=BQ=,∴ED=2x+4,S矩形DEGF=DF•DE=3x(2x+4)=90,解得:x1=﹣5(舍去),x2=3,∴AP=3x=9;(3)①若矩形DEGF是正方形,则ED=DF,I.点P在A点的右侧时(如图1)∴2x+4=3x,解得:x=4,∴AP=3x=12;II.点P在A点的左侧时,当点C在Q右侧,0<x<时(如图2),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=,∴AP=;当≤x<时(如图3),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=(舍去),当点C在Q的左侧时,即x≥(如图4),DE=7x﹣4,DF=3x,∴7x﹣4=3x,解得:x=1,∴AP=3,综上所述:当AP为12或或3时,矩形DEGF是正方形;②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,∵GM=x,BM=x,∴∠GBM=45°,∴BM∥AQ,∴AI=AB=4x,∴IQ=x,∴NQ==2,∴x=2,∴AP=6;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,∵GJ=x,BJ=4x,∴tan∠GBJ=,∴AI=16x,∴QI=19x,∴NQ==2,∴x=,∴AP=,综上所述:AP的长为6或。

【精品推荐】2020版中考数学总复习 第八章 专题拓展 8.3 实验操作型(试卷部分)课件

【精品推荐】2020版中考数学总复习 第八章 专题拓展 8.3 实验操作型(试卷部分)课件

中线AD的取值范围是
;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的
两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
图1
图3 问题解决 (1)请在图2中证明四边形AEFD是正方形;
图2 图4
(2)请在图4中判断NF与ND'的数量关系,并加以证明; (3)请在图4中证明△AEN是(3,4,5)型三角形; 探索发现 (4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们 的名称. 解析 (1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°. 由折叠知AE=AD,∠AEF=∠D=90°, (1分) ∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形. (2分) ∵AE=AD,∴矩形AEFD是正方形. (3分) (2)NF=ND'. 证明:连接HN.由折叠知∠AD'H=∠D=90°,HF=HD=HD'. (4分)
以先求出BD的两个值,根据 AC = 3 ,再求出AC的两个值.
BD
3.(2017山西,22,12分)综合与实践 背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代数学著作《周髀 算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如: 三边长分别为9,12,15或3 2 ,4 2 ,5 2 的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操 作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD中,AD=8 cm,AB=12 cm. 第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕 为AF,再沿EF折叠,然后把纸片展平. 第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF. 第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕 EF交于点N,然后展平.

2020年中考数学热点专题二 规律探究问题解析版

2020年中考数学热点专题二 规律探究问题解析版

2020年中考数学热点专题二规律探究问题解析版数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。

探索规律性问题就是根据新课程标准“创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。

学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。

创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终”的要求,近年中考数学经常出现的考题.归纳规律题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律。

它体现了“特殊到一般(再到特殊)”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.结合2019年全国各地中考的实例,我们从下面八方面探讨归纳规律性问题的解法:(1)根据数的排列或运算规律归纳;(2)根据式的排列或运算规律归纳;(3)根据图的变化规律归纳;(4)根据寻找的循环规律归纳;(5)根据代数式拆分规律归纳;(6)根据一阶递推规律归纳;(7)根据二阶递推规律归纳;(8)根据乘方规律归纳.考向1 数字类规律探究型问题1. (2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______.2.(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043L L L L则第20行第19个数是_____________________.3.(2019·武威)已知一列数a,b,a b+,35+,⋯⋯,按照这个规律写下去,第9a ba b+,2a b+,23个数是.4.(2019·云南)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是()A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+15. (2019·聊城) 数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n(n≥3,n是整数)处,那么线段A n A的长度为________(n≥3,n是整数).6.(2019·安顺)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.7.(2019·永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2= .(2)若s=2,则a0+a1+a2+…+a15= .考向2几何图形类规律探究型问题1.(2019·毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方2.(2019·天水)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.3.(2019·甘肃)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n __________.4. (2019·大庆)归纳"T"字形,用棋子摆成的"T"字形如图所示,按照图①,图②的规律摆下去,摆成第n个"T"字形需要的棋子个数为______.5.(2019·龙东地区)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第三个正方形OA3A4B4,连接A2A4,得到△A2A3A4,…,记△AA1A2,△A1A2A3,△A2A3A4…的面积分别为S1,S2,S3…,如此下去,则S2019=________.6. (2019 ·扬州)如图,在ABC ∆中,5AB =,4AC =,若进行以下操作,在边BC 上从左到右依次取点1D 、2D 、3D 、4D 、⋯;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点1E 、1F ;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点2E 、2F ;过点3D 作AB 、AC 的平行线分别交AC 、AB 于点3E 、3F ⋯,则1122201920191122201920194()5()D E D E D E D F D F D F ++⋯++++⋯+=__________.考向3 点的坐标变化的规律探究型问题1.(2019 ·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10)2.(2019·菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2……第n 次移动到点A n ,则点A 2019的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)3. (2019•广安)如图,在平面直角坐标系中,点1A 的坐标为(1,0),以1OA 为直角边作Rt △12OA A ,并使A 4AA 11260AOA ∠=︒,再以2OA 为直角边作Rt △23OA A ,并使2360A OA ∠=︒,再以3OA 为直角边作Rt △34OA A ,并使3460A OA ∠=︒⋯按此规律进行下去,则点2019A 的坐标为__________.4. (2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .5. (2019·本溪)如图,点B 1在直线l :12y x =上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;按照这个规律进行下去,点C n 的横坐标为6. (2019·齐齐哈尔) 如图,直线l :y=133+x 分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线L 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线L 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则Sn=__________.2020年中考数学热点专题二规律探究问题解析版数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。

2020年中考数学一轮复习题型09几何类比、拓展、探究题(原卷版)

2020年中考数学一轮复习题型09几何类比、拓展、探究题(原卷版)

题型09 几何类比、拓展、探究题一、解答题1.如图1,ABC ∆(12AC BC AC <<)绕点C 顺时针旋转得DEC ∆,射线AB 交射线DE 于点F . (1)AFD ∠与BCE ∠的关系是 ;(2)如图2,当旋转角为60°时,点D ,点B 与线段AC 的中点O 恰好在同一直线上,延长DO 至点G ,使OG OD =,连接GC .①AFD ∠与GCD ∠的关系是 ,请说明理由;②如图3,连接,AE BE ,若45ACB ∠=o ,4CE =,求线段AE 的长度.2.(问题)如图1,在Rt ABC V 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点A B 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.3.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图 1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6 ,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结B N′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2 中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQ,EM(如图 3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.4.问题提出:如图,图①是一张由三个边长为1 的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为 1 的小正方形,其中a≥2 ,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2 个位置不同的2 ×2方格,依据探究一的结论可知,把图①放置在3×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有2 ×4=8种不同的放置方法.探究三:把图①放置在a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a ×2 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有______种不同的放置方法.探究四:把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_____种不同的放置方法.……问题解决:把图①放置在a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2 ,b≥2 ,c≥2 ,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1 的小立方体.在图⑧的不同位置共可以找到______个图⑦这样的几何体.5.在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D ,(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN ∠=︒,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=;6.如图,正方形ABDE 和BCFG 的边AB ,BC 在同一条直线上,且2AB BC =,取EF 的中点M ,连接MD ,MG ,MB .(1)试证明DM MG ⊥,并求MBMG的值. (2)如图,将如图中的正方形变为菱形,设()2090EAB αα∠=<<︒,其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.7.定义:有一组邻边相等且对角互补的四边形叫做等补四边形. 理解:()1如图1,点A B C ,,在O e 上,ABC ∠的平分线交O e 于点D ,连接AD CD ,.求证:四边形ABCD 是等补四边形; 探究:()2如图2,在等补四边形ABCD 中AB AD ,=,连接AC AC ,是否平分?BCD ∠请说明理由. 运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.8.已知V ABC 内接于O e ,BAC ∠的平分线交O e 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=o 时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ; (2)如图②,当90BAC ∠=o 时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论; (3)如图③,若BC =5,BD =4,求ADAB AC+ 的值.9.如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD 与BE 交于点F ,BH AB ⊥于点B ,点M 是BC 的中点,连接FM 并延长交BH 于点H .(1)如图①所示,若30ABC ∠=o ,求证:DF BH +=; (2)如图②所示,若45ABC ∠=o ,如图③所示,若60ABC ∠=o (点M 与点D 重合),猜想线段DF 、BH 与BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.10.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)11.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB V 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长.12.(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.13.如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AFAP的值; (2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =; (3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将AQB ∆绕点A 旋转,使点Q 旋转后的对应点'Q 落在边AD 上.请判断点B 旋转后的对应点'B 是否落在线段BN 上,并说明理由.14.在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示)15.⑴如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G . ①线段DB 和DG 的数量关系是 ; ②写出线段BE BF 、和DB 之间的数量关系.⑵当四边形ABCD 为菱形,ADC 60∠=o ,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明; ②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若 BE 1,AB 2==,直接写出线段GM 的长度.16.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==,证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD Y 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD Y 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD Y 的面积为 .17.如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称'PAB ∆,设点P 的运动时间为()t s(1)若AB =①如图2,当点B ’落在AC 上时,显然△PCB ’是直角三角形,求此时t 的值②是否存在异于图2的时刻,使得△PCB ’是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由(2)当P 点不与C 点重合时,若直线PB ’与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠P AM =45°成立,试探究:对于t >3的任意时刻,结论∠P AM =45°是否总是成立?请说明理由.18.在等腰三角形ABC ∆中,AB AC =,作CM AB ⊥交AB 于点M ,BN AC ⊥交AC 于点N . (1)在图1中,求证:BMC CNB ∆≅∆;(2)在图2中的线段CB 上取一动点P ,过P 作//PE AB 交CM 于点E ,作//PF AC 交BN 于点F ,求证:PE PF BM +=;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作//PE AB 交CM 的延长线于点E ,作//PF AC 交NB 的延长线于点F ,求证:···AM PF OM BN AM PE +=.19.问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.20.箭头四角形,模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠∠+∠∠+∠+∠==..因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠∠+∠+∠=”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用:(1)直接应用:①如图2,A B C D E F ∠+∠+∠+∠+∠+∠= .②如图3,ABE ACE ∠∠、的2等分线(即角平分线)BF CF 、交于点F ,已知12050BEC BAC ∠=∠=o o ,,则BFC ∠=③如图4,i i BO CO 、分别为ABO ACO ∠∠、的2019等分线12320172018i =⋯(,,,,,).它们的交点从上到下依次为1232018O O O O ⋯、、、、.已知BOC m BAC n ∠=∠=o o ,,则1000BO C ∠= 度 (2)拓展应用:如图5,在四边形ABCD 中,2BC CD BCD BAD =∠=∠,.O 是四边形ABCD 内一点,且OA OB OD ==.求证:四边形OBCD 是菱形.21.如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当0α︒=时,AEBD= ;② 当时,AEBD= (2)拓展探究试判断:当0°≤α<360°时,AEDB的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.22.操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)23.如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,.CD)24.(1)(探究发现)如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 . (2)(类比应用)如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=o 的菱形ABCD ”,其他条件不变,当60EOF ∠=o 时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由. (3)(拓展延伸)如图3,120BOD =o ∠,34OD =,4OB =,OA 平分BOD ∠,AB =且2OB OA >,点C 是OB 上一点,60CAD ∠=o ,求OC 的长.25.根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①条边成比例的两个凸四边形相似;( 命题) ②三个角分别相等的两个凸四边形相似;( 命题) ③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,111111AB BC CDA B B C C D ==,求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFDE 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.26.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1,当EF ∥BC 时,求证:1BE CFAE AF+=; (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.27.如图,在等腰Rt ABC V 中,90,ACB AB ∠==o 点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90º得到EF .(1)如图1,若AD BD =,点E 与点C 重合,AF 与DC 相交于点O .求证:2BD DO =. (2)已知点G 为AF 的中点.①如图2,若,2AD BD CE ==,求DG 的长.②若6AD BD =,是否存在点E ,使得DEG △是直角三角形?若存在,求CE 的长;若不存在,试说明理由.28.(1)方法选择如图①,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,AB BC AC ==.求证:BD AD CD =+. 小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM …小军认为可用补短法证明:延长CD 至点N ,使得DN AD =…请你选择一种方法证明.(2)类比探究(探究1)如图②,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,BC 是O e 的直径,AB AC =.试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论.(探究2)如图③,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,30ABC ∠=︒,则线段AD ,BD ,CD 之间的等量关系式是______.(3)拓展猜想如图④,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,::::BC AC AB a b c =,则线段AD ,BD ,CD 之间的等量关系式是______.29.(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =; ②推断:GF AE的值为 ; (2)类比探究:如图(2),在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE CP 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,GF =CP 的长.30.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α︒=时,BD CP 的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值.。

2020年中考数学复习(通用)专题:几何压轴题型含答案

2020年中考数学复习(通用)专题:几何压轴题型含答案

几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =∠DCE,∠DCE+∠DBE=180°,即∠ABD+∠DBE=180°,∴点A ,B ,E 共线,易知2∠ACB+∠BAC=90°不成立,存在2∠BAC+∠ACB=90°,易证得△ECB∽△EAC,∴EC AE =BE EC ,即127+BE =BE 12,解得BE =9(负值已舍去),∴AE=16,在Rt△AEC 中,利用勾股定理得,AC =AE 2+CE 2=20.类型三1.解:(1)①DF=2AE ; ②DF=2AE ;理由:∵∠EBF=∠ABD=45°,∴∠ABE =∠FBD.∵BE BF =AB BD ,∴△ABE∽△DBF,∴AE DF =AB BD =22,∴DF=2AE.(2)①如解图①,过点F 作FG⊥AD 于点G ,则四边形AEFG 是矩形,∴GF=AE. ∵tan∠FDG=BAAD =GFDG ,AD =BC =mAB ,∴DG=mGF ,在Rt△DGF 中,由勾股定理得DF =GF 2+DG 2=1+m 2GF ,∴DF=1+m 2AE.②画出草图如解图②,DF′=1+m2AE′.2.解:(1)GM=GN;GM⊥GN.【解法提示】如解图①,连接BE,CD相交于点H.∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG 12 CD.同理:NG 12BE,∴MG=NG,MG⊥NG.(2)小明发现的上述结论成立.理由:如解图②,连接CD ,BE 相交于点H. ∵∠DAB=∠CAE=90°,∴∠DAC=∠BAE.∵DA=BA ,CA =EA ,∴△DAC≌△BAE(SAS),∴∠FBH=∠ADF,DC =BE.∵M 是BD 的中点,G 是BC 的中点,∴MG=12DC , 同理NG =12BE ,∴MG=NG. 设CD 交AB 于点F ,则∠FHB=180°-(∠FBH+∠BFH)=180°-(∠ADF+∠AFD)=90°,∴CD⊥BE,∴MG⊥NG;(3)△GMN 为等腰直角三角形.证明:如解图③,连接EB ,DC ,延长线相交于点H ,同(1)的方法得,MG =NG ,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH +∠ECH =∠AEH -∠AEC +180°-∠ACD -∠ACE =∠ACD -45°+180°-∠ACD-45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.3.(1)证明: ∵DE∥AB,∴∠EDC=∠ABM.∵CE∥AM,∴∠ECD=∠ADB.∵AM 是△A BC 的中线,且点D 与点M 重合,∴BD=DC ,∴△ABD≌△EDC(ASA),∴AB=ED.∵AB∥ED,∴四边形ABDE 是平行四边形.(2)解:结论成立.理由如下:第3题解图①如解图①,过点M作MG∥DE交CE于点G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM.∵AB∥DE,∴AB∥GM,∴∠ABM=∠GMC.∵AM∥CE,∴∠AMB=∠GCM.∵AM为△ABC的中线,∴BM=MC.∴△ABM≌△GMC(ASA),∴AB=GM,∴AB=DE.∵AB∥DE,∴四边形ABDE是平行四边形.(3)解:①如解图②,取线段HC的中点I,连接MI,第3题解图②∵BM=MC,∴MI 是△BHC 的中位线,∴MI∥BH,MI =12BH. ∵BH⊥AC,且BH =AM.∴MI=12AM ,MI⊥AC, ∴∠CAM=30°.②设DH =x ,则AH =3x ,AD =2x , ∴AM=4+2x ,∴BH=4+2x.∵四边形ABDE 是平行四边形,∴DF∥AB, ∴HF HA =HD HB ,∴33x =x 4+2x , 解得x =1+5或x =1-5(舍去), ∴DH=1+ 5.。

2020届中考数学热点冲刺5 操作探究问题(全国版)(含解析)

2020届中考数学热点冲刺5 操作探究问题(全国版)(含解析)

2020届中考数学热点冲刺5 操作探究问题实践操作性问题以趣味性强、思维含量高为特点,在具体的实践操作中主要有以下类型:(1)裁剪、折叠、拼图等问题,往往与面积与对称性相联系;(2)画图、测量、猜想、证明等探究性问题,往往要求答题者在给定的操作规则下,进行探索研究、大胆猜想、发现结论,进而提高个人的创新能力与实践能力.在2019年的中考中,操作性行问题主要包含几何体的展开与折叠,图案设计、程序框输入,尺规作图、几何图形的探究等题型,分值不一,难度不等.考向1几何体的展开与折叠1.(2019·济宁)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.2.(2019·山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B . 考向2 图案设计与几何变换1.(2019·烟台)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒.2.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是( )A .210AB =+B .CD BC C .2BC CD EH =g D .sin AHD ∠ 【答案】A【解析】在Rt AEB ∆中,AB == //AB DH Q ,//BH AD ,∴四边形ABHD 是平行四边形,AB AD =Q ,∴四边形ABHD 是菱形,AD AB ∴==1CD AD AD ∴===,∴CD BC ,故选项B 正确,24BC =Q ,1)4CD EH ==g ,2BC CD EH ∴=g ,故选项C 正确, Q 四边形ABHD 是菱形,AHD AHB ∴∠=∠,sin sin AE AHD AHB AH ∴∠=∠==D 正确,故选:A . 3.(2019 · 北京)已知30AOB ∠=︒,H 为射线OA 上一定点,1OH =,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON .(1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.解:(1)见下图(2)证明:∵30AOB ∠=︒,∴在△OPM 中,=180150OMP POM OPM OPM ︒-∠-∠=︒-∠∠, 又∵150MPN ∠=︒,∴150OPN MPN OPM OPM ∠=∠-∠=︒-∠,∴OMP OPN ∠=∠. (3)如下图,过点P 作PK ⊥OA 于K ,过点N 作NF ⊥OB 于F∵∠OMP=∠OPN ,∴∠PMK=∠NPF , 在△NPF 和△PMK 中,90NPF PMKNFO PKM PN PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△NPF ≌△PMK (AAS ),∴PF=MK ,∠PNF=∠MPK ,NF=PK , 又∵ON=PQ ,在Rt △NOF 和Rt △PKQ 中,ON PQ NF PK =⎧⎨=⎩,∴Rt △NOF ≌Rt △PKQ (HL ),∴KQ=OF ,备用图图1A设,MK y PK x ==,∵∠POA=30°,PK ⊥OQ ,∴2OP x =,∴,OK OM y ==-,∴2OF OP PF x y =+=+,)1MH OH OM y =---,1KH OH OK =-.∵M 与Q 关于H 对称,∴MH=HQ ,∴11y --+=2y -+,又∵KQ=OF ,∴22y x y -+=+,∴(22x =+,∴1x =,即PK=1, 又∵30POA ∠=︒,∴OP=2. 考向3 程序输入与规律探究1.(2019·重庆A 卷)按如图所示的运算程序,能使输出y 值为1的是 ( ) A .m=1,n=1 B .m=1,n=0 C .m=1,n=2D .m=2,n=1【答案】D .【解析】∵m=1,n=1,∴y=2m +1=3;∵m=1,n=0,∴y=2n -1=-1;∵m=1,n=2,∴y=2m +1=3;∵m=2,n=1,∴y=2n -1=1.故选D .18.(2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .【答案】:-31009【解析】:本题考查坐标里的点规律探究题,观察发现规律:A 1(1,33),A 2(1,3-),A 3(-3,3-),A 4(-3,33),A 5(9,33),A 6(9,39-),A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. 考向4 尺规作图1.(2019·长沙)如图,Rt △ABC 中,∠C=90°,∠B=30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°【答案】B【解析】在△ABC 中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B -∠C=60°,由作图可知MN 为AB 的中垂线,∴DA=DB ,∴∠DAB=∠B=30°,∴∠CAD=∠BAC -∠DAB=30°,故本题选:B .2.(2019·兰州)如图,矩形ABCD ,∠BAC=60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N 两点,再分别以点M ,N 为圆心,以大于21MN 的长作半径作弧交于点P ,作射线AP 交BC 于点E ,若BE=1,则矩形ABCD 的面积等于 .【答案】【解析】在矩形ABCD 中,∠BAC=60°,∴∠B=90°,∠BCA=30°,∵AE 平分∠BAC ,∴∠BAE=∠EAC=30°∵在Rt △ABE 中,BE=1,∴AE=1sin30︒=2,AB=1tan30=︒EAC=∠ECA=30°,∴EC=AE=2,∴S矩形ABCD=AB ⋅BC=3.(2019·济宁)如图,点M 和点N 在∠AOB 内部.(1)请你作出点P ,使点P 到点M 和点N 的距离相等,且到∠AOB 两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.解:(1)画出∠AOB 的角平分线,画出线段MN 的垂直平分线,两者的交点就得到P 点.(2)作图的理由:点P 在∠AOB 的角平分线上,又在线段MN 的垂直平分线上,∠AOB 的角平分线和线段MN 的垂直平分线的交点即为所求.4. (2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.解:(1)如图所示;(2)如图所示;(3)如图所示.考向5 几何探究1.(2019·武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG 三个顶点的距离和的最小值是___________.【答案】【解析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为(Rt△FQG勾股定理)2.(2019·山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平,再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是_____,AEBE的值是_____;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______.【解题过程】(1)∵正方形ABCD,∴∠ACB=45°,由折叠知:∠1=∠2=22.5°,∠BEC=∠CEN,BE=EN,∴∠BEC=90°-∠1=67.5°,∴∠AEN=180°-∠BEC-∠CEN=45°,∴cos45°=2ENAE=,AEEN,AE AEBE EN=(2)四边形EMGF是矩形.理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠可知:∠1=∠2=∠3=∠4,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠知:MH,GH分别垂直平分EC,FC,∴MC=ME,GC=GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF=∠GFE=90°.∵∠MCG=90°,CM=CG,∴∠CMG=45°,又∵∠BME=4图2F∠1+∠5=45°,∴∠EMG=180°-∠CMG -∠BME=90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )3.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①∠BEP= °; ②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°,∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°,∴∠ABC=∠BCE ,∴CE ∥AB .答案:①50°;②平行 (2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC . 又∵△BPF ∽△BEC ,∴∠BCE=∠BFP=40°,∴∠BCE=∠ABC=40°,∴CE ∥AB .(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC , ∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上,如图所示:∴AE 的最小值为AC=3.。

2020年中考数学复习专题:操作探究性问题

2020年中考数学复习专题:操作探究性问题

专题:操作探究型1. (12分)综合与实践问题情景在综合与实践课上,老师出示了这样一个问题:在矩形纸片ABCD和矩形纸片EFGH 中,BC=GF=1,AB=EF=3.将两张矩形纸片按照如图①所示的方式摆放,使点E与点A 重合,点F落在AB的垂直平分线l上.试判断点H是否在线段AD的垂直平分线上.探究展示勤奋小组发现点H在线段AD的垂直平分线上,并展示了如下的证明方法:证明:如图①,连接BF,∵点F是AB垂直平分线上的点,∴EF=BF.∵AB=EF,∴AB=EF=BF,∴△ABF是等边三角形.(依据1)∴∠F AB=60°,∠DAF=∠DAB-∠F AB=90°-60°=30°.∴∠HAD=∠HEF-∠DAF=90°-30°=60°.连接DH.∵AD=EH,∴△ADH是等边三角形.∴HA=H D.∴点H在线段AD的垂直平分线上.(依据2)反思交流(1)上述证明过程中的“依据1”、“依据2”分别指什么?(2)创新小组受勤奋小组的启发继续探究,将两张矩形纸片按照如图②所示的方式摆放,使点H与点B重合,边HG与边CD相交于点P,且PB=PD,连接PF,发现PD=PF.请你给予证明;探索发现(3)将两张矩形纸片按照如图③所示的方式摆放,使点C与点E重合,边EF与边AB相交于点P.若CP平分∠BCD,过点G作GM⊥CD于点M,交EF于点N,延长CB交GH于点Q,连接NQ.试判断四边形MNQC的形状并加以证明;(4)在如图③四边形BPNQ中,你可以求出这个四边形的哪几条边长?请你任选一条边并求出它的长度.图②图③2. (12分)综合与实践——猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图①,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明:(1)当图①中的点E与点B重合时得到图②,此时点G也与点B重合,点H与点A重合,同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:__________;(2)希望小组的同学发现,图①中的点E在边BC上运动时,(1)中结论始终成立.为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图①中,发现线段CG∥DF.请你说明理由;联系拓广:(4)如图③,若将题中的“正方形ABCD”变为“菱形ABCD”,∠ABC=α,其余条件不变,请探究∠DFG的度数,直接写出结果(用含α的式子表示).3. (12分)综合与实践问题情境在数学活动课上,老师提出了这样一个问题,如图①,四边形ABCD是正方形,点E 是CB延长线上的一点(BE<AB),连接AE,过点A作AG⊥AE交边CD于点G,连接EG.独立思考(1)勤奋小组发现AE=AG,请你证明这个结论;合作交流(2)希望小组受勤奋小组的启发,继续探究,提出了这样的问题:如图②,当BE>AB时,过点A作AG⊥AE,交DC的延长线于点G.连接EG,过点A作AF⊥EG,F为垂足,F A,CD的延长线交于点H,连接EH.①求证:DH +BE =EH ;②当点A 是GH 垂直平分线上的点时,请判断DH ,AD 的数量关系,并说明理由; 深入探究(3)四边形ABCD 是正方形,AB =4,点E 为直线BC 上任意一点,过点A 作AG ⊥AE 交直线CD 于点G ,连接BG .若CE AB =12,参照以上探究过程,试探究当点E 在BC 上或点E在BC 延长线上,任选一种情况,在图③中画出图形,并直接写出此时BG 的长.参考答案1. (1)解:依据1:三边都相等的三角形是等边三角形;依据2:到线段两端距离相等的点在线段的垂直平分线上;(2分) (2)证明:如解图①,连接DG . ∵CD =BG ,PD =PB , ∴CD -PD =BG -PB . ∴CP =GP .在△PBC 和△PDG 中, ⎩⎪⎨⎪⎧PB =PD ,∠1=∠2,CP =GP ,∴△PBC ≌△PDG (SAS). ∴DG =BC . ∵BC =GF , ∴DG =GF .∵∠DGP =∠C =90°,∠BGF =90°, ∴∠DGF =∠DGP +∠FGB =90°+90°=180°. ∴D 、G 、F 三点在同一直线上. ∴PG 垂直平分DF . ∴PD =PF ;(6分)(3)解:四边形MNQC 是正方形.证明:如解图②,分别延长DC 、GH 相交于点K . ∵∠BCD =90°,CP 平分∠BCD , ∴∠1=∠2=12∠BCD =12×90°=45°.∴∠3=∠4=45°.∴在Rt △CHK 中,∠K =45°. ∴CH =KH =1.根据勾股定理可得,CK =12+12= 2. 在Rt △CMN 中,∵∠1=45°, ∴∠MNC =∠1=45°. ∴∠FNG =∠MNC =45°. ∴Rt △FGN 是等腰直角三角形. ∴FN =FG =1.∴CN =CF -FN =3-1=2. 由勾股定理得,CM = MN = 2. ∴CQ = MN = 2. 又∵MN ∥CQ ,∴四边形MNQC 是平行四边形. ∵∠QCM =90°, ∴四边形MNQC 是矩形. ∵CM =MN ,∴四边形MNQC 是正方形;(10分)(4)解:(答案不唯一)由(3)可知MC∥NQ,又∵四边形ABCD是矩形,∴BP∥NQ.∴△CPB∽△CNQ.∴PBNQ=CBCQ.∵CQ=NQ=2,CB=1,∴PB=CBCQ·NQ=12×2=1.(12分)2. (1)解:GF=GD,GF⊥GD;(1分)(2)证明:如解图①,连接AF.∵点D关于直线AE的对称点为点F,∴直线AE是线段DF的垂直平分线,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠AFG=∠ADG.(2分)∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.设∠BAF的度数为n,∴∠F AD=90°+n.(3分)∵AF =AD =AB , ∴∠AFB =∠ABF ,∴∠AFB +∠ABF =180°-n , ∴∠AFB +∠ADG =180°-n ,(4分)∴∠FGD =360°-∠F AD -∠AFG -∠ADG =360°-(90°+n )-(180°-n )=90°, ∴GF ⊥GD ;(5分)(3)解:如解图②,连接AF ,BD . 由(2)得FG =DG ,FG ⊥DG ,∴∠GFD =∠GDF =180°-∠FGD2=45°.(6分)∵四边形ABCD 是正方形, ∴BC =CD ,∠BCD =90°, ∴∠BDC =∠DBC =45°, ∴∠FDG =∠BDC ,∴∠FDG -∠BDG =∠BDC -∠BDG ; 即∠FDB =∠GDC .(7分)∵在Rt △FDG 中,sin ∠DFG =DG DF =sin45°=22,在Rt △BDC 中,sin ∠DBC =DC DB =sin45°=22, ∴DG DF =DC DB ,∴DG DC =DFDB,(8分) ∴△BDF ∽△CDG ,∴∠DGC =∠DFG =45°,(9分) ∴∠DGC =∠FDG , ∴CG ∥DF ;(10分) (4)∠DFG =90°-α2.(12分)【解法提示】如解图③连接AF ,BD ,∵点D 与点F 关于AE 对称,∴AE 是线段DF 的垂直平分线,∴AD =AF ,∠1=∠2,AE ⊥DF ,∠DAE =∠F AE ,∴∠DAE =90°-∠2,∴∠DAF =2∠DAE =180°-2∠2.∵四边形ABCD 是菱形,∴AB =AD .∴∠AFB =∠ABF =∠DFG +∠1.∵BD 是菱形ABCD 的对角线,∴∠ADB =∠ABD =12α.∴在四边形ADBF 中,(∠DFG +∠1)+(∠DFG +∠1+12α)+12α+(180°-2∠1)=360°.∴2∠DFG +2∠1+α-2∠1=180°.∴∠DFG =90°-12α.3. (1)证明:∵四边形ABCD 是正方形, ∴AD =AB ,∠D =∠ABC =∠BAD =90°. ∵∠ABE +∠ABC =180°, ∴∠ABE =90°, ∴∠D =∠ABE . ∵AG ⊥AE , ∴∠EAG =90°,∵∠EAB +∠BAG =∠DAG +∠BAG =90°, ∴∠EAB =∠GAD , 在△ADG 和△ABE 中,⎩⎪⎨⎪⎧∠DAG =∠BAE ,AD =AB ,∠D =∠ABE ,∴△ADG ≌△ABE (ASA), ∴AG =AE ;(4分)(2)①证明:根据题意可得∠ABE =∠ADG =90°, ∵AG ⊥AE , ∴∠EAG =90°,∴∠EAB +∠BAG =∠DAG +∠BAG =90°, ∴∠EAB =∠DAG , 在△ADG 和△ABE 中, ⎩⎪⎨⎪⎧∠DAG =∠BAE ,AD =AB ,∠ADG =∠ABE , ∴△ADG ≌△ABE (ASA), ∴DG =BE ,AG =AE , ∴△AEG 是等腰直角三角形, 又∵AF ⊥EG ,∴AF 是EG 边上的中线, ∴AF 垂直平分EG , ∴EH =GH ,∴GH =DH +DG =DH +BE . ∴DH +BE =EH ;(7分) ②解:DH =(2+1)AD ;理由如下:∵A 是GH 垂直平分线上的点,∴AD ⊥HG ,DH =DG ,由(2)①知DG =BE ,∴DH =BE ,∴DH +DC =BE +BC ,即CH =CE ,∴△CEH 是等腰直角三角形,∴∠CHE =45°.∵HE =HG ,HF ⊥EG ,∴HF 平分∠CHE ,∴∠AHD =12∠CHE =12×45°=22.5°, 如解图①,在DH 上取一点K ,使DK =AD ,则∠AKD =45°,∴∠HAK =∠AKD -∠AHD =45°-22.5°=22.5°,∴∠HAK =∠AHD ,∴AK =HK .在Rt △ADK 中,AK =2AD ,∴KH =2AD ,∴HD =HK +DK =2AD +AD =(2+1)AD ;(10分)(3)解:(答案不唯一)答案1:当点E 在BC 上时,画出图形如解图②,此时BG =213.(12分)答案2:当点E 在BC 延长线上时,画出图形如解图③,此时BG =229.。

决胜2020年中考数学压轴题全揭秘——操作类探究问题(含答案)

决胜2020年中考数学压轴题全揭秘——操作类探究问题(含答案)

操作类探究问题1.(2020•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.√2C.√3D.2【分析】根据正六边形的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【解析】边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=√32×2=√3.故选:C.2.(2020•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .12C .817D .815【分析】由“ASA ”可证△CDM ≌△HDN ,可证MD =DN ,即可证四边形DNKM 是菱形,当点B 与点E 重合时,两张纸片交叉所成的角a 最小,可求CM =154,即可求tan α的值. 【解析】如图,∵∠ADC =∠HDF =90°∴∠CDM =∠NDH ,且CD =DH ,∠H =∠C =90° ∴△CDM ≌△HDN (ASA )∴MD =ND ,且四边形DNKM 是平行四边形 ∴四边形DNKM 是菱形 ∴KM =DM∵sin α=sin ∠DMC =CDMD∴当点B 与点E 重合时,两张纸片交叉所成的角a 最小, 设MD =a =BM ,则CM =8﹣a , ∵MD 2=CD 2+MC 2, ∴a 2=4+(8﹣a )2, ∴a =174∴CM=15 4∴tanα=tan∠DMC=CDMC=815故选:D.3.(2020•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.√2:1 B.3:2 C.√3:1 D.√2:2【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=√2DK,∴S△DFNS△DNK =FNNK=DFDK=√2(角平分线的性质定理,可以用面积法证明),∴SA型SB型=2S△DFN2S△DNK=√2,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为√2:1,故选:A.4.(2020•温州)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1S 2的值为( )A .√22B .√23C .√24D .√26【分析】如图,连接AL ,GL ,PF .利用相似三角形的性质求出a 与b 的关系,再求出面积比即可. 【解析】如图,连接AL ,GL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH =√a 2−b 2, ∵点A ,L ,G 在同一直线上,AM ∥GN , ∴△AML ∽△GNL , ∴AM GN=ML NL, ∴a+b a−b=a−b b,整理得a =3b ,∴S 1S 2=12⋅(a−b)⋅√a 2−b 2a −b =2√2b 28b =√24,故选:C .5.(2020•金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕.若正方形EFGH 与五边形MCNGF 的面积相等,则FM GF的值是( )A .√5−√22B .√2−1C .12D .√22【分析】连接HF ,设直线MH 与AD 边的交点为P ,根据剪纸的过程以及折叠的性质得PH =MF 且正方形EFGH 的面积=15×正方形ABCD 的面积,从而用a 分别表示出线段GF 和线段MF 的长即可求解.【解析】连接HF ,设直线MH 与AD 边的交点为P ,如图:由折叠可知点P 、H 、F 、M 四点共线,且PH =MF , 设正方形ABCD 的边长为2a , 则正方形ABCD 的面积为4a 2,∵若正方形EFGH 与五边形MCNGF 的面积相等∴由折叠可知正方形EFGH 的面积=15×正方形ABCD 的面积=45a 2, ∴正方形EFGH 的边长GF =√45a 2=2√55a ∴HF =√2GF =2√105a ∴MF =PH =2a−2√105a 2=5−√105a∴FM GF=5−√105a ÷2√55a =√5−√22故选:A .6.(2020•宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm【分析】设AB =xcm ,则DE =(6﹣x )cm ,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可. 【解析】设AB =xcm ,则DE =(6﹣x )cm , 根据题意,得90πx 180=π(6﹣x ),解得x =4. 故选:B .二.填空题(共4小题)7.(2020•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是 4√5 .【分析】如图2中,连接EG ,GM ⊥EN 交EN 的延长线于M ,利用勾股定理解决问题即可. 【解析】如图2中,连接EG ,作GM ⊥EN 交EN 的延长线于M .在Rt △EMG 中,∵GM =4,EM =2+2+4+4=12,∴EG =√EM 2+GM 2=√122+42=4√10, ∴EH =EG√2=4√5, 故答案为4√5.8.(2020•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为12.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n ﹣1,…,则顶点F 2020的坐标为 (6062√55,405√5) .【分析】(1)先证明△AOB ∽△BCD ,所以OB OA=DC BC,因为DC =1,BC =2,所有OB OA=12;(2)利用三角形相似与三角形全等依次求出F 1,F 2,F 3,F 4的坐标,观察求出F 2020的坐标. 【解析】(1)∵∠ABO +∠DBC =90°,∠ABO +∠OAB =90°, ∴∠DBC =∠OAB , ∵∠AOB =∠BCD =90°, ∴△AOB ∽△BCD , ∴OB OA=DC BC,∵DC =1,BC =2, ∴OB OA=12,故答案为12;(2)解:过C 作CM ⊥y 轴于M ,过M 1作M 1N ⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD =√22+12=√5,CM =OA =2√55,DM =OB =AN =√55, ∴C (2√55,√5),∵AF =3,M 1F =BC =2, ∴AM 1=AF ﹣M 1F =3﹣2=1, ∴△BOA ≌ANM 1(AAS ), ∴NM 1=OA =2√55, ∵NM 1∥FN 1, ∴M 1N FN 1=AM 1AF, 2√55FN 1=13,∴FN 1=6√55, ∴AN 1=3√55,∴ON 1=OA +AN 1=2√55+3√55=5√55 ∴F (5√55,6√55), 同理,F 1(8√55,7√55),即(1×3+55√5,6+15√5) F 2(11√55,8√55),即(2×3+55√5,6+25√5) F 3(14√55,9√55),即(3×3+55√5,6+35√5) F 4(17√55,10√55),即(4×3+55√5,6+45√5) …F 2020(2020×3+55√5,6+20205√5),即(60625√5,405√5), 故答案为即(60625√5,405√5). 9.(2020•台州)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且m n=23,则m +n 的最大值为253.【分析】延长AB 交l 3于E ,根据已知条件得到DB CE=m m+n,求得CE =10,∠CBE =90°,设m =2x ,n=3x ,构造以CE 为直径的半圆,则点B 在其弧上运动,易知BG ≤B ′G ′=5,得到3x ≤5,由m +n =5x ≤253,于是得到结论.【解析】延长AB 交l 3于E ,∵m n=23,易知DB CE=m m+n,∵BD =4, ∴CE =10, ∵∠ABC =90°, ∴∠CBE =90°, 设m =2x ,n =3x ,构造以CE 为直径的半圆,则点B 在其弧上运动,易知BG ≤B ′G ′=5, 即3x ≤5,∴x ≤53,∵m +n =5x ≤253, ∴m +n 的最大值为253.故答案为:253.10.(2020•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 12+8√2 cm .【分析】连接IC ,连接CH 交OI 于K ,则A ,H ,C 在同一直线上,CI =2,根据△COH 是等腰直角三角形,即可得到∠CKO =90°,即CK ⊥IO ,设CK =OK =x ,则CO =IO =√2x ,IK =√2x ﹣x ,根据勾股定理即可得出x 2=2+√2,再根据S 菱形BCOI =IO ×CK =12IC ×BO ,即可得出BO =2√2+2,进而得到△ABE 的周长. 【解析】如图所示,连接IC ,连接CH 交OI 于K ,则A ,H ,C 在同一直线上,CI =2,∵三个菱形全等, ∴CO =HO ,∠AOH =∠BOC , 又∵∠AOB =∠AOH +∠BOH =90°, ∴∠COH =∠BOC +∠BOH =90°, 即△COH 是等腰直角三角形,∴∠HCO =∠CHO =45°=∠HOG =∠COK , ∴∠CKO =90°,即CK ⊥IO ,设CK =OK =x ,则CO =IO =√2x ,IK =√2x ﹣x , ∵Rt △CIK 中,(√2x ﹣x )2+x 2=22, 解得x 2=2+√2,又∵S菱形BCOI=IO×CK=12IC×BO,∴√2x2=12×2×BO,∴BO=2√2+2,∴BE=2BO=4√2+4,AB=AE=√2BO=4+2√2,∴△ABE的周长=4√2+4+2(4+2√2)=12+8√2,故答案为:12+8√2.1.(2020•奉化区模拟)如图,矩形ABCD中,AD=6,AB=4,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②BH=3FH;③tan∠GEB=3 4;④S△BFG=0.6,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理依次对各个选项进行判断、计算,即可得出答案.【解析】①∵AB=4,E为AB的中点,∴AE=BE=2,∵将△ADE沿DE翻折得到△FDE,∴AD=DF,AE=EF=2,∠AED=∠DEF,∴AE=EF=BE,∴∠EBF=∠EFB,∵∠AEF=∠EBF+∠EFB,∴∠AED=∠EBF,∴BF ∥ED , 故①正确; ②∵BF ∥ED , ∴∠ABF =∠AED ,∵∠ABF +∠FBH =90°,∠AED +∠ADE =90°, ∴∠FBH =∠ADE ,∴tan ∠FBH =FHBH =tan ∠ADE =AEAD =26=13, ∴FH BH=13,∴BH =3FH , 故②正确;③过点E 作EM ⊥BF 于点M ,如图,∵AE =EF =BE , ∴∠FEM =12∠BEF , ∵∠DEF =12∠AEF ,∴∠FEM +∠DEF =12×180°=90°, ∵∠DEF +∠EDF =90°, ∴∠FEM =∠EDF , ∵∠EMF =∠DFE =90°, ∴△EFM ∽△DEF , ∴FM EF=EF ED,∴FM =√105, ∴BF =2FM =2√105,∵∠HBF +∠EBM =∠EBM +∠BEM =90°, ∴∠HBF =∠BEM =∠FEM =∠FDE , ∵∠BHF =∠DFE =90°, ∴△BHF ∽△DFE , ∴FH EF=BH DF,∵BH =3FH , ∴FH =25,BH =65, 设HG =x , ∵FH ⊥BC , ∴FH ∥BE , ∴△GFH ∽△GEB ,∴HG BG=HF BE,即xx+65=252,解得,x =310,∴BG =BH +HG =32, ∴tan ∠GEB =BG EB =34, 故③正确;④S △BFG =12BG ⋅FH =0.3, 故④错误; 综上共有3个正确. 故选:C .2.(2020•宁波模拟)如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,点D 落在D ′处,C′D′交AE于点M,若AB=6,BC=9,则AM的长为()A.2 B.94C.52D.114【分析】先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9﹣x,∵BF2+BC′2=FC′2,∴x2+32=(9﹣x)2,解得:x=4,∴BF=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠BFC′,∵∠A=∠B=90°,∴△AMC′∽△BC′F,∴AMBC′=AC′BF,即AM3=34,∴AM=9 4;故选:B.3.(2020•宁波模拟)如图,梯形ABCD 被分割成两个小梯形①②,和一个小正方形③,去掉③后,①和②可剪拼成一个新的梯形,若EF ﹣AD =2,BC ﹣EF =1,则AB 的长是( )A .6B .3√5C .9D .3√10【分析】连接AH 交EF 于点K ,根据EF ﹣AD =2,BC ﹣EF =1,可得BC ﹣AD =3,由图象剪拼观察可得,AD =HC ,四边形AHCD 是平行四边形,再证明△AEK ∽△ABH ,可得AB 的长.【解析】如图,连接AH 交EF 于点K , ∵EF ﹣AD =2,BC ﹣EF =1, ∴BC ﹣AD =3, 由图象剪拼观察可知:AD =HC ,∴四边形AHCD 是平行四边形, ∴BC ﹣AD =BC ﹣HC =3,KF =AD ,EK =2,∵③为正方形, ∴EB =BH =3, ∵△AEK ∽△ABH , ∴AE AB=EK BH,即AB−3AB=23,解得AB =9. 故选:C .4.(2020•黄岩区模拟)如图,矩形纸片ABCD 中,AB =6,BC =8,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若DE =4,则AF 的长为( )A .163B .4C .3D .2【分析】由矩形的性质可得AB =CD =6,AD =BC =8,∠BAD =∠D =90°,通过证明△ABF ∽△DAE ,可得AF AB=DE AD,即可求解.【解析】设BF 与AE 交于点H ,∵四边形ABCD 为矩形,∴AB =CD =6,AD =BC =8,∠BAD =∠D =90°,由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG , ∴BF ⊥AE ,AH =GH , ∴∠BAH +∠ABH =90°, 又∵∠FAH +∠BAH =90°, ∴∠ABH =∠FAH , 又∵∠BAD =∠D =90°, ∴△ABF ∽△DAE , ∴AF AB=DE AD,∴AF =48×6=3, 故选:C .5.(2020•路桥区模拟)如图,在矩形ABCD 中,将△ABE 沿着BE 翻折,使点A 落在BC 边上的点F 处,再将△DEG 沿着EG 翻折,使点D 落在EF 边上的点H 处.若点A ,H ,C 在同一直线上,AB =1,则AD 的长为( )A .32B .√5+12C .√2D .√5−1【分析】由折叠的性质可得AB =BF =1,AE =EF ,∠ABE =∠FBE ,∠A =∠EFB =90°,DE =EH ,可证四边形CDEF 是矩形,可得DE =FC ,由平行线分线段成比例可得HF AB=CF BC,可求AD 的长.【解析】连接AC ,∵四边形ABCD 是矩形,∴∠A =∠C =∠ADC =∠ABC =90°,AD =BC ,∵将△ABE 沿着BE 翻折,使点A 落在BC 边上的点F 处,再将△DEG 沿着EG 翻折,使点D 落在EF 边上的点H 处,∴AB =BF =1,AE =EF ,∠ABE =∠FBE ,∠A =∠EFB =90°,DE =EH , ∴AB ∥EF ,∠FEB =∠EBF =45°, ∴EF =BF =1=AE ,∵∠EFC =∠C =∠ADC =90°, ∴四边形CDEF 是矩形, ∴DE =FC ,∴DE =EH =FC =AD ﹣AE =AD ﹣1, ∴HF =1﹣(AD ﹣1)=2﹣AD , ∵点A ,H ,C 在同一直线上,EF ∥AB ,∴HF AB =CF BC,∴2−AD1=AD−1AD,∴AD =1+√52或1−√52(舍去) ∴AD =1+√52, 故选:B .6.(2020•宁波模拟)如图,四边形ABCD 是轴对称图形,对角线BD 所在的直线是它的对称轴,∠A =∠C =90°,AB ≠AD ,若把这个轴对称图形沿对角线BD 剪开成两个三角形后,再把这两个三角形的一边完全重合在一起,重新拼成一个中心对称图形,则拼法共有( )A .0种B .1种C .2种D .3种【分析】直接利用旋转的性质结合中心对称图形的性质得出符合题意的答案. 【解析】如图所示:3种拼法都是中心对称图形. 故选:D .7.(2020•柯桥区模拟)如图,矩形ABCD 的对角线AC 与BD 交于点O ,AD =1,DC =√3,矩形OGHM 的边OM 经过点D ,边OG 交CD 于点P ,将矩形OGHM 绕点O 逆时针方向旋转α(0°<α<60°),OM ′交AD 于点F ,OG ′交CD 于点E ,设DF =y ,EP =x ,则y 与x 的关系为( )A .y =√3xB .y =√32xC .y =√33xD .y =12x【分析】由矩形的性质和余角的性质可得∠ODC =∠OCD ,由锐角三角函数可得AD DC=OP DO,通过证明△DOP∽△POE ,可得PEDF=PO DO,即可求解.【解析】∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO ,∠ADC =90°, ∴DO =CO , ∴∠ODC =∠OCD , ∵四边形OGHM 是矩形, ∴∠MOG =90°, ∴∠ODC +∠OPD =90°, 又∵∠ODC +∠ODF =90°, ∴∠OPD =∠ODF , ∵∠ODC =∠OCD , ∴tan ∠OCD =tan ∠ODC , ∴AD DC=OP DO,∵AD =1,DC =√3, ∴OP DO=√3,∵将矩形OGHM 绕点O 逆时针方向旋转α, ∴∠DOF =∠POE , 又∵∠OPD =∠ODF ,∴△DFO∽△PEO,∴PEDF =PODO,∴xy =√3,∴y=√3x,故选:A.8.(2020•路桥区模拟)如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是()A.①②B.①③C.①②③D.②③【分析】由三角形中位线定理和旋转的性质可得AD=BD=DF,可得△ABF是直角三角形,可判断①;由全等三角形的性质和等腰三角形的性质,可得∠BDF=α=2∠DAF,∠DAF=∠BAC或∠DAF=∠ABC,可判断②;过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,由“AAS”可证△DFH≌△BDN,可得DN=FH=3,由三角形面积公式可得S△DEF=4.5,可判断③,即可求解.【解析】∵DE是△ABC的中位线,∴AD=DB,∵把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,∴BD=DF,∴BD=AD=DF,∴△ABF是直角三角形,故①正确,∵AD=BD=DF,∴∠DAF=∠DFA,∴∠BDF=α=2∠DAF,若△ABF和△ABC全等,且∠AFB=∠C=90°,∴∠DAF=∠BAC或∠DAF=∠ABC,∴α=2∠BAC或2∠ABC,故②正确,如图,过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,∵BC=6,DE是△ABC的中位线,∴DE∥BC,DE=12BC=3,∵BN⊥DE,∠C=90°,∴∠NEC+∠C=180°,∴∠C=∠NEC=90°,又∵BN⊥DE,∴四边形BCEN是矩形,∴BC=NE=6,∴DN=3,∵把点B绕点D按顺时针方向旋转90°,∴DF=DB,∠FDB=90°,∴∠FDH+∠BDN=90°,又∵∠FDH+∠F=90°,∴∠F=∠BDN,又∵DF=BD,∠FHD=∠BND=90°,∴△DFH≌△BDN(AAS),∴DN=FH=3,∴S△DEF=4.5,故③正确,故选:C .二.填空题(共6小题)9.(2020•下城区一模)如图,在矩形ABCD 中,点E 是边DC 上一点,连结BE ,将△BCE 沿BE 对折,点C 落在边AD 上点F 处,BE 与对角线AC 交于点M ,连结FM .若FM ∥CD ,BC =4.则AF = 2√5−2【分析】由对折的性质得∠BCM =∠BFM ,BC =BF ,再由FM ∥CD ,证明∠BFM =ABF ,从而得△ABF ∽△BCA ,由相似三角形的性质求得AB ,进而由勾股定理得AF .【解析】∵四边形ABCD 是矩形,∴∠ABC =∠BAD =90°,AB ∥CD ,∵FM ∥CD ,∴FM ∥AB ,∴∠ABF =∠BFM ,由折叠的性质得,BF =BC =4,∠BFM =∠ACB ,∴∠ABF =∠ACB ,∴△ABF ∽△BCA ,∴AB BC =BF CA , ∴AB 4=√AB 2+42, 即AB 216=16AB +16,∴AB 2=8√5−8,∴AF =√BF 2−AB 2=√16−8√5+8=√24−8√5=√(2√5−2)2=2√5−2.故答案为:2√5−2.10.(2020•柯桥区模拟)如图,在等腰三角形ABC 中,AC =BC =4,∠A =30°,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE ,将△ADE 沿直线DE 折叠,点A 落在点F 处.当直线EF 与直线AC 垂直时,则AE 的长为 2√33或2√3 .【分析】当直线EF与直线AC垂直时,如图1,如图2,根据折叠的性质得到和等腰三角形的判定和性质定理以及直角三角形的性质健康得到结论.【解析】∵AC=4,点D为AC的中点,∴AD=12AC=2,①当直线EF与直线AC垂直时,如图1,∵将△ADE沿直线DE折叠,点A落在点F处,∴∠F=∠A=30°,∠AED=∠FED,∵∠AGE=90°,∴∠AEG=60°,∴∠AED=∠FED=30°,∴AD=DE=2,过D作DM⊥AE与M,∴AE=2AM=2×√32×2=2√3;当直线EF与直线AC垂直时,如图2,∵将△ADE沿直线DE折叠,点A落在点F处,∴∠F=∠A=30°,∠ADE=∠FDE,∵∠AGE =∠FGE =90°,∴∠FGD =60°,∴∠ADE =∠FDE =30°,∴∠A =∠ADE ,∴AE =DE ,∴AG =12AD =1, ∴AE =2√33,综上所述,2√33或2√3, 故答案为:2√33或2√3. 11.(2020•瓯海区二模)如图是一个可调节花盆支架,外围是一个圆形框架,如图1,支架AC ,BD 的长度均为14cm ,端点C ,D 固定在花盆圆形套圈的直径两端,端点A ,B 可在外围圆形框架上移动,整个花盆支架始终成轴对称,已知花盆高EF =15cm ,圆形套圈的直径CD =20cm ,且EF 被CD 平分为上下比为1:2,当端点A ,B 向上调节至最高时,AC ,BD 和CD 同一直线上(如图2所示),此时,花盆底到圆形框架最低点的距离为FG =6cm ,则圆形框架的半径为 26 cm ,为了整体美观要求,花盆底到圆形框架最低点的距离FG 要最大,则此时FG 为 (16﹣2√11) cm .【分析】如图2中,设圆心为O ,连接OG ,交花盆的上底于E ,交花盆的下底于F ,交AB 于T .连接OA ,设OA =OG =r .在Rt △AOT 中,利用勾股定理构建方程即可解决问题.如图1中,如图1中,连接OG 交CD 于T ,连接OC ,OB ,观察图象可知:当,O ,C ,A 共线,O ,D ,B 共线时,OC =OD =26﹣14=12最小,此时OE 的值最小,FG 的值最大.【解析】如图2中,设圆心为O ,连接OG ,交花盆的上底于E ,交花盆的下底于F ,交AB 于T .连接OA ,设OA =OG =r .由题意AB=AC+CD+BD=14+20+14=48(cm),FG=6cm,TF=23EF=10(cm),∴TG=TF+FG=16(m).在Rt△AOT中,∵OA2=OT2+AT2,∴r2=(r﹣16)2+242,解得r=26.如图1中,连接OG交CD于T,连接OC,OB,观察图象可知:当,O,C,A共线,O,D,B共线时,OC=OD=26﹣14=12最小,此时OE的值最小,FG 的值最大,在Rt△OCT中,CT=10,OC=12,∴OT=√OC2−CT2=√122−102=2√11(cm),∵TF=23EF=10(cm),∴FG=OG﹣OT﹣TF=26﹣2√11−10=(16﹣2√11)cm.故答案为26,(16﹣2√11).12.(2020•温州一模)如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=253.【分析】由折叠的性质可得AB =AF ,∠B =∠AFE =90°,FG =CG =3,∠C =∠EFG =90°,可证点A ,点F ,点G 三点共线,由勾股定理可求AB 的长,即可求解.【解析】∵将△ABE 沿AE 翻折后,得到△AEF ,再将CE 折向FE ,使点C 与点F 重合,∴AB =AF ,∠B =∠AFE =90°,FG =CG =3,∠C =∠EFG =90°,∴∠AFE +∠GFE =180°,∴点A ,点F ,点G 三点共线,∵AD 2+DG 2=AG 2,∴64+(AB ﹣3)2=(AB +3)2,∴AB =163, ∴AG =AF +FG =253,故答案为:253.13.(2020•杭州模拟)如图,矩形ABCD 中,AB =8,AD =6,E 为AB 边上一点,将△BEC 沿着CE 翻折,使点B 落在点F 处,连接AF ,当△AEF 为直角三角形时,BE = 3或6 .【分析】分三种情况讨论,由折叠的性质和勾股定理可BE 的长.【解析】如图,若∠AEF =90°,∵∠B =∠BCD =90°=∠AEF∴四边形BCFE 是矩形∵将△BEC 沿着CE 翻折∴CB=CF∴四边形BCFE是正方形∴BE=BC=AD=6,如图,若∠AFE=90°,∵将△BEC沿着CE翻折∴CB=CF=6,∠B=∠EFC=90°,BE=EF∵∠AFE+∠EFC=180°∴点A,点F,点C三点共线∴AC=√AB2+BC2=10,∴AF=AC﹣CF=4∵AE2=AF2+EF2,∴(8﹣BE)2=16+BE2,∴BE=3,(3)若∠EAF=90°,∵CD=8>CF=6∴点F不可能落在直线AD上,∴不存在∠EAF=90°,综上所述:BE=3或614.(2020•余杭区二模)如图,已知矩形ABCD,E,F分别是边AB,CD的中点,M,N分别是边AD,AB上两点,将△AMN沿MN对折,使点A落在点E上.若AB=a,BC=b,且N是FB的中点,则ba 的值为√22.【分析】由题意可证四边形ADEF 是矩形,可得AD =EF =b ,∠EFB =90°,由折叠性质可得AN =EN =34a ,由勾股定理可求解.【解析】∵四边形ABCD 是矩形∴AB =CD ,AB ∥CD ,∠A =90°∵E ,F 分别是边AB ,CD 的中点,N 是FB 的中点,∴DE =AF =BF =12AB =12a ,FN =14AB =14a ,∴AN =AF +FN =34a∵AF =DE ,DC ∥AB ,∠A =90°∴四边形ADEF 是矩形∴AD =EF =b ,∠EFB =90°∵将△AMN 沿MN 对折,使点A 落在点E 上∴AN =EN =34a ,在Rt △EFN 中,EN 2=EF 2+FN 2,∴916a 2=b 2+116a 2,∴b =√22a ∴b a =√22故答案为:√22 三.解答题(共6小题)15.(2020•江干区模拟)已知一张正方形ABCD 纸片,边长AB =2,按步骤进行折叠,如图1,先将正方形纸片ABCD 对折,得到折痕EF ;再折出矩形BCFE 的对角线BF .(1)如图2,将CF 边折到BF 上,得到折痕FM ,点C 的对应点为C ',求CM 的长.(2)如图3,将AB 边折到BF 上,得到折痕BN ,点A 的对应点为A ',求AN 的长.【分析】(1)由折叠的性质可得CF =C 'F =1,∠C =∠FC 'M =90°,CM =C 'M ,可得BC '=√5−1,由锐角三角函数可得CF BC =C ′M BC ′,即可求解;(2)由折叠的性质可得AB =A 'B =2,AN =A 'N ,∠A =∠NA 'F =90°,由勾股定理可列方程,可求解.【解析】∵将正方形纸片ABCD 对折,∴CF =DF =1,∴BF =√CF 2+BC 2=√1+4=√5,(1)∵将CF 边折到BF 上,∴CF =C 'F =1,∠C =∠FC 'M =90°,CM =C 'M ,∴BC '=√5−1,∵tan ∠FBC =CF BC =C ′M BC ′, ∴12=√5−1, ∴C 'M =√5−12, ∴CM =√5−12;(2)如图,连接NF ,∵将AB 边折到BF 上,∴AB =A 'B =2,AN =A 'N ,∠A =∠NA 'F =90°,∴A 'F =√5−2,∵NF2=DN2+DF2,NF2=A'N2+A'F2,∴(2﹣AN)2+1=AN2+(√5−2)2,∴AN=√5−1.16.(2020•宁波模拟)如图,平行四边形纸片ABCD中,折叠纸片使点D落在AB上的点E处,得折痕AF,再折叠纸片使点C落在EF上的G点,得折痕FH.(1)请说明:∠AFH=90°;(2)请说明:GH∥AB.【分析】(1)根据折叠的性质得到∠DFA=∠EFA,∠CFH=∠GFH,根据平角的定义即可得到结论;(2)根据平行四边形的性质得到AB∥CD,求得∠DFA=∠FAE,得到AD=DF,推出四边形ADFE是平行四边形,根据平行四边形的性质得到AD∥EF,推出四边形BCFE是平行四边形,于是得到结论.【解析】(1)∵折叠纸片使点D落在AB上的点E处,∴∠DFA=∠EFA,∵折叠纸片使点C落在EF上的G点,∴∠CFH=∠GFH,∵∠DFA+∠EFA+∠GFH+∠CFH=180°,∴∠EFA+∠GFH=12×180°=90°,∴∠AFH=90°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DFA=∠FAE,∵∠DAF=∠EAF,∴∠DAF=∠DFA,∴AD=DF,由折叠的性质得,AD=AE,∴AE=DF,∵AE∥DF,∴四边形ADFE是平行四边形,∴AD∥EF,∴EF∥BC,∴四边形BCFE是平行四边形,∴∠C=∠BEF,由折叠的性质的,∠C=∠FGH,∴∠FGH=∠BEF,∴GH∥AB.17.(2020•上虞区一模)如图,在平行四边形ABCD中,AB=4√2,BC=8,∠B=60°,将平行四边形ABCD 沿EF折叠,点D恰好落在边AB的中点D′处,折叠后点C的对应点为C′,D′C′交BC于点G,∠BGD′=32°.(1)求∠D′EF的度数;(2)求线段AE的长.【分析】(1)由平行四边形的性质可得∠B=∠D=60°,AD∥BC,可得∠DEF=∠EFB,由折叠的性质可得∠D=∠ED'G=60°,∠DEF=∠D'EF,由四边形内角和定理可求∠D′EF的度数;(2)过点E作EH⊥AB于点H,设AE=x,可得AH=x2,HE=√32x,由勾股定理可求x的值,即可求线段AE的长.【解析】(1)∵四边形ABCD是平行四边形∴∠B=∠D=60°,AD∥BC∴∠DEF=∠EFB∵将平行四边形ABCD沿EF折叠,点D恰好落在边AB的中点D′处∴∠D=∠ED'G=60°,∠DEF=∠D'EF,∴∠D'EF=∠EFB,∵∠BGD ′=32°∴∠D 'GF =148°∵∠D 'GF +∠EFB +∠D 'EF +∠ED 'G =360°∴∠D 'EF =76°(2)过点E 作EH ⊥AB 于点H ,设AE =x ,∵AD ∥BC∴∠HAD =∠B =60°,且EH ⊥AB∴AH =x 2,HE =√32x ,∵点D '是AB 中点∴AD '=12AB =2√2∵HE 2+D 'H 2=D 'E 2,∴34x 2+(2√2+x 2)2=(8﹣x )2, ∴x =112−14√231∴AE =112−14√231 18.(2020•萧山区模拟)如图,在矩形ABCD 中,2AB >BC ,点E 和点F 为边AD 上两点,将矩形沿着BE 和CF 折叠,点A 和点D 恰好重合于矩形内部的点G 处,(1)当AB =BC 时,求∠GEF 的度数;(2)若AB =√2,BC =2,求EF 的长.【分析】(1)由折叠的性质可得AB=BG,CD=CG;∠EGB=∠A=90°=∠FGC,可得BG=BC=GC,可得∠BGC=60°,∠ABG=30°,由四边形内角和可求∠AEG=360°﹣∠A﹣∠BGE﹣∠ABG=150°,可求∠GEF的度数;(2)由折叠的性质可得AB=BG,CD=CG,AE=EG,DF=FG,由勾股定理的逆定理可得∠BGC=90°,可得∠GBC=45°,由四边形内角和可求∠AEG=360°﹣∠A﹣∠BGE﹣∠ABG=135°,可求∠FEG=45°,由线段关系可求EF的长.【解析】(1)当AB=BC时,矩形ABCD为正方形由折叠得,AB=BG,CD=CG;∠EGB=∠A=90°=∠FGC,∵AB=BC=CD∴BG=BC=GC∴∠BGC=60°∴∠ABG=30°∴∠AEG=360°﹣∠A﹣∠BGE﹣∠ABG=150°∴∠GEF=30°(2)在矩形ABCD中,AB=CD=√2由折叠得,AB=BG,CD=CG,AE=EG,DF=FG∴BG=GC=√2,∵BG2+CG2=4,BC2=4,∴BG2+CG2=BC2,∴∠BGC=90°,且BG=CG,∴∠GBC=45°∴∴∠AEG=360°﹣∠A﹣∠BGE﹣∠ABG=135°∴∠FEG=45°,同理可得∠EFG=45°,∴△EGF为等腰直角三角形设EG=x,则AE=FD=x,EF=√2x,得(2+√2)x=2,∴x=2−√2∴EF=√2x=2√2−219.(2020•义乌市校级模拟)在△ABC中,沿着中位线DE剪切后,用得到的△ADE和四边形DBCE可以拼成平行四边形DBCF,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置.【分析】(1)过点A作AE⊥BC,再把△ABE剪切,然后移到△DCF的位置即可;(2)过AB的中点作GF∥DC,再把△BGF剪切,然后旋转到△AEG的位置即可;【解析】(1)如图:过点A作AE⊥BC,再把△ABE剪切,然后移到△DCF的位置即可;(2)如图:过AB的中点作GF∥DC,再把△BGF剪切,然后旋转到△AEG的位置即可;20.(2020•新昌县一模)在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题.(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1).(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【解析】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2.(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=4√2,∴OM=4√2−x,∵OM2+BN2=MN2.∴(4√2−x)2+x2=(2x)2,解得x=﹣2√2+2√6或﹣2√2−2√6(舍弃)∴MN=﹣4√2+4√6.。

江西省2020届中考数学单元专题练之几何探究题附全解全析

江西省2020届中考数学单元专题练之几何探究题附全解全析

江西省2020届中考数学单元专题练之几何探究题【题型解读】几何探究题为江西近10年的必考题型,题位在解答题最后两道题中的一道.考查类型有:(1)操作探究问题(3次);(2)旋转探究问题(3次);(3)新定义探究问题(2次);(4)动点探究问题(2次);主要设问有:(1)求线段长;(2)判断图形的形状;(3)求角度;(4)判断两条线段的数量和位置关系并证明.类型一操作探究问题1.如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE.为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:●初步体验如图①,连接BD,若BE=DF,求证:EF与BD互相平分.●规律探究(1)在图①中,(BE+DF)2+EF2=________AB2;(2)如图②,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由.●拓展应用如图③,若AB=4,∠DPB=135°,2BP+2PD=46,求PD的长.第1题图2. 如图①,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上的一动点,Q是上的一动点,连接PQ.发现:当∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图②,若P是OB中点,且QP⊥OB于点P,求的长;(2)如图③,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分的面积;探究:如图④,将扇形OAB沿PQ折叠,使折叠后的恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.第2题图3. 综合与实践 问题情境:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图①所示的长方形纸条ABCD ,其中AD =BC =1,AB =CD =5.然后在纸条上任意画一条截线段MN ,将纸片沿MN 折叠,MB 与DN 交于点K ,得到△MNK ,如图②所示:深入探究: (1)若∠1=70°,求∠MKN 的度数;(2)试判断△MNK 的形状;若改变折痕MN 的位置,△MNK 的形状是否发生变化,请说明理由;拓展应用:(3)爱动脑筋的小明在研究△MNK 的面积时,发现KN 边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN 的面积最小值为12,求此时∠1的度数;(4)小明继续动手操作,发现了△MNK 面积的最大值.请你求出这个最大值.第3题图4. 如图,在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为点E ,这时折痕与边BC 或者边CD (含端点)交于点F ,然后展开铺平,连接BE 、EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个______三角形; ②当折痕经过点A 时,cos ∠BEF 的值为________; (2)深入探究:在矩形ABCD 中,AB =3,BC =23,①当△BEF是等边三角形时,求出BE的长度;②在任意折叠中,△BEF的面积是否存在最大值,若存在,求出EF的长;若不存在,请说明理由.第4题图5. 如图①,已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M、N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到△ACQ,请在图①中画出△ACQ;(不写画法)【探究】(2)在(1)中所作图的基础上,连接NQ,①求证:MN=NQ;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由;【拓展】如图②,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与点E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE、DF于点K、L,连接GH,分别交DE、DF于点S、T,(3)线段GS,ST和TH之间满足的数量关系是________;(4)设DK=a,DE=b,求DP的值.(用a、b表示)第5题图6.现有三角形纸板ABC, AC=BC=6,∠ACB=90°,将该三角形纸板放在足够大的圆中移动,⊙O交直线AB于点D,连接DO并延长交⊙O于点E,连接AE.(1)操作发现:如图①,当⊙O经过A、C两点,且圆心O在△ABC内部时,连接CD、CE,①试判断CD与CE的数量关系,并说明理由;②求AE+AD的值;(2)数学思考:如图②,当⊙O 经过A 、C 两点,且圆心O 在△ABC 外部时,连接CD 、CE ,求AE -AD 的值;(3)问题解决:如图③,点F 为CA 延长线上一点,且AC =3AF .当⊙O 经过A ,F 两点,且圆心O 在△ABC 外部时,连接DF ,EF ,①猜想AE 、AD 之间的数量关系,并证明;②连接CE ,是否存在△AEC 为直角三角形?若存在,请直接写出⊙O 的半径;若不存在,请说明理由.第6题图类型二 旋转探究问题1. 在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C .(1)设△ACA ′和△BCB ′的面积分别为S 1和S 2.若θ=40°,请求出S 1S 2的值;(2)如图①,设A ′B ′与CB 相交于点D ,且AB ∥CB ′: ①求证:CD =B ′D ; ②求BD 的长;(3)如图②,设AC 中点为点M ,A ′B ′中点为点N ,连接MN ,MN 是否存在最大值,若存在,求出MN 的值,判断出此时AA ′与BB ′的位置关系;若不存在,请说明理由.第1题图2. 如图①,在△ABC中,AC=BC=22,∠ACB=90°,点D、E分别是AC、BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,旋转角为α,连接AD′、BE′.(1)如图①,若0°<α<90°.①求证:AD′=BE′;②当AD′∥CE′时,求BE′的长;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)如图③,将△CDE绕点C旋转一周,在旋转过程中,若AD′与直线BE′相交于点P,M为AB的中点,那么在整个旋转过程中,求PM扫过的图形面积.第2题图3. 如图①,边长为6的等边△ABC中,点D在AB边上(不与点A,B重合),点E在BC 边上(不与点B,C重合).第一次操作:将线段DE绕点E顺时针旋转,当点D落在三角形上时,记为点F;第二次操作:将线段EF绕点F顺时针旋转,当点E落在三角形上时,记为点G;依次操作下去….(1)如图②中的四边形DEFG是经过三次操作后得到的,且DE⊥EC.①四边形DEFG的形状为________;②若BE=CF,求线段DE的长;(2)若经过两次操作可得到△DEF如图③.①请判断△DEF的形状为________,此时AD与BE的数量关系是________;②以①中的结论为前提,设AD的长为x,△DEF的面积为y,求y与x的函数关系式;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.第3题图4. 已知△ABC与△DEF均为透明的完全一样的等腰直角三角板,且AC=BC=2,∠C =∠E=90°.在数学活动课上,小颖同学用这两块三角板进行探究活动.操作:使点D落在线段AB的中点处并使DF过点B(如图①),然后将△DEF绕点D顺时针旋转,直至点E落在CB的延长线上时结束操作,在此过程中,射线ED与射线CA交于点N,射线CB与DF相交于点M,连接MN(如图②,图③).(1)如图②,若AB∥MN,求证:△ADN≌△BDM;(2)如图②,在以上操作过程中,求证:AN·BM的值不会发生变化;(3)①如图③,在以上操作过程中,ND始终平分∠ANM吗?若平分,请加以证明;若不平分,请说明理由;②设AN=m,请直接写出△DMN的面积(用含m的式子表示).第4题图5. 如图①,把边长为2的正方形纸片ABCD沿对角线BD剪开,将△BCD平移得到△DEF,使得BC边与AD边重合,如图②所示,固定△ABC,将△EFD绕点A顺时针旋转,当ED边与AB边重合时,旋转停止.不考虑旋转开始和结束时重合的情况,设ED、EF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图③所示.(1)图②四边形ABCF的形状是________,连接BF,则BF=________;(2)在旋转过程中,∠CEF+∠CHE的度数为________;(3)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图③所示的情况说明理由);(4)当x为何值时,△AGH是等腰三角形?(直接写出答案,不必说明理由)第5题图6.将两张完全相同的平行四边行纸片按如图①所示放置(其中点E在BC上,点A在BG 上,AB=BE=4,BC=BG=23+2,∠B=60°,▱ABCD固定不动,将▱GBEF绕点B顺时针旋转,旋转角为α(0°<α<360°).(1)如图①,连接AF,求AF的长.(2)如图②,当▱GBEF绕点B旋转到点F与点D重合时,AD与BG相交于点M,BC与ED相交于点N,求证:四边形BMDN是菱形.(3)如图③,在旋转过程中,当旋转角α为多少度时,以点C,G,D,F为顶点的四边形是正方形?是矩形?请给予证明.第6题图类型三 新定义探究问题1. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,若△PBC 与△CAB 相似,那么就称点P 为△ABC 的黄金点.(1)在下列三角形中,一定没有黄金点的是( ) A . 锐角三角形 B . 钝角三角形 C . 等腰三角形 D . 直角三角形(2)如图②,已知Rt △ABC 中,∠ACB =90°,∠ABC >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为点E ,试说明点E 是△ABC 的黄金点;(3)如图③,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,BC =4. ①若点P 1是△ABC 的黄金点,求AP 1的长;②若点P 1是△ABC 的黄金点,点P 2是△P 1BC 的黄金点, 点P 3是△P 1P 2C 的黄金点,点P 4是△P 1P 2 P 3的黄金点,…,以此类推,请求出△P 2016P 2017P 2018的周长.第1题图2. 我们知道若线段上的一个点把这条线段分割为两部分,其中一部分与全长之比等于5-12时,则这个点称为黄金分割点.类比三角形中线的定义,我们规定:连接一个顶点和它对边的黄金分割点的线段叫做这个三角形的黄金线.(1)如图①,已知CD 是△ABC 的黄金线(AD >BD ),△ABC 的面积为4,则△BCD 的面积为________;(2)如图②,在△ABC 中,∠A =36°,AB =AC =1,过B 点作BD 平分∠ABC ,与AC 相交于点D ,求证:BD 是△ABC 的黄金线;(3)如图③, BE 、CD 是△ABC 的黄金线(AD >BD ,AE >CE ),BE 、CD 相交于点O . ①设△BOD 与△COE 的面积分别为S 1、S 2,试猜想S 1、S 2的数量关系,并说明理由;②求ODCD的值.第2题图3.如果在两个相似但不全等的三角形中,其中一个三角形的一边等于另一个三角形的一边,那么,我们称这两个三角形为梦幻三角形,例如:(如图①所示)△ABC 的三边长分别为a 、b 、c ,(如图②所示)△A 1B 1C 1的三边长分别为a 1、b 1、c 1,且△ABC ∽△A 1B 1C 1,c =a 1,那么我们将△ABC 与△A 1B 1C 1称为梦幻三角形.(1)若△ABC 与△A 1B 1C 1为梦幻三角形,且相似比为k (k >1),求证:a =kc ; (2)如图③,在△ABC 中,∠ACB =80°,∠B =60°,CD 平分∠ACB 交AB 于点D ,求证:△CBD 与△ABC 为梦幻三角形;(3)如图④,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点C 作CF ⊥PD 于点F ,与AD 相交于点E ,且△ACE 与△ADC 刚好构成梦幻三角形.①若AE ·AD =36,BC =8,求线段AD 的长;②若CDAB=m ,请直接写出PC 与PD 的数量关系(用含m 的式子表示,不必说明理由).第3题图4.阅读理解如图①,在正n边形A1A2A3…A n的边A2A3上任取一不与点A2重合的动点B2,并以线段A1B2为边在线段A1A2上方作一正n边形A1B2B3…B n,把正n边形A1B2B3…B n叫正n边形A1A2A3…A n的准位似图形,点A3称为准位似中心.特例论证(1)如图②,已知正三角形A1A2A3的准位似图形为正三角形A1B2B3,试证明:随着点B2的运动,∠B3A3A1的大小始终不变.数学思考(2)如图③,已知正方形A1A2A3A4的准位似图形为正方形A1B2B3B4,随着点B2的运动,∠B3A3A4的大小是否始终不变?若不变,请求出∠B3A3A4的大小;若改变,请说明理由.归纳猜想(3)在图①的情况下:①试猜想∠B3A3A4的大小是否会发生改变?若不改变,用含n的代数式表示出∠B3A3A4的大小(不要求证明);若会改变,请说明理由;②∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠B n A n A1=________.(用含n的代数式表示)第4题图类型四 动点探究问题1.在四边形OABC 中,AB ∥OC ,∠OAB =90°, ∠OCB =60°,AB =2,OA =2 3.(1)如图①,连接OB ,请直接写出OB 的长度;(2)如图②,过点O 作OH ⊥BC 于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,设点P 运动的时间为t 秒,△OPQ 的面积为S (平方单位).①求S 与t 之间的函数关系式;②设PQ 与OB 交于点M ,当△OPM 为等腰三角形时,试求出△OPQ 的面积S 的值.第1题图2. 如图,点O 为正方形ABCD 的中心,AB =2,点E 为AB 上的一动点,DF ⊥DE 于点D ,DF 与BC 的延长线相交于点F . OM ⊥DE 于点M , ON ⊥DF 于点N .(1)求证:DE =DF ;(2)在点E 的运动过程中,OM 2+ON 2是否是一个定值,如果是,请求出 OM 2+ON 2的值,若不是,请说明理由;(3)如图②,若DE 与AC 相交于点P ,DF 的延长线与AC 的延长线相交于点Q ,求证: AP CQ =DP DQ.第2题图3. 如图①,在等腰△ABC中,∠BAC=90°,AB=AC,点D是BC边上的动点,P为AB边上的动点,连接DP,以DP为边构造△DEP,∠DPE=90°,PD=PE.(1)如图②,若点P与点A重合,①求证:CD=BE;②猜想BD、CD与PD之间的数量关系,并说明理由;(2)如图③,若BP=2AP时,AC=62,设DP2=y,BD=x.①求y关于x的函数关系式;②连接CP,请问是否存在△CDP为等腰三角形?若存在,请求出△DPE的面积;若不存在,请说明理由.第3题图4. 如图,在锐角△ABC中,AB=8,BC=6,CD⊥AB于点D,点E是AC的中点,连接DE.(1)如图①,①当DE∥BC时,则cos∠B的值为________;②当DE⊥AC时,求sin∠B的值;(2)设△ACD的面积为S,求S-AC2的最大值;(3)如图②,M、F为线段AB上的两动点,在运动的过程中,EF始终与CM平行,延长FE到点P,随着∠B的变化,是否存在∠DEP=k∠A(k为正整数)?若存在,请直接写出tan∠MCA的取值范围;若不存在,请说明理由.第4题图江西省2020届中考数学单元专题练之几何探究题答案全解全析类型一操作探究问题1.解:●初步体验证明:如解图①,连接BD交EF于点O,连接DE、BF,第1题解图∵BE=DF,BE∥DF,∴四边形BFDE是平行四边形,∴EF与BD互相平分.●规律探究(1) 2;(2)(1)中的数量关系不会发生变化.理由如下:如解图①,过点D作BE的垂线,与BE的延长线交于点M,连接BD,第1题解图①∵BE∥DF,EF⊥BE,DM⊥BM,∴EF∥DM,∴四边形EFDM是矩形,∴DF=EM,EF=DM,BM=BE+DF,∵在正方形ABCD中,∴BD=2AB,∵BD2=BM2+DM2,∴(BE+DF)2+EF2=2AB2.●拓展应用如解图②,过点P作EP⊥DP,过点B作BE⊥EP,第1题解图②∵∠DPB=135°,∴∠EPB=45°,即△EBP为等腰直角三角形,∴PB=2BE,∵2BP+2PD=46,∴2·2BE +2PD =46, ∴BE +PD =26,设PE =BE =x ,则有(BE +PD )2+x 2= 2AB 2,即(26)2+x 2=32, 解得x =±22(负值舍去), ∴PD =26-BE =26-2 2. 2. 解:发现:90°,102;【解法提示】∵点Q 在AB ︵上,点P 在OB 上,∴当PQ 取最大值时,点Q 与点A 重合,点P 与点B 重合, 此时∠POQ =90°,PQ =OA 2+OB 2=10 2.思考:(1)如解图①,连接OQ ,则OP =12OB =12OQ ,∵QP ⊥OB , ∴cos ∠QOP =OP OQ =12∴∠QOP =60°,∴l BQ ︵=60180π×10=103π ;第2题解图①(2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B ′OP 中,OP 2+(102-10)2=(10-OP )2, 解得OP =102-10, S 阴影=S 扇形AOB -2S △AOP =90360π×102-2×12×10× (102-10)=25π-1002+100;探究:如解图②,找点O 关于PQ 的对称点O ′,连接OO ′、O ′B 、O ′C 、O ′P ,OO ′与PQ 交于点M ,则OM =O ′M ,OO ′⊥PQ ,O ′P =OP =6,第2题解图②∵点O ′是B ′Q ︵所在圆的圆心, ∴O ′C =OB =10,∵折叠后的B ′Q ︵恰好与半径OA 相切于C 点,∴O ′C ⊥AO , ∴O ′C ∥OB ,∴四边形OCO ′B 是矩形,在Rt △O ′BP 中,O ′B =62-42=2 5在Rt △OBO ′中,OO ′=102+(25)2=230, ∴OM =12OO ′=12×230=30,即点O 到折痕PQ 的距离为30.3. 解:深入探究:(1)∵折叠前的四边形ABCD 是矩形, ∴AM ∥DN ,∴∠KNM =∠KMN =∠1=70°, ∴∠MKN =40°;(2)△MNK 为等腰三角形;不发生变化; 理由如下:∵AM ∥DN , ∴∠1=∠MNK ,∵将纸片沿MN 折叠, ∴∠1=∠KMN , ∴∠MNK =∠KMN , ∴KM =KN ,∴△MNK 始终为等腰三角形;拓展应用:(3)如解图①,当△KMN 的面积最小值为12时,KN =KM =BC =1,∴KM ⊥KN ,第3题解图①∵∠NMB =∠KMN ,∠KMB =90°, ∴∠1=∠NMB =45°,同理将纸条向下折叠时,∠1=∠NMB =135°, ∴∠1=45°或∠1=135°; (4)分两种情况:情况一:如解图②,将矩形纸片对折,使点B 与D 重合,此时点K 也与D 重合,第3题解图②设MK =MB =x ,则AM =5-x ,在Rt △AMK 中,由勾股定理得12+(5-x )2=x 2, 解得x =2.6,∴MK =NK =2.6,(由(2)可得)∴S △MNK =12×1×2.6=1.3;情况二:如解图③,将矩形纸片沿对角线AC 对折,此时折痕即为AC ,第3题解图③设MK =AK =CK =x ,则DK =5-x . 同理可得MK =NK =2.6, ∵MD =1,∴S △MNK =12×1×2.6=1.3,∴△MNK 的面积最大值为1.3. 4. 解:(1)①等腰;【解法提示】由折叠的性质可知BF =EF ,∴△BEF 为等腰三角形. ②22; 【解法提示】由折叠的性质可知∠BEF =∠EBF =45°, ∴cos ∠BEF =22; (2)①当△BEF 是等边三角形时,则∠ABE =30°, ∵AB =3,∴cos ∠ABE =AB BE =32,∴BE =2;②根据题意可得矩形ABCD 的面积为6; 第一种情况:当点F 在边BC 上时,此时可得S △BEF ≤12S 矩形ABCD ,即当点F 与点C 重合时,S △BEF 存在最大值,最大值为3;由折叠可知CE =CB =23,即EF = 23; 第二种情况:当点F 在边CD 上时,如解图,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,第4题解图∵S △EKF =12KF ·AH ≤12HF ·AH =12S 矩形AHFD ,S △BKF =12KF ·BH ≤12HF ·BH =12S 矩形BCFH ,∴S △BEF ≤12S 矩形ABCD =3,即当点F 为CD 中点时,△BEF 的面积最大,此时,点E 与点A 重合,△BEF 面积最大为3, ∴EF =AD 2+DF 2=(23)2+(32)2=512, 综上所述,当△BEF 的最大面积为3时,EF 的长为23或512. 5. (1) 解:如解图①,△ACQ 即为所求;第5题解图①(2)①证明:由旋转可得,△ABM ≌ △ACQ ,∴AM =AQ ,∠BAM =∠CAQ , ∵∠MAN =45°,∠BAC = 90°, ∴∠BAM +∠NAC =45°, ∴∠CAQ +∠NAC =45°,即∠NAQ =45°, 在△MAN 和△QAN 中, ⎩⎪⎨⎪⎧AM =AQ ∠MAN =∠QAN ,AN =AN∴△MAN ≌△QAN (SAS ), ∴MN =NQ ;② 解:MN 2=BM 2+NC 2; 理由如下:由①中可知,MN =NQ ,MB =CQ ,又∵∠NCQ =∠NCA +ACQ =∠NCA +∠ABM =45°+45°=90°, ∴在Rt △NCQ 中,NQ 2=CQ 2+NC 2,即MN 2=BM 2+NC 2; (3)解:ST 2=GS 2+TH 2;【解法提示】如解图③,连接SP 、PT ,用(2)中的方法可证△DGS ≌△DPT ,△GSP ≌△PTH ,∴GS =PT ,TH =SP ,由题意易知GH ⊥PD ,△SPT 为直角三角形, ∴ST 2=PT 2+SP 2=GS 2+TH 2.(4)解:如解图③,∵DE =DF ,DG =DP ,∠EDF =∠GDP =45°,第5题解图③∴∠DPK =∠DEP , 又∵∠PDK =∠EDP , ∴△DPK ∽△DEP ,∴DPDE=DKDP,即DP2=DK·DE,∵DK=a, DE=b,∴DP=ab.6.解:(1)①CD=CE,理由如下:∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,∴∠CED=∠CAB=45°,又∵DE是⊙O的直径,∴∠ECD=90°,∴∠CDE=∠CED=45°,∴CD=CE;②由题意可得∠ECD=∠ACB=90°,∴∠ECA=∠BCD,又∵AC=BC=6,CD=CE,∴△ECA≌△DCB,∴AE=BD,∴AE+AD=BD+AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE+AD的值为62;(2)∵DE是⊙O的直径,∴∠DAE=∠DCE=90°,又∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∠ECA=∠DCB,∠CEA=∠ADC∴∠EAC=∠B=45°,∴△ECA≌△DCB,∴AE=BD,∴AE-AD=BD-AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE-AD的值为62;(3)①AD-AE=22,证明如下:第6题解图①∵DE是⊙O的直径,∴∠DFE=90°,如解图①,过点F作FM⊥AF于点F,交AD于点M,∴∠DFM=∠EF A,又∵∠MAF=∠CAB=45°,∴∠AMF=45°,∴AF=MF,又∵∠FDM=∠FEA,∴△FDM ≌△FEA (AAS), ∴AE =DM ,∴AD -AE =AD -DM =AM ,由AC =3AF ,AC =6可得AF =2,在Rt △AMF 中,由勾股定理可得AM =22,即AD -AE 的值为22; ②存在,⊙O 的半径为5.6或17. 【解法提示】由①可得CF =8, 如解图②,当∠ECA =90°时,△AEC 为直角三角形, 可证EC =AC =6,在Rt △ECF 中,由勾股定理可得EF =10,在Rt △EDF 中,由勾股定理可得DE =102,即⊙O 的半径为52, 如解图③,当∠AEC =90°时,△AEC 为直角三角形, 过点E 作EH ⊥AC 于点H ,可得EH =AH =3, ∴FH =5,第6题解图在Rt △EHF 中,由勾股定理可得EF =34,在Rt △EDF 中,由勾股定理可得DE =217,即⊙O 的半径为17.类型二 旋转探究问题1. (1)解: ∵△ABC 绕顶点C 顺时针旋转40°,得到△A ′B ′C , ∴CA =CA ′,CB =CB ′,∠ACA ′=∠BCB ′=θ, ∴△ACA ′∽△BCB ′,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=32∶42=9∶16; ∴S 1S 2=916; (2)①证明:∵AB ∥B ′C , ∴∠ABC =∠BCB ′;由旋转的性质得∠ABC =∠DB ′C , 即∠BCB ′ =∠DB ′C ; ∴CD =B ′D ;②解:根据勾股定理可得A ′B ′=AB =5,据题意可得∠BCB ′ +∠BCA ′ =∠DB ′C +∠CA ′B ′=90°, ∴∠BCA ′ =∠CA ′B ′,∴CD =A ′D =B ′D =12A ′B ′=52 ,∴ BD =BC -CD =32;(3)解:存在,∵∠A ′CB ′=90°,点M 为AC 的中点,∴CM =12AC =32,∵△A ′B ′C 是由△ABC 绕顶点C 顺时针旋转所得,∴A ′B ′=AB =5,第1题解图如解图,连接CN ,可得MN ≤CM +CN ,∴只有当点N 在MC 的延长线上时,MN =CM +CN ,此时MN 最大, ∵点N 为A ′B ′的中点,∴CN =12 A ′B ′=52,MN =CM +CN =4,即MN 的最大值为4.此时AA ′⊥BB ′.2. (1)证明:①∵AC =BC ,D , E 分别是 AC ,BC 的中点, ∴CD =CE ,由旋转可得∠D ′CE ′=∠DCE =90°,CD =CD ′,CE =CE ′, ∴∠ACD ′=∠BCE ′,CD ′=CE ′, ∴△ACD ′≌ △BCE ′, ∴AD ′=BE ′;②解:∵AD ′∥CE ′,∴∠AD ′C =∠E ′CD ′=90°, ∵AC =2CD ′,∴∠CAD ′=30°, ∴ AD ′=cos 30°×AC =32×22=6, 由①得BE ′=AD ′= 6 ;第2题解图①(2)解:根据题意可得CD ′=CE ′= 2 ,∵△CD ′E ′是等腰直角三角形,CD ′=CE ′= 2 , ∴D ′E ′=2,如解图①,作CK ⊥BE ′于点K .可得KD ′=E ′K , ∴CK =12D ′E ′=1,∴sin ∠CBE ′=CK BC =122=24;(3)解:如解图②,连接PM ,由(1)得△ACD ′≌ △BCE ′,第2题解图②∴∠P AC =∠E ′BC ,AD ′=BE ′, 又∠P AC +∠ACB =∠PBC +∠APB , ∴∠APB =∠ACB =90°, 设AD ′=x ,则BD ′=x -2,在△ABD ′中可得AD ′2+BD ′2=AB 2,即x 2+(x -2)2=42, 解得x 1=7+1,x 2=-7+1 (舍去), ∴BD ′=7-1,∴S △BD ′M =S △ABD′2=(7+1)(7-1)4=32,由轴对称性可得PM 扫过的图形面积为:180π×22360-32×2=2π-3.3. 解: (1)①正方形;【解法提示】由旋转性质可知DE =EF =FG =DG , ∴四边形DEFG 为菱形, ∴DG ∥BC . 又∵DE ⊥EC ,∴四边形DEFG 为正方形. ②∵四边形DEFG 为正方形, ∴DG ∥BC .∴∠ADG =∠B ,∠AGD =∠C . ∵△ABC 为等边三角形, ∴∠B =∠C =60°.∴△ADG 为等边三角形. ∴AD = DG =DE .又∵BD =DE sin ∠B =DE sin 60°=233DE ,∴BD +AD =233DE +DE =6.解得DE =1823+3=123-18.(2)①等边三角形,相等;②据题意可得△ADF ≌△BED ≌△CFE ,AD =x ,BD =6-x , 如解图①,过点D 作DG ⊥BC 于点G , 可得DG =sin ∠B ·BD =32(6-x ), y =S △ABC -3S △BDE =12×33×6-3×x 2×32(6-x ),化简得y =334x 2-932x +9 3.图①图② 第3题解图(3)如解图②,经过多次操作可得到首尾顺次相接的多边形,其最大边数是6,它可能为正多边形,边长为2.4. (1)证明:据题意可得∠CAB =∠CBA ,AD =BD , ∴∠NAB =∠MBA ,又∵AB ∥MN ,AC =BC ,∴AC AN =BC BM,即AN =BM , ∴△ADN ≌△BDM (SAS );(2)证明:据题意可得AD =BD =2, 由(1)得∠NAB =∠MBA =135°,∠EDM = 45°,∴∠AND +∠ADN =∠EDB +∠BDM =45°, ∴∠AND =∠BDM , ∴△ADN ∽△BMD , ∴AD BM =ANBD,即AN ·BM =AD ·BD =2·2=2, ∴AN ·BM 的值不会发生变化;(3)解:①平分.证明:由(2)可得∠ADN +∠BDM =45°, ∴∠MDN =∠DAN =135°, 又∵△ADN ∽△BMD , ∴AN BD =ND DM , 又∵AD =BD , ∴AN AD =ND DM, ∴△ADN ∽△DNM ,∴∠AND =∠DNM ,即ND 始终平分∠ANM ; ②S △DMN =m 2+2m +22m;【解法提示】由(2)可得:AN ·BM =2,AN =m , ∴BM =2m,如解图,分别过点D 作AC 、MN 、CM 的垂线,垂足分别为H 、H ′、H ″ ,第4题解图∵ND 平分∠ANM ,且DH ⊥CA ,DH ′⊥MN 在Rt △ABC 中,DH ∥BC ,AD =BD 可得DH ′=DH =BC2=1,同理DH ″=1,∴S △DMN =S △CMN -S △ADN -S △ABC -S △DMB =12·CN ·CM -12·AN ·DH -12·AC ·BC -12·BM ·DH ″ =12×(2+m )×(2+2m )-12×m ×1-12×2×2-12×2m ×1 =m 2+2m +22m.∴△DMN 的面积为m 2+2m +22m.5. 解:(1)平行四边形;25;【解法提示】依题意可知,正方形ABCD 沿对角线剪开后为第5题解图①两个等腰直角三角形,当ED 边与AB 边重合时,AB =DF ,BC =EF ,∴四边形ABCF 是平行四边形,设AD 与BF 交于点O ,如解图①,可知AO =DO =12AD =1,∴BO =AB 2+AO 2=5,∴BF =2 5. (2)45°或135°;【解法提示】当△EFD 转到如解图②所示的位置时,∠CEF +∠CHE =∠ACB =45°;当△EFD 旋转到如解图③所示的位置时,∠CEF +∠CHE =180°-∠C =135°,综上可知,∠CEF +∠CHE 的度数为45°或135°.第5题解图(3)由题意知∠DEF =∠ACB =∠B =45°,∴∠DAC +∠CAH =45°,∠AHB +∠CAH =∠ACB =45°, ∴∠DAC =∠AHB ,∴△AGC ∽△HAB , ∴AC HB =GCAB ,∴2y =x 2,∴y =4x(0≤x <22); (4)当x 为2或2时,△AGH 是等腰三角形. 【解法提示】由题意可得△AGC ∽△HGA .∴要使△AGH 是等腰三角形,只要△AGC 是等腰三角形即可.第5题解图分三种情况讨论,①如解图④,当CG =AG ,此时CG =2, ②如解图⑤,当CG =AC ,此时CG =2,③如解图⑥,当AG =AC ,此时ED 与AB 重合,不合题意,舍去. 综上所述,当x =2或2时,△AGH 是等腰三角形.6. (1)解:如解图①,连接DF ,过点F 作FH ⊥AD 于点H .第6题解图①∵四边形ABCD 和四边形BEFG 是平行四边形. ∴AK ∥BE ,AB ∥EK .∴四边形ABEK 是平行四边形. ∵AB =BE ,∴四边形ABEK 是菱形.∴DK =FK =23+2-4=23-2,∠FKD =∠AKE =∠B =60°, ∴△FKD 是等边三角形. ∵FH ⊥AD ,∴KH =12DK =3-1,FH =3-3,在Rt △AFH 中,AH =4+3-1=3+3, ∴AF =AH 2+FH 2=(3+3)2+(3-3)2=24=2 6.(2)证明:∵四边形ABCD 和四边形GBEF 是平行四边形,∴四边形BMDN 是平行四边形.∵∠A =∠G ,∠AMB =∠GMD ,AB =GD . ∴△ABM ≌△GDM (AAS ). ∴BM =DM .∴四边形BMDN 是菱形.(3)解:①如解图①,当旋转角α为30°时,四边形CGDF 是正方形(此时也是矩形).第6题解图② 证明:∵BG =BC ,∠ABG =∠α=30°, ∴∠GBC =60°-30°=30°, ∴∠BGC =∠BCG =75°, ∴∠GCO =∠CGO =45°, ∴OG =OC ,∠GOC =90°,如解图②,过点G 作GN ⊥BC 于点N , 在Rt △BNG 中,∠GBC =30°, ∴GN =12BG =3+1,BN =3GN =3+ 3.∴NC =BC -BN =23+2-(3+3)=3-1. ∴GC =GN 2+NC 2=(3+1)2+(3-1)2=8=22,∴OG =OC =CG 2=222=2,∴OD =OF =4-2=2, ∴OD =OC =OG =OF , ∴四边形CGDF 是矩形, ∵GF ⊥CD ,∴四边形CGDF 是正方形;②如解图③,当旋转角α为300°时,四边形CGFD 是矩形.第6题解图③证明:∵∠α=300°,∴点E 与点A 重合,∠CBG =120°. ∵BC =BG ,∴∠GCD =120°-30°=90°.∵四边形ABCD 和四边形GBEF 是平行四边形, ∴CD ∥AB ,AB ∥GF ,AB =CD ,AB =GF , ∴CD ∥GF ,CD =GF ,∴四边形CGFD 是平行四边形, ∵∠GCD =90°,∴四边形CGFD 是矩形.类型三 新定义探究问题1. 解: (1)C ;(2)∵在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴CD =12AB ,∴CD =BD ,∴∠BCE =∠ABC , ∵BE ⊥CD , ∴∠BEC =90°, ∴∠BEC =∠ACB , ∴△BCE ∽△ABC ,∴点E 是△ABC 的黄金点;(3)①据题意可得∠P 1CB =60°,∠BP 1C =90°,AC =43, ∴P 1C =cos ∠P 1CB ·BC =cos 60°·BC =2,如解图,过点P 1作P 1D ⊥AC 于点D ,连接AP 1,可得∠P 1CD =30°, ∴P 1D =12P 1C =1,CD = 3 ,∴ AD =AC -CD =33,在Rt △AP 1D 中,根据勾股定理可得AP 1=(33)2+12=27;第1题解图②据题意可得△P 1BC ∽△CAB , ∴C △P 1BC C △CAB=BC AB =12, 同理可得C △P 2CP 1C △P 1BC =P 1C BC =12,即 C △P 2CP 1C △CAB=P 1C AB =14, ∴C △P 2016P 2017P 2018C △CBA=P 2017P 2018AB =122016,可得△CAB 的周长为12+43,∴△P 2016P 2017P 2018的周长为3+3220142. (1)解: 6-25;【解法提示】∵CD 是△ABC 的黄金线(AD >BD ), ∴AD AB =5-12, ∵S △ABC =4, ∴S △ADC =5-12×4=25-2, ∴S △BCD =S △ABC -S △ADC =6-25; (2)证明:∵∠A =36°,AB =AC , ∴∠ABC =∠C =72°,∵过点B 作BD 平分∠ABC ,与AC 相交于点D , ∴∠CBD =∠A =36°,∠BDC =∠C =72°, ∴AD =BD =BC , ∴△BCD ∽△ABC , ∴CD BC =BDAC ,即1-AD BC =1-BC BC =BC 1, 解得BC =5-12, ∴AD =5-12, ∴AD AC =5-12, ∴D 点是AC 的黄金分割点, ∴BD 是△ABC 的黄金线; (3)解:①S 1=S 2.理由如下:如解图,连接ED ,第2题解图据题意得:AD AB =AEAC =5-12,∴S △ABE S △ABC =S △ACD S △ABC=5-12,∴S △ABE =S △ACD ,∴ S △COE =S △BOD ,即S 1=S 2; ②由①得AD AB =AE AC, 又∵∠A 为公共角, ∴△ADE ∽△ABC ,∴∠DEA =∠BCA ,DE BC =AEAC =5-12, ∴DE ∥BC ,∴△ODE ∽△OCB , ∴OD OC =DEBC =5-12, ∴OD CD =5-15+1=(5-1)24. 3. (1)证明:根据题意可得△ABC ∽△A 1B 1C 1,且相似比为k (k >1), ∴aa 1=k ,即a =ka 1, 又∵c =a 1, ∴a =kc ;(2)证明:根据题意得∠A =40°, ∵CD 平分∠ACB ,∴∠BCD =12∠ACB =40°,即∠BCD =∠A ,又∵∠B =∠B , ∴△CBD ∽△ABC , 又∵BC 是公共边,∴△CBD 与△ABC 为梦幻三角形;(3)解:①∵△ACE 与△ADC 刚好构成梦幻三角形, ∴△ACE ∽△ADC , ∴AC AD =AEAC,即AC 2=AE ·AD =36, ∴AC =6,∵AB 为⊙O 的直径, ∴∠ACB =90°, 又∵BC =8,∴由勾股定理可得AB =10, 如解图,连接OD ,又∵∠ACB 的平分线交⊙O 于点D , ∴∠ACD =45°, ∴∠AOD =90°,∴∠OAD =∠ADO =45°,∵OD =5, ∴AD =52; ②PCPD=2m ;第3题解图【解法提示】根据题意可得AD =22AB , ∴CD AD =CD 2AB2=2·CD AB =2m , ∵PD 是⊙O 的切线, ∴∠ODP =90°, ∴∠ADP =45°,即∠ADP =∠PCD , 又∵∠P =∠P ,∴△ADP ∽△DCP ,且DP 为两三角形的公共边, ∴PC PD =CDDA=2m . 4. (1)证明:∵△A 1A 2A 3与△A 1B 2B 3都是正三角形, ∴A 1A 2=A 1A 3,A 1B 2=A 1B 3,∠A 2A 1A 3=∠B 2A 1B 3=60°, ∴∠A 2A 1B 2=∠A 3A 1B 3,∴△A 2A 1B 2≌△A 3A 1B 3(SAS ), ∴∠B 3A 3A 1=∠A 2=60°;∴随着点B 2的运动,∠B 3A 3A 1的大小始终不变,为60°. (2)解:∠B 3A 3A 4的大小不变.如解图,在边A 1A 2上取点D ,使A 1D =A 3B 2,连接B 2D .第4题解图∵四边形A 1A 2A 3A 4与四边形A 1B 2B 3B 4都是正方形, ∴A 1B 2=B 2B 3,∠A 1B 2B 3=∠A 1A 2A 3=90°, ∴∠A 3B 2B 3+∠A 1B 2A 2=90°, ∠A 2A 1B 2+∠A 1B 2A 2=90°, ∴∠A 3B 2B 3=∠A 2A 1B 2, ∴△A 3B 2B 3≌△DA 1B 2, ∴∠B 2A 3B 3=∠A 1DB 2, ∵A 1A 2=A 2A 3,A 1D =A 3B 2, ∴A 2B 2=A 2D .又∵∠A 1A 2A 3=90°,∴△DA 2B 2为等腰直角三角形, ∴∠A 1DB 2=135°, ∴∠B 2A 3B 3=135°, ∵∠A 4A 3A 2=90°, ∴∠B 3A 3A 4=45°,∴∠B 3A 3A 4的大小始终不变,为45°; (3)解:①∠B 3A 3A 4的大小不会发生改变,始终为180°n;②90°(n -1)(n -2)n.【解法提示】∠B 3A 3A 4+∠B 4A 4A 5+B 5A 5A 6+…+∠B n A n A 1=180°n ×1+180°n×2+180°n ×3+…180°n ×(n -2)=180°n ×[1+2+3+…+(n -2)]=90°(n -1)(n -2)n. 类型四 动点探究问题1. 解:(1)OB =4;(2)①∵AB =2,OB =4,∠OAB =90°,∴∠ABO =60°,又∵∠OCB =60°,∴△BOC 为等边三角形,∴OH =OBcos 30°=4×32=23, ∴OP =OH -PH =23-t ,如解图①,过P 点作PE ⊥OA ,垂足为点E ,第1题解图①则EP =OPcos 30°=3-32t , ∴S =12·OQ ·EP =12·t ·(3-32t )=-34t 2+32t (0<t <23);②若△OPM 为等腰三角形:(ⅰ)若OM =PM ,如解图②,则∠MPO =∠MOP =∠POC ,第1题解图②∴PQ ∥OC ,过点P 作PK ⊥OC 于点K , ∴OQ =PK =OP 2,即t =3-t2,解得:t =233,此时S =-34×(233)2+32×233=233; (ⅱ)若OP =OM ,如解图③,则∠OPM =∠OMP =75°,第1题解图③∴∠OQP =∠OMP -∠QOM =75°-30°=45°,此时EQ =EP ,即t -(3-12t )=3-32t , 解得:t =2,此时S =-34×22+32×2=3-3; (ⅲ)若OP =PM ,∠POM =∠PMO =∠AOB ,则PQ ∥OA ,此时点Q 在AB 上,不满足题意,舍去.综上所述,当△OPM 为等腰三角形时,△OPM 的面积为233或2. 2. (1)证明:根据题意得AD =CD ,∠ADC =∠DCF =∠DAB =90°,又∵DF ⊥DE 于点D ,∴∠ADE =∠CDF ,∴△ADE ≌△CDF ,∴DE =DF ;(2)解: OM 2+ON 2 的值为定值;理由:∵OM ⊥DE 于点M , ON ⊥DF 于点N ,∴四边形DMON 为矩形,∴DN =OM ,如解图①,连接OD ,可得OM 2+DM 2=OD 2,即OM 2+ON 2=OD 2,第2题解图①∵点O 为正方形ABCD 的中心,AB =2,∴OD =2,即OM 2+ON 2=OD 2=2;(3)证明:由正方形的性质可得∠DAC =45°,如解图②,过点Q 作C ′Q ⊥AQ 于点Q ,QC ′与DC 的延长线相交于点C ′,第2题解图②可得∠C ′=45°,即∠DAC =∠C ′,CQ =C ′Q ,又∠ADE +∠EDC =∠QDC ′+∠EDC =90°,∴∠ADE =∠QDC ′,∴△ADP ∽△C ′DQ ,∴AP C ′Q =AP CQ =DP DQ. 3. (1)①证明:据题意可得∠EAB +∠BAD =∠CAD +∠BAD =90°,∴∠EAB =∠CAD ,又AB =AC ,AD =AE ,∴△ABE ≌△ACD ,∴CD =BE ;②解:猜想:CD 2+BD 2=2PD 2.理由:据题意可得∠ABC =∠C =45°,由①可得∠ABE =∠C =45°,即∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,即CD 2+BD 2=2PD 2;(2)解:①据题意可得BP =42,如解图,过点P 作PF ∥AC ,PF 与BC 相交于点F ,第3题解图可得BF =BP sin 45°=42×22=8, 由(1)可得△PBE ≌△PFD ,∴DF =BE ,∠ABE =∠PFD =45°,∴∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,∴DF 2+BD 2=2PD 2,即2y =x 2+(8-x )2,化简得y =x 2-8x +32;②存在;理由如下:据题意可得BC =12,CD =12-x ,AP =22, 在Rt △ACP 中,可得:CP =(62)2+(22)2=45, 当CD =DP 时,△CDP 为等腰三角形,此时,可得 y =12-x ,即x 2-8x +32=(12-x )2,解得x =7,∴y =x 2-8x +32=72-8×7+32=25,∴S △DPE =252; 当CP =CD 时,△CDP 为等腰三角形;此时,可得12-x =45,解得x =12-45,∴y =x 2-8x +32=(12-45)2-8×(12-45)+32=160-645,∴S △DPE =160-6452=80-325,综上,△DPE 的面积为252或(80-325). 4. 解:(1)① 23; 【解法提示】∵E 是AC 的中点,∴当DE ∥BC 时,D 为AB 的中点,即BD =12AB =4, 又∵CD ⊥AB ,∴cos ∠B =BD BC =46=23. ②∵点E 是AC 的中点,∴当DE ⊥AC 时,DE 为AC 的垂直平分线,∴CD =AD ,设CD =AD =x ,则BD =8-x ,在Rt △BCD 中,根据勾股定理得:(8-x )2+x 2=62,解得x 1=4+2,x 2=4-2,∴sin ∠B =CD BC =4+26或4-26; (2)∵CD ⊥AB ,∴ S -AC 2=AD ·CD 2-(AD 2+CD 2)=-(AD 2+CD 2-2AD ·CD )-3AD ·CD 2, ∴ S -AC 2=-(AD -CD )2-3AD ·CD 2, ∴当AD =CD 时,S -AC 2的值最大,最大值为-3AD ·CD 2, 由(1)可知:-3AD ·CD 2= -3×(4-2)22=122-27; (3)34<tan ∠MCA <377. 【解法提示】当∠ABC 为直角时,根据勾股定理可得AC =10,此时可得 tan ∠A =BC AB =68=34. 当∠ACB 为直角时,根据勾股定理可得AC =27 ,此时可得tan ∠A =BC AC =627=377. ∵△ABC 是锐角三角形,∴34<tan ∠A <377. 由题意可知∠DEP =∠DEC +∠CEP =2∠A +∠CEP ,又∵∠DEP =k ∠A ,且k 为正整数,∴k =3,即∠CEP =∠AEF =∠A ,又∵EF始终与CM平行,∴∠MCA=∠AEF=∠A,∴34<tan∠MCA<377.。

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索中考备考攻略规律探索型问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题.纵观宜宾近五年中考,往往以选择题、填空题形式出现,这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖.其目的是考查收集、分析数据、处理信息的能力.所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题.规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,既考查分析、解决问题能力,也考查观察、联想、归纳能力以及探究能力和创新能力.题型可涉及填空题、选择题或解答题.中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .451.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A. a 10+b 19 B .a 10-b 19 C .a 10-b 17 D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数: .3.已知:1+112+122=112,1+122+132=116,1+132+142=1112,…,根据此规律1+192+1102= .4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法:设S=1+2+22+…+22 017+22 018,①则2S=2+22+…+22 018+22 019.②②-①,得2S-S=S=22 019-1.∴S=1+2+22+…+22 017+22 018=22 019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n、…,若前n行点数和为930,则n=()A.29B.30C.31D.325.将全体正奇数排成一个三角形数阵:13 57911131517192123252729………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是()A B C D6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … 火柴棒根数4710131619…(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 .8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 .中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 .,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 .5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= .6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.10.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B ),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x -1)个车站发给该站的邮包(x -1)个,还要装上后面行程中要停靠的(n -x )个车站的邮包(n -x )个.(1)根据题意,完成下表:车站序号 在第x 个车站启程时邮政车厢上的邮包总个数1 n -12 (n -1)-1+(n -2)=2(n -2)3 2(n -2)-2+(n -3)=3(n -3)4 3(n -3)-3+(n -4)=4(n -4)5 … … n 0(2)根据上表写出列车在第x 个车站启程时,邮政车厢上共有的邮包个数y (用x 、n 表示); (3)当n =18时,列车在第几个车站启程时邮车上的邮包个数最多?参考答案中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( D )A .5B .-14C .43D .45【解析】∵a 1=5,a 2=11-a 1=11-5=-14,a 3=11-a 2=11-⎝⎛⎭⎫-14=45,a 4=11-a 3=11-45=5,…,∴数列以5、-14、45三个数依次不断循环.∵2 019÷3=673,∴a 2 019=a 3=45.1.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( B )A .a 10+b 19B .a 10-b 19C .a 10-b 17D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数:2n -1n 2+1W. 3.已知:1+112+122=112,1+122+132=116, 1+132+142=1112,…,根据此规律1+192+1102= 1190 W. 4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法: 设S =1+2+22+…+22 017+22 018,① 则2S =2+22+…+22 018+22 019.② ②-①,得2S -S =S =22 019-1.∴S =1+2+22+…+22 017+22 018=22 019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).解:(1)210-1;(2)311-12; (3)设S =1+a +a 2+…+a n ,①则aS =a +a 2+a 3+…+a n +a n +1.②②-①,得(a -1)S =a n +1-1.∴S =a n +1-1a -1,即1+a +a 2+…+a n =an +1-1a -1.点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n 、…,若前n 行点数和为930,则n =( B )A .29B .30C .31D .32【解析】设前n 行的点数和为S ,则S =2+4+6+…+2n =(2n +2)n2=n (n +1). 若S =930,则n (n +1)=930,即(n +31)(n -30)=0,∴n 1=-31(不合题意,舍去),n 2=30.5.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … …根据以上排列规律,数阵中第25行的第20个数是( A ) A .639 B .637 C .635 D .633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是( B )A B C D【解析】根据题意可知前面4个笑脸循环出现,因为2 018÷4=504……2,所以第2 018个图形是循环出现到第2个图形.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … n火柴棒根数4 7 10 13 16 19 … 3n +1(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?解:(1)见上表;(2)由3(n +1)+1=22,解得n =6. ∴这位同学最后摆的图案是第7个图案.图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( C )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n【解析】根据相似三角形的性质,对应高的比等于相似比,得出h 2=1+12h 1,依次得出h 3、h 4、…、h n ,再对h n 进行计算变形即可.,7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( D )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 (505,505) .【解析】根据各个点(点A 1和第四象限内的点除外)分别位于象限的角平分线上,逐步探索出下标和各点坐标之间的关系,根据规律推出点A 2 018的坐标.通过观察可得序号是4的倍数的点在第三象限,由2 018÷4=504……2,得点A 2 018在第一象限,其横、纵坐标都为(2 018-2)÷4+1=505.,8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 (47,16) W.中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( D )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 (2n -1,2n -1) W.,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 1 838 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 (-22 017,22 0173) W.5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= 1 W.6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 (3n +1) 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形共有 6 058 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.解:尝试 (1)由题意,得-5-2+1+9=3,故前4个台阶上的数字的和是3; (2)由题意,得-2+1+9+x =3,所以x =-5;应用 由题意知台阶上的数从下到上每4个循环,因为31÷4=7……3,所以7×3+1-2-5=15, 即从下到上前31个台阶上数的和是15. 发现 “1”所在的台阶数为4k -1.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.解:(1)1n -1n +1;(2)1-1n +1;[原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1.](3)∵x -1+(xy -2)2=0,∴x -1=0,xy -2=0, 解得x =1,y =2.则原式=11×2+12×3+13×4+…+12 018×2 019=1-12 019=2 018 2 019.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包(x-1)个,还要装上后面行程中要停靠的(n-x)个车站的邮包(n-x)个.(1)根据题意,完成下表:(2(3)当n=18时,列车在第几个车站启程时邮车上的邮包个数最多?解:(1)见上表;(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81.当x=9时,y取最大值,所以列车在第9个车站启程时,邮政车厢上的邮包个数最多.。

四川省2020年九年级数学中考复习专题 操作探究型+最值问题(含答案)

四川省2020年九年级数学中考复习专题    操作探究型+最值问题(含答案)

操作探究型+最值问题1.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是 ( )A .55°B .60°C .65°D .70°答案:C2.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60°,得到线段BM ,连接AM 并延长交CD 于N ,连接MC ,则△MNC 的面积为 ( ) A .2312a - B . 2212a - C . 2314a - D . 2214a -答案:C3.如图,Rt △ABC 中,∠B =90°,AB =3 cm ,AC =5 cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于 cm .答案:74.如图,把等边三角形ABC 沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,且DP ⊥BC ,若BP =4 cm ,则EC = cm .答案:2+2[解析] 根据“30°角所对的直角边等于斜边的一半”可求得BD =8,再由勾股定理求得DP =4.根据折叠的性质可以得到∠DPE =∠A =60°,DP =DA =4,易得∠EPC =30°,∠PEC =90°,所以EC =PC =(8+4-4)=2+2.5.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA =6,PB =8,PC =10,则四边形APBQ 的面积为 .答案:24+9[解析] 连接PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=A C.∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6.∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ.∴△APC≌△AQB,∴PC=QB=10,[来源:学|科|网]在△BPQ中,∵PB2=82=64,PQ2=62=36,BQ2=102=100,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.6.如图,折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上.若AB=AD+2,EH=1,则AD =.答案:.3+27.如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N 处,MN与CD交于点P,设BE=x.(1)当AM=13时,求x的值.(2)随着点M在边A D上位置的变化,△PDM的周长是否发生变化?如果变化,请说明理由;如果不变,请求出该定值.(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.解: (1)由折叠可知ME=BE=x,∴AE=1-x.在Rt△AEM中,由AM=13,得(13)2+(1-x)2=x2.解得x=.(2)不发生变化.如图,连接BM,BP,过点B作BH⊥MN,垂足为H.∵EB=EM,∴∠EBM=∠EM B.∵∠EBC=∠EMN,∴∠MBC=∠BMN.∵AD∥BC,∴∠AMB=∠MBC,∴∠AMB=∠BMN,又∵∠A=∠MHB,BM=BM,∴△BAM≌△BHM.∴AM=HM,BH=A B.∵BC=AB,∴BH=B C.又∵BP=BP,∴Rt△BHP≌Rt△BCP.∴HP=P C.∴△MDP的周长=MD+DP+MP=MD+DP+MH+HP=MD+AM+DP+PC=AD+DC=2.∴△MDP的周长为定值,周长为2.(3)如图,连接BM,过点F作FQ⊥AB,垂足为Q.则QF=BC=A B.∵∠BEF+∠EBM=90°,∠AMB+∠EBM=90°,∴∠BEF=∠AM B.又∵∠A=∠EQF=90°,∴△AMB≌△QEF.∴AM=EQ.设AM=a,则a2+(1-x)2=x2.∴a=.∴CF=QB=x-.∴S=(CF+BE)×1 =(x-+x) =(2x-).设=t,则2x=t2+1.∴S=(t2+1-t)=t-2+.∴当t=,即x=时,S的最小值为.8.如图,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC交于点Q.【探究一】在旋转过程中,(1)如图②,当CEAE=1时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图③,当CEAE=2时,EP与EQ满足怎样的数量关系?并说明理由.(3)根据你对(1),(2)的探究结果,试写出当CEAE=m时,EP与EQ满足的数量关系式为,其中m的取值范围是(直接写出结论,不必证明).【探究二】若CEAE=2且AC=30 cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?求出相应S的值或取值范围.答案:探究一:(1)EP=EQ.证明如下:连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,∠PBE=∠C,又∠BEP=∠CEQ,则△BEP≌△CEQ,∴EP=EQ.(2)EQ=2EP.如图,作EM⊥AB于M,EN⊥BC于N,则∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP∶EQ=EM∶EN=AE∶CE=1∶2.∴EQ=2EP.(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN,∴Rt△MEP∽Rt△NEQ,∴,∵=m=,∴,∴EP与EQ满足的数量关系式为EP∶EQ=1∶m,∴0<m≤2+(当m>2+时,EF与BC不会相交).探究二:若AC=30 cm,(1)设EQ=x cm,则S=x2,所以当x=10cm时,面积最小,是50 cm2;当x=10cm时,面积最大,是75 cm2.(2)当x=EB=5cm时,S=62.5 cm2, 故当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S ≤75时,这样的三角形有一个.9.如图,∠MON=90°,点B在射线ON上且OB=2,点A在射线OM上,以AB为边在∠MON内部作正方形ABCD,其对角线AC、BD交于点P.在点A从O点出发,沿射线OM 的运动过程中,下列说法正确的是()A.点P始终在∠MON的平分线上,且线段OP的长有最小值等于2B.点P始终在∠MON的平分线上,且线段OP的长有最大值等于2C.点P不一定在∠MON的平分线上,但线段OP的长有最小值等于2D.点P运动路径无法确定解:作PE⊥ON、PF⊥OM垂足分别为E、F,∠PEB=∠PFA=90°,∵ABCD是正方形,∴PA=PB,∵∠BOA=∠BAC=90°,∴∠DAM=∠OBA,∠POD=∠PBA=45°,∴∠DMA+∠POD=∠PBA+∠OBA,即∠PBE=∠PAF,∴△PBE≌△PAF,∴PE=PF,即P在∠MON的平分线上,当点A在点O时,OP最小,此时,OP是正方形ABCD的对角线的一半,而此时,正方形的边长为2,OP=22OB=2,10.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是________答案:取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=22,∴AB=2BC=4,∴OC=12AB=2,OP=12AB =2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=12•2π•1=π.11.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.答案:如图,∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,则BE′=12BD=2,∴点E′与点E重合,∴∠BDE=30°,DE=3BE=23,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,∴△DPE≌△FDH,∴FH=DE=23,∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为23,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ =AE=10﹣2=8,∴F1F2=DQ=8,∴当点P从点E运动到点A时,点F运动的路径长为8.12.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________。

四川省2020年九年级数学中考复习专题 操作探究型+最值问题(含答案)

四川省2020年九年级数学中考复习专题    操作探究型+最值问题(含答案)

操作探究型+最值问题1.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是 ( )A .55°B .60°C .65°D .70°答案:C2.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60°,得到线段BM ,连接AM 并延长交CD 于N ,连接MC ,则△MNC 的面积为 ( )A .212a B . 212a C . 214a D . 214a答案:C3.如图,Rt △ABC 中,∠B =90°,AB =3 cm ,AC =5 cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于 cm .答案:74.如图,把等边三角形ABC 沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,且DP ⊥BC ,若BP =4 cm , 则EC = cm .答案:2+2√3 [解析] 根据“30°角所对的直角边等于斜边的一半”可求得BD =8,再由勾股定理求得DP =4√3.根据折叠的性质可以得到∠DPE =∠A =60°,DP =DA =4√3,易得∠EPC =30°,∠PEC =90°,所以EC =12PC =12(8+4√3-4)=2+2√3.5.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA =6,PB =8,PC =10,则四边形APBQ 的面积为 .答案:24+9√3 [解析] 连接PQ ,如图,∵△ABC 为等边三角形, ∴∠BAC =60°,AB =A C .∵线段AP 绕点A 顺时针旋转60°得到线段AQ , ∴AP =AQ =6,∠PAQ =60°,∴△APQ 为等边三角形,∴PQ =AP =6.∵∠CAP +∠BAP =60°,∠BAP +∠BAQ =60°, ∴∠CAP =∠BAQ . ∴△APC ≌△AQB ,∴PC =QB =10,[来源:学|科|网]在△BPQ 中,∵PB 2=82=64,PQ 2=62=36,BQ 2=102=100,而64+36=100,∴PB 2+PQ 2=BQ 2, ∴△PBQ 为直角三角形,∠BPQ =90°,∴S 四边形APBQ =S △BPQ +S △APQ =12×6×8+√34×62=24+9√3.6.如图,折叠矩形纸片ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上.若AB =AD +2,EH =1,则AD = .答案:.3+2√37.如图,在边长为1的正方形ABCD 中,动点E ,F 分别在边AB ,CD 上,将正方形ABCD 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,设BE =x . (1)当AM =13时,求x 的值. (2)随着点M 在边A D 上位置的变化,△PDM 的周长是否发生变化?如果变化,请说明理由;如果不变,请求出该定值.(3)设四边形BEFC 的面积为S ,求S 与x 之间的函数表达式,并求出S 的最小值.解: (1)由折叠可知ME =BE =x ,∴AE =1-x . 在Rt △AEM 中,由AM =13, 得(13)2+(1-x )2=x 2.解得x =59. (2)不发生变化.如图,连接BM ,BP ,过点B 作BH ⊥MN ,垂足为H .∵EB =EM ,∴∠EBM =∠EM B .∵∠EBC =∠EMN ,∴∠MBC =∠BMN .∵AD ∥BC ,∴∠AMB =∠MBC ,∴∠AMB =∠BMN , 又∵∠A =∠MHB ,BM =BM ,∴△BAM ≌△BHM . ∴AM =HM ,BH =A B .∵BC =AB ,∴BH =B C . 又∵BP =BP ,∴Rt △BHP ≌Rt △BCP .∴HP =P C .∴△MDP 的周长=MD +DP +MP =MD +DP +MH +HP =MD +AM +DP +PC =AD +DC =2. ∴△MDP 的周长为定值,周长为2.(3)如图,连接BM ,过点F 作FQ ⊥AB ,垂足为Q .则QF =BC =A B . ∵∠BEF +∠EBM =90°,∠AMB +∠EBM =90°, ∴∠BEF =∠AM B .又∵∠A =∠EQF =90°,∴△AMB ≌△QEF .∴AM =EQ .设AM =a ,则a 2+(1-x )2=x 2. ∴a =√2x -1.∴CF =QB =x -√2x -1.∴S =12(CF +BE )×1 =12(x -√2x -1+x ) =12(2x -√2x -1).设√2x -1=t ,则2x =t 2+1.∴S =12(t 2+1-t )=12t -122+38.∴当t =12,即x =58时,S 的最小值为38.8.如图,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 交于点Q . 【探究一】在旋转过程中,(1)如图②,当CEAE =1时,EP 与EQ 满足怎样的数量关系?并给出证明. (2)如图③,当CEAE=2时,EP 与EQ 满足怎样的数量关系?并说明理由.(3)根据你对(1),(2)的探究结果,试写出当CE AECEEA =m 时,EP 与EQ 满足的数量关系式为 ,其中m的取值范围是 (直接写出结论,不必证明). 【探究二】若CEAE=2且AC =30 cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化?求出相应S 的值或取值范围.答案:探究一:(1)EP =EQ .证明如下:连接BE ,根据E 是AC 的中点和等腰直角三角形的性质,得BE =CE ,∠PBE =∠C ,又∠BEP =∠CEQ , 则△BEP ≌△CEQ ,∴EP =EQ .(2)EQ=2EP.如图,作EM⊥AB于M,EN⊥BC于N, 则∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP∶EQ=EM∶EN=AE∶CE=1∶2.∴EQ=2EP.(3)过E点作EM⊥AB于点M,作EN⊥BC于点N, ∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN,∴Rt△MEP∽Rt△NEQ,∴EPEQ =MEEN,∵CEEA=m=ENME,∴EPEQ=1m,∴EP与EQ满足的数量关系式为EP∶EQ=1∶m,∴0<m≤2+√6(当m>2+√6时,EF与BC不会相交).探究二:若AC=30 cm,(1)设EQ=x cm,则S=14x2,所以当x=10√2cm时,面积最小,是50 cm2;当x=10√3cm时,面积最大,是75 cm2.(2)当x=EB=5√10cm时,S=62.5 cm2,故当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.9.如图,∠MON=90°,点B在射线ON上且OB=2,点A在射线OM上,以AB为边在∠MON内部作正方形ABCD,其对角线AC、BD交于点P.在点A从O点出发,沿射线OM的运动过程中,下列说法正确的是()A.点P始终在∠MON的平分线上,且线段OP的长有最小值等于2B.点P始终在∠MON的平分线上,且线段OP的长有最大值等于2C.点P不一定在∠MON的平分线上,但线段OP的长有最小值等于2D.点P运动路径无法确定解:作PE⊥ON、PF⊥OM垂足分别为E、F,∠PEB=∠PFA=90°,∵ABCD是正方形,∴PA=PB,∵∠BOA=∠BAC=90°,∴∠DAM=∠OBA,∠POD=∠PBA=45°,∴∠DMA+∠POD=∠PBA+∠OBA,即∠PBE=∠PAF,∴△PBE≌△PAF,∴PE=PF,即P在∠MON的平分线上,当点A在点O时,OP最小,此时,OP是正方形ABCD的对角线的一半,而此时,正方形的边长为2,OP=22OB=2,10.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是________答案:取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=AB=4,∴OC=12AB=2,OP=12AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=12•2π•1=π.11.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD 为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.答案:如图,∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,则BE′=12BD=2,∴点E′与点E重合,∴∠BDE=30°,DE BE=,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,∴△DPE≌△FDH,∴FH=DE=∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,∴F1F2=DQ=8,∴当点P从点E运动到点A时,点F运动的路径长为8.12.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB 为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作探究一.选择题1. (2019•黑龙江省绥化市•3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③答案:B考点:正方形的性质,等腰三角形,等边三角形的判定。

解析:①当x=0(即E、A两点重合)时,如下图,分别以A、F为圆心,2为半径画圆,各2个P点,以AF为直径作圆,有2个P点,共6个,所以,①正确。

②当0<x<22时,P点最多有8个,故②错误。

2. (2019•河北省•3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2C.【解答】解:如图所示,n的最小值为3,3. (2019•河北省•2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④B.解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②4. (2019•河北省•2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对B.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;三.解答题1.(2019•湖北省仙桃市•10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,D C.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC =AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC =;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=A D.(2)AB+AC=A D.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥A D.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.2.(2019•湖北省咸宁市•10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,C D.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD =10,AF=5,求DF的长.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.【解答】解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.【点评】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.3.(2019•四川省广安市•12分)在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB 、AC 于点E 、F .(1)如图1.14,当EF ∥BC 时,求证:1=+AFCFAE BE ; (2)如图2.14,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3.14,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.解:(1)ΘG 是△ABC 重心,∴2=AG , ……………………1分 又ΘEF ∥BC ,21==∴AG DG AE BE ,21==AG DG AF CF ,……………………2分则12121=+=+AF CF AE BE . ……………………3分 (2)(1)中结论成立,理由如下: ……………………4分如图,过点A 作AN ∥BC 交EF 的延长线于点N , FE 、CB 的延长线相交于点M ,则AN BM AE BE =,ANCM AF CF =, ……………………5分 ∴AN CM BM AN CM AN BM AF CF AE BE +=+=+, ……………………6分 又ΘDM CD BM CM BM ++=+, 而D 是BC 的中点,即CD BD =,∴DM DM DM DM BD BM CM BM 2=+=++=+ ∴AN DM AF CF AE BE 2=+, 又Θ21==AG DG AN DM ,∴1212=⨯=+AF CF AE BE ,故结论成立; ……………………9分 (3)(1)中结论不成立,理由如下:……………………10分 当F 点与C 点重合时,E 为AB 中点,AE BE =,点F 在AC 的延长线上时,AE BE >,1>∴AE BE ,则1>+AFCFAE BE , ……………………11分 同理:当点E 在AB 的延长线上时,1>+AFCFAE BE , ∴结论不成立. ……………………12分备注:(2)问的证明中,直接使用梯形中位线定理并作出正确证明者,不扣分. 4. (2019•黑龙江省齐齐哈尔市•12分)综合与实践图1.14图2.14折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG=∠A′HG =70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.5.(2019•山东青岛•10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.6.(2019•山东威海•12分)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=A C.求证:BD=AD+C D.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=A C.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是BD=CD+2AD.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是BD=CD+AD.【分析】(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM =CD,于是得到结论;(2)类比探究:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD 根据全等三角形的性质得到结论;【探究2】如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论;(3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论.【解答】解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM=AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM=CD,∴BD=BM+DM=CD+2AD;故答案为:BD=CD+2AD;(3)拓展猜想:BD=BM+DM=CD+AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM=CD,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴DM=AD,∴BD=BM+DM=CD+A D.故答案为:BD=CD+AD【点评】本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.7 (2019湖北仙桃)6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【解答】解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求【点评】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.。

相关文档
最新文档