稳恒磁场习题
大学物理第六章稳恒磁场习题参考答案
第六章稳恒磁场作业集第37讲毕奥-萨伐儿定律一、Ⅰ类作业:解:根据毕奥萨伐尔定律20sin d 4d r l I B θπμ=,方向由右手定则决定。
(1)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==方向垂直纸面向里(沿z 轴负向)。
(2)00sin d 4sin d 4d 2020=︒==L l I r l I B πμθπμ(3)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==,方向沿x 轴正向。
(4)因为2245sin sin ,2222=︒==+=θL L L r ,所以2020d 82sin d 4d Ll I r l I B πμθπμ==,方向垂直纸面向里(沿z 轴负向)。
37.2教材223页第6.2、6.4、6.6题解:(1)6.2:(2)6.4:(3)6.6:二、Ⅱ类作业:解:根据磁场叠加原理可知,中心点O 的磁感应强度是两根半无限长载流导线的B 和41载流圆弧的B 的矢量和。
即321B B B B ++=其中,半无限长载流导线在其延长线上的031==B B ,41载流圆弧的R I B 802μ=,方向垂直纸面向外。
所以RI B B 802μ==,方向垂直纸面向外第38讲磁场的性质一、Ⅰ类作业:38.1一块孤立的条形磁铁的磁感应线如图所示,其中的一条磁感线用L 标出,它的一部分在磁铁里面,你能根据安培环路定理判断磁铁里面是否有电流吗?如果有穿过L 的电流方向是怎样的?解:因为磁感应强度沿L 的线积分不为零,即环量不为零,根据安培环路定理,有电流穿过环路L 。
根据右手定则,电流是垂直纸面向里。
38.2教材229页6.7、6.9题二、Ⅱ类作业:38.3如图所示,有一根很长的同轴电缆,由两层厚度不计的共轴圆筒组成,内筒的半径为1r 1,外筒的半径为r 2,在这两导体中,载有大小相等而方向相反的电流I ,计算空间各点的磁感应强度.解:该电流产生的磁场具有轴对称性,可用安培环路定理计算磁感应强度。
大学物理习题稳恒磁场
稳恒磁场一、选择题1. 一圆电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。
2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中321O ,O ,O 处的磁感应强度为B B B 123,,,则 【 】(A)B B B 123==; (B) 0B 0B B 321≠== ;(C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠=3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】(A) 若⎰=⋅L0l d B ,则必定L 上B 处处为零(B) 若⎰=⋅L0l d B, 则必定L 不包围电流(C) 若⎰=⋅L0l d B, 则L 所包围电流的代数和为零(D) 回路L 上各点的B 仅与所包围的电流有关。
4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2(C) 4(D) 1/45. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】(2)选择题(A) 2/IB Na 32,(B)4/IB Na 32, (C) 60sin IB Na 32,(D) 06. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】 B 22)D (B 21)C (B 2)B (B 2)A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两条轨迹可以判断【 】(A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。
习题第06章(稳恒磁场)-参考答案.
第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
4大学物理习题_稳恒磁场
稳恒磁场一、选择题1.一个半径为r 的半球面如右图放在均匀磁场中,通过半球面的磁通量为 (A )22r B π; (B )2r B π;(C )22cos r B πα; (D )2cos r B πα。
2.下列说法正确的是:(A )闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过; (B )闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必为零; (C )磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必为零;(D )磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度都不可能为零。
3.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A )0=⋅⎰Ll d B,且环路上任意一点0=B 。
(B )0=⋅⎰Ll d B,且环路上任意一点0≠B 。
(C )0≠⋅⎰Ll d B ,且环路上任意一点0≠B 。
(D )0≠⋅⎰Ll d B,且环路上任意一点=B 常量。
4.图中有两根“无限长” 载流均为I 的直导线,有一回路L ,则正确的是(A )0=⋅⎰Ll d B,且环路上任意一点0=B ;(B )0=⋅⎰Ll d B,且环路上任意一点0≠B ;(C )0≠⋅⎰Ll d B,且环路上任意一点0≠B ;(D )0≠⋅⎰Ll d B,且环路上任意一点0=B 。
5.取一闭合积分回路L ,使三根载流导线穿过它所围成的面,现改变三根导线之间的相互间隔,但不越出积分回路,则:·LOI图(A )回路L 内的I ∑不变,L 上各点的B不变;(B )回路L 内的I ∑不变,L 上各点的B改变;(C )回路L 内的I ∑改变,L 上各点的B不变; (D )回路L 内的I ∑改变,L 上各点的B改变。
6.在球面上竖直和水平的两个载流圆线圈中,通有相等的电流I ,方向如图所示,则圆心处磁感应强度B的大小为(A )R I 0μ(B )R I20μ (C )RI 220μ(D )R I40μ7.一长直载流I 的导线,中部折成图示一个半径为R 的圆,则圆心的磁感应强度大小为 (A )R I 20μ;(B )RIπ20μ; (C )RIRIπ2200μμ+;(D )0。
第7章 (稳恒磁场)习题课
二.载流导线和运动电荷所受磁场力
1. 洛伦兹力: 特征:方向垂直于v和B所构成的平 面;不作功,不改变电荷的速率和动能.
方向沿x方向 (若F为正值,则合力的方向与x轴正向一致)。
例5 半径分别为R1和R2的两个半圆弧与直径的两小段
构成的通电线圈abcda (如图所示),放在磁感强度
为B的均匀磁场中,平行线圈所在平面.则 线圈的磁矩大小为
1 2 I ( R2 R12 ) 2 ___________ ,
R2 a b
2r
0
2
R o r
dr
B
0
2
dr
0
R
0R
2
dr
例4. 均匀带电细直线AB, 电荷线密度为λ, 绕垂直于 直线通过O 点的轴以角速度ω 匀速转动( 线形状不 变, O 点在A B 延长线上) , 求: r dr (1 ) O点的磁感应强度B; O B a A (2 ) 磁矩m ; b (1)解 :在带电细线离O点r处取线元dr,其带 电量 dq dr,旋转时相当于一圆电流
2 r 2 R2 I 1 H 2 2 2r R R 3 2
1.解: 圆电流在O点产生的磁场 0 I 2 B1 方向× 2R 长直导线电流在O点产生的磁场 0 I 2 方向× B2 2R 导体管在O点产生的磁场由安培环路定理求得,
B3
0 I1
2 (d R)
方向×
圆心O点处的磁感应强度
稳恒磁场练习题(选择填空)
A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
,M
BPm
11.在磁感应强度为B 均匀磁场中作一半径为r
半与球B夹面角S,为S边,则线通所过在半平球面面法S线的方磁向通单量位为矢量 n
A. r 2B
B. 2 r 2B
S
C. r 2B sin D. r 2B cos
n
B
12、已知:磁感应强度
B
Bi
求: 通过各面的磁通量。
Y
上 下 后 0
b
vv
a
1 B S1 B ac S1
c
B
vv
0 X
2 B S2 B ac
S2
Z
13、 S 是以圆周 L 为周界的任意曲面, 求通过 S 的磁通量。
S R2 B
3 2
R
S0 30
L
S
B
14.下列说法正确的是 ( )
一个同心圆形闭合回路L,则由安培环路定理
可知
(A)
B
d
l
0
,且环路上任意一点B = 0.
I
L O
(B)
L
B
d
l
0
,且环路上任意一点B≠0.
L
(C) B d l 0 ,且环路上任意一点B≠0.
(D)
L B
dl 0
,且环路上任意一点B =常量.
L
解: I 0, B 0
B
16、取一闭合积分回路 L ,使三根载流导线穿过它所围成的面,
而 的从 积Ad分.端L流0BI出 d l,等则于磁B.感13应0强I 度沿图中闭合1路2I0b径a L
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
北科大稳恒磁场习题
Y.L.Wang
如图所示,两根长直载流导线垂直纸面放置, 例: 如图所示,两根长直载流导线垂直纸面放置,电流 方向垂直纸面向外; I 1 = 1 A ,方向垂直纸面向外;电流 I 2 = 2 A,方向垂直 纸面向内。 纸面向内。则 P 点的磁感应强度 B 的方向与 x 轴的夹角 为( A ) (A)30°;
µ0 I1 I 2b (A) F = 2πx
(B) F =
π (a + b)
a
µ0 I1
A
I 2b
I1 a B
C I2 D b
(C) F = ∫a
a+b
µ0 I1 I 2 dx 2πx
(D) F = ∫b
µ0 I1 I 2 dx 2πx
Y.L.Wang
一圆形载流导线圆心处的磁感应强度为B 一圆形载流导线圆心处的磁感应强度为 1,若保 持导线中的电流强度不变,而将导线变成正方形, 持导线中的电流强度不变,而将导线变成正方形, 8 = 此时回路中心处的磁感应强度为B 此时回路中心处的磁感应强度为 2,则B2/B12 。
ω 解: Q i e = e 2π
-e
2
∴ Pm = ieπ r
e
=
ω
2
er
2
Y.L.Wang
例3. 薄圆环内半径a,外半径 ,可绕与环面垂直的轴o 薄圆环内半径 ,外半径b,可绕与环面垂直的轴 的角速度逆时针旋转。现给该圆环均匀带电+Q,求 以ω的角速度逆时针旋转。现给该圆环均匀带电 求 环心o处的磁感应强度 处的磁感应强度。 环心 处的磁感应强度。 解:将环分成无数同心小环,任选 将环分成无数同心小环, 个环, 环宽dr 其中一 个环,设其半径为 r, 环宽 则环上带电量: 则环上带电量: Q
大学物理稳恒磁场习题库
解:将载流圆柱薄壳分成无数多个宽为dl 的无限长细导 线, 利用: I
2R I I I 则其通有电流: dI dl Rd d R R y I 0 dI 0 d dB 2 2R 2 R
如图所示,因每个 dB
lB dd
dB o dl 方向不同,而由对称性 可知 By 0
.B
y
d
I1
d
dFy
dF
dl Rd 0 I1 I 2 Rd dF 2π d R cos
O R
I 2dl
d Fx
x
I2
0 I1 I 2 R cos d dFx dF cos 2π d R cos
0 I1 I 2 R sin d dFy dF sin 2π d R cos
解 Pm ISen Pm IS 方向:线圈的法线方向 π M pm B M NBIS sin , M M max
M max NBIS 50 0.05 2 (0.2) N m
2
2
M max 0.2N m
问 如果是任意形状载流线圈,结果如何?
0 aI1I 2 b a cos b a cos ( 2 2 2 2 ) a b 2ab cos a b 2ab cos
y
0 aI 1 I 2 a sin a sin ( 2 ) 2 r 2 r1
r1
2 1
r2
F2
例2 如图半径为0.20m,电流为20A,可绕轴oy旋 转的圆形载流线圈放在均匀磁场中 ,磁感应强度的大 小为0.08T,方向沿 x 轴正向.问线圈受力情况怎样? 以oy为轴线圈所受的磁力矩又为多少?
大学物理《稳恒电流的磁场》习题答案
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
稳恒磁场习题
稳恒磁场复习题一 判断题1 一带电粒子作匀速直线运动通过某区域,所以该区域的磁场为零。
2 一闭合回路中有两条通有大小相同、方向相反电流的两条导线,则闭合回路上各点的磁感应强度为零。
3 一对相同带电量和相同质量的正、负电子同时在同一点入射一均匀磁场,已知他们的速度非别为2v 和v ,都和磁场垂直,若只考虑磁场作用,则他们同时回到出发点。
4 若闭合曲线上各点的H 为零,则该曲线所包围的传导电流的代数和为零二选择题1 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 0024I IR Rμμπ+; (C) 004I I R R μμπ+; (D) 0I R μπ. 2 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 002I I R R μμπ-; (C) 0022I IR Rμμπ-; (D) 0I R μπ. 3 一条无限长直导线在一处弯折为半径为R 的圆弧,如图。
已知导线电流强度为I ,圆心O 处的磁感应强度为(A)08IRμ; (B) 04I R μ; (C) 02I R μ; (D) 0.4 两根长直导线沿半径方向连接到粗细均匀的铁环上的A 、B 两点,并与很远处的电源相连,两段弧AB 的长度和电流分别为L 1、L 2和I 1、I 2,则圆环中心的磁感应强度为(A)01124I L R μπ; (B) 02224I L R μπ; (C) 022*******I L I LR Rμμππ+; (D) 0. 5、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的 ( )(A) H仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零. (C) 若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D) 以闭合曲线L为边缘的任意曲面的H通量均相等.6、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为a ,则通过半球面S 的磁通量(取弯面向外为正)为(A) SB (B) 2SB (C) -SBsina (D) -SBcosa7、六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域. (D) Ⅳ区域.8 边长为L 的一个导线方框上同有电流I ,则此框中心的磁感应强度( ) (A)与L 无关. (B) 正比于L 2.(C) 与L 成反比. (D) 与I 2有关域.9 无限长通电流扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片最近边缘为b 处的P 点的磁感应强度B 的大小为( ) (A) ()02Ia b μπ+; (B)0ln()2I a ba b μπ+; (C) 0ln()2I a b b aμπ+; (D)()02/2I a b μπ+.三 填空题1 三根直载流导线A 、B 和C 平行地放置于同一平面内,分别载有恒定电流I 、2I 和3I 。
第章稳恒磁场习题包含答案
练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)一、选择题如图所示,边长为l 的正方形线圈中通有电流I: AlI πμ220.(C)lI πμ02(D) 以上均不对.1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ? 0, B 2 ? 0, B 1+B 2 = 0, B 3(C) B ? 0. 因为虽然B 3 = 0, 但 B 1+B 2 ? 0(D) B ? 0. 因为虽然B 1+B 2 = 0, 但 B 3 ? 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I 的磁感强度为:B(D) B =3?0I /(3?a ) . . 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C(A)R Iπμ20. (B) I 0μ.(D))11(40πμ+RI .二、填空题 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,?aob =180?.则圆心O 点处的磁感强度的大小B = .0图图图图图练习九 毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为?,如图所示. 则通过半球面S 的磁通量为:(A) ?r 2B . (B) 2?r 2B . (C) ??r 2B sin ?. (D) ??r 2B cos ?.如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2R : a 为(A) 1:1.(B) π2:1. π2 三、计算题1.在无限长直载流导线的右侧有面积为S 1和S2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬赏题)练习十 安培环路定理图图 图图一、选择题2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.(C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) ⎰⋅1d L l B =⎰⋅2d Ll B , 21P P B B =.(B) ⎰⋅d L l B ?⎰⋅ d L l B , 21P P B B =.(D) ⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) ?0I . (B) ?0I/3. 0I /4. 2?0I /3 .如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,(B) 0 d =⋅⎰Ll B ,且环路上任意点B =0.(C) 0 d ≠⋅⎰Ll B ,且环路上任意点B ?0.(D) 0 d ≠⋅⎰Ll B ,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路对于环路a , =⋅⎰aL l B d ;图图P 1 (aI 2P 2 (b图对于环路b , =⋅⎰bL l B d ;对于环路c , =⋅⎰cL l B d . ?0I , 0, 2?0I .练习十一 安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量F m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D图(AB OBO(DB O(CB O(B)B O(E图边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . l I B πμ0222=l π1l I π02.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA ?轴转动,导线通电转过? 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即? 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D) 将磁场B 减少1/4,线框中电流强度减少1/4.图图l (d (。
稳恒磁场练习题及答案
稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。
5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。
(B) 回路L 内可能有电流,且代数和不为零。
(C) 回路L 内一定无电流。
(D) 回路L 内可能有电流,但代数和为零。
6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。
(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。
(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。
(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。
稳恒磁场习题
B
的大小:
0 ,电流 I 2
0 I 2 0 Ir 2 B2 2a 2a R 2 r 2
B0
2a( R r )
2 2
0 Ir
2
(2)空心部分轴线上 O 点 B 的大小 :
电流 I 2 产生的 B2 0
电流 I 1产生的
0 I 1r 0 a IR B1 2 2R 2R 2 R 2 r 2 0 Ia 2 ( R 2 r 2 )
a a
可见,起点与终点一样的曲导线和直导线,只要处在 均匀磁场中,所受安培力一样.
例题11、如图在无限长直电流I1的磁场中, 有一通有电流I2,边长为a的正三角形回路 (回路与直电流共面)。求回路所受合力
解:由安培定律
dF I 2dl B
I1
A
0 I1 B 2x
B FAC
B
0 I
R
I
无限长直螺线管内部的磁场
磁通量
B 0 nI
磁场中的高斯定理 m B dS B cos dS
B dS 0
安培环路定理
B dl 0 I
L L
安培定律
dF Idl B
F
均匀磁场对载流线圈
0 Idl sin dB 2 4 r
B dB
载流直导线的磁场:
2
I
0 I B (cos 1 cos 2 ) 4a
0 I 无限长载流直导线: B 2a
直导线延长线上: 载流圆环 载流圆弧
a
1 2 R 2
b
解:
B B1 B2 B3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0I(11)(11)
I
4 r2 r1
r1 r2
o I
a
10
例5: 无限长直导线折成V形,顶
角为 ,置于X—Y平面内,且
一个角边与X轴重合,如图.当
导线中有电流 I 时,求Y轴上一
点P( ,0 )a处的磁感应强度大小。
解: 如图示,将 V形导线的两根半无限长导线分别标为1和2.
则导线1在P点的磁感应强度为
稳恒磁场习题课
a
1
内容:
•描述磁场的基本物理量——磁感应强度 •电流磁场的基本方程——Biot-savart定律 •磁场性质的基本方程——高斯定理与安培环路定理
•磁场对电流与运动电荷的作用——Lorentz力、Ampere力
毕奥---沙伐尔定律
dB0 4
Idl r
r3
dB40
Idslin
r2
BdB
BdS0
安培环路定理
LBdl 0I L
a
4
安培定律 均匀磁场对载流线圈 洛仑兹力
dFIld B
FdF
M p mB
pmISn
fmqvB
a
5
例1:(1)在没有电流的空间区域里,如果磁感应线是 平行直线,磁感应强度的大小在沿磁感应线和垂直 它的方向上是否可能变化(即磁场是否一定是均匀 的)?
(2)若存在电流,上述结论是否还对?
解: (1)不可能变化,即磁场一定是均
匀的.如图作闭合回路可证明
aB b d l c d B 1 d B a 2 b c 0 I 0
B1 B2 a
6
(匀2带)若电存平在面电两流侧,之上磁述力结线论是不平对行.直如线无,限但大B 均 方向相反,即 B1 B2
a
16
(2)空心部分轴线上 O 点 B 的大小 :
电流 I2 产生的 B2 0
电流 I 1产生的
B 1 2 0R I1r 2 2 0 R a2
IR 2 R2r2
0Ia 2(R2 r2 )
∴
B0
0Ia 2(R2 r2)
a
17
例题7、 无限长载流圆柱体,半径R,通
以电流I,电流均匀分布在截面上,现在
B1
0I 4a
方向垂直纸面向内.
a
11
导线2在P点的磁感应强度为
B24ac0Ios(1sin)
方向垂直纸面向外
P点的总磁感应强度为
B B 2B 14 a c 0Io (1 s sin co )s
方向垂直纸面向外
a
12
练习:
1. 边长为2a的等边三角形线圈,通有电流I, 则线圈中心处的磁感强度的大小为多少?
解: 空间各点磁场可看作半径为 R,
r 电流为I 1 均匀分布在横截面上的
圆柱导体和半径为 电流为 I 2
均匀分布在横截面上的圆柱导体
磁场之和.
a
15
(1)圆柱轴线上O 点 B 的大小:
电流 I 1 产生的 B1 0 ,电流 I2
产生的磁场
B220Ia2 20aR2Ir2r2
B0
0Ir2 2a(R2 r2)
a
2
载流直导线的磁场:
B4 0a I(c o1sco2 s)
无限长载流直导线: B 0 I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R
B 0I 2R 2
a
2
I
a 2
1
1
p
B
R
I
3
无限长直螺线管内部的磁场 B0nI
磁通量
磁场中的高斯定理
m B d S B c o dsS
a Ia 60°
90I/(4a)
O
a
13
2. 有一条载有电流I的导线弯成如图 示abcda形状.其中ab、cd是直线段, 其余为圆弧.两段圆弧的长度和半 径分别为l1、R1和l2、R2,且两段圆 弧共面共心.求圆心O处的磁感强度 的大小 ?
I ab
l2 l1
cd R1
R2 O
B2R1c0Io2lsR 11[sin2lR 11sin 2lR 22]
p
此题相当于电流流向相反的大小两载流柱体 产生磁场的叠加
B20R I2a202Ia I
Ib2 R2
0I 2R2
b2 (a )
2a
a
19
例8: 一根很长的铜导线载有电流10A,设电流均匀分 布.在导线内部作一平面,如图所示.试计算通过S平 面的磁通量(沿导线长度方向取长为1m的一段作计
算).铜的磁导率. 0
0I
4(Rl112Fra bibliotekl2 R22
)
方向向内
a
14
例6: 在半径为R 的长直圆柱形导体内部,与轴
r 线平行地挖成一半径为 的长直圆柱形空腔,
a a r 两轴间距离为 ,且 > ,横截面如图所
示.现在电流I沿导体管流动,电流均匀分布在 管的横截面上,而电流方向与管的轴线平 行.求:
(1) (2)空心部分轴线上的磁感应强度的大小.
圆柱体上挖去一半径为b的小圆柱体,其
轴线相互平行,且相距a(a+b<R),设挖去
小圆柱体后,余下部分电流密度不变,p
点在o’o的延长线上op=a
求:Bp=? 解:电流均匀分布的无限长
o’ b
o
a
R
p
载流柱体的磁场分布为:
a
18
0 Ir
B
2R
2
0 I 2r
0 r R R r
o’ b
o
a
R
r 解: 由安培环路定律求距圆导线 轴为 处的磁感应强度
lBdl0I
B2r
0
Ir2 R2
B 0Ir
2R2 a
20
磁通量
m(sB )dS 0 R2 0 R I2rd r 4 0I160Wb
a
21
练习: 截面为矩形的环形螺线管,
圆环内外半径分别为 R 1 和R 2 ,芯
子材料的磁导率为 ,导线总匝 数为 ,N绕得很密,若线圈通电
解:O点B为四段有限长直载流导线产生的
磁感应强度的叠加,方向相同,所以
B04 4 40 Ba I1 c 4 o 4 so 4 5 0 a I c[o 1 cs3 o 0 1 5s co2] s a
2 0I a
方向: ⊙
a
9
例题4、如图的载流导线,求o点的
B
解: 以⊙为正方向
B 0 I 0 I 0 I 0 I 4 r2 4 r2 4 r1 4 r1
.
a
7
例题2、如图在半径为R的圆周上,a、b、
c三点依次相隔90°,
a、c两处有垂直纸面
向里的电流元 Idl
b
求:b点磁感应强度 Idl a
c Idl
解:
dB Id ldB Id l 40
Idl 2R2
dB24 0
Idl
2R2 a
2 2
0 Idl 4 2R 2
8
例题3、 载流方线圈边长2a,通电流I, 求:中心o处磁感应强度
流 .I求:
(1)芯子中的 B值和芯子截面的磁通量. (2)在r R1和 r R2 处的 B值.
解: (1)由安培环路定理可求:
BN/I2 (r)
a
22
磁通量
B ds2N IlbnR R12