一元一次方程复习课教案
一元一次方程(复习课教案)
![一元一次方程(复习课教案)](https://img.taocdn.com/s3/m/9cc518513868011ca300a6c30c2259010302f306.png)
一元一次方程(单元复习课)【复习目标】1.系统了解一元一次方程的知识框架;2.知道解一元一次方程的步骤,熟练掌握一元一次方程的解法;3.知道列一元一次方程解应用题的步骤,会列方程解应用题;4.在小组合作交流的过程中培养学生学习数学的习惯和复习的方法.【复习重点】形成一元一次方程章节知识框架图.【活动设计】活动一、一元一次方程知识复习1.(1)已知关于x 的方程150k x -+=是一元一次方程,则k = .(2)已知关于x 的方程()250k x -+=是一元一次方程,则k .(3)已知关于x 的方程()1250k k x --+=是一元一次方程,则k = .说明:本题引导学生回忆一元一次方程的概念.2.已知3x =是关于x 的方程8203x a -=的解,则a = . 说明:本题引导学生回忆方程的解的概念.3.下列运用等式的性质进行的变形,不正确...的是( ) A.如果a b =,那么55a b +=+ B.如果a b =,那么ma mb =C.如果a b =,那么a b c c = D.如果a b c c=,那么a b = 说明:本题引导学生回忆等式的性质. 4.若2260x y --=,则2635y x --的值为 .说明:本题引导学生回忆方程的解的概念.5.解方程:211135x x ++-=. 说明:本题引导学生回忆解一元一次方程的步骤,及每一步骤的注意点. 6.如果方程()()322212x x ---=-也是关于x 的方程203m x --=的解,求m 的值. 说明:本题引导学生回忆方程的解的概念.【课堂小结】(1)一元一次方程、方程的解的概念?等式的基本性质?(2)解一元一次方程的步骤有哪些?每一步骤变形的依据是什么?活动二、利用一元一次方程知识解决实际问题思考:我们在这一章中重点学习了哪几种类型的应用题?(1)引导学生回忆类型:调配问题、行程问题、工程问题、数字问题、方案问题、盈亏问题; (2)引导学生回忆典型问题中的数量关系:如行程问题中:速度、时间、路程的关系;工程问题中:工作效率、工作时间、工作总量的关系;工作效率、工作时间、工作人数、工作总量之间的关系.盈亏问题中:利润=售价—进价=进价×利润率折数售价=标价×10……解决下列问题:1.某种长方体包装盒的表面展开图如图所示,如果该长方体包装盒的长比宽多4cm,求这种长方体包装盒的体积.2.小王逛超市看到如下两个超市的促销信息:(1)当一次性购物标价总额是300元时,甲乙超市实际付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【课堂小结】列方程解应用题的步骤?教师总结:审.题,设.未知数,列.方程,解.方程,检验.,写出答.案.“审”是关键,“验”是保证,“设、列、解、答”是过程.附:板书设计:。
数学七年级上《一元一次方程》复习教学案
![数学七年级上《一元一次方程》复习教学案](https://img.taocdn.com/s3/m/887d997f0c22590103029d3c.png)
一元一次方程 专题复习【知识点导航】知识点复习一(概念)1、什么是方程方程和等式的区别是什么方程是含有未知数的等式,方程是等式,但等式不一定是方程。
2.什么是一元一次方程它的标准形式和最简形式是什么一元一次方程是只指含有一个 未知数,且未知数的最高次数是1的方程。
它的标准形式是:ax+b=0 (a ≠0) ;它的最简形式是:ax=b (a ≠0) 练习1:1.下列说法中正确的是 ( ) A.方程是等式 B.等式是方程 C.含有字母的等式是方程 D.不含有字母的方程是等式 知识点复习二1.什么是方程的解,什么是解方程方程的解是指能使方程两边都相等的未知数的值,解方程是指求出方程解的过程。
【知识点复习三等式有哪些性质,并以字母形式表示出来 等式性质1:如果a=b ,那么: a+c=b+c等式性质2:如果a=b ,那么:ac=bc ,a/c=b/c (c ≠0)知识点复习四解一元一次方程的一般步骤有哪些它的根据是什么 >1、去分母:不要漏乘分母为1的项。
2、去括号:注意符号3、移项:①将含有未知数的项移到等式的 一边;将常数项 移到另一边;②注意“变号”4、合并 (乘法分配律的逆用)5、系数化1:除以一个数等于乘以这个数的倒数。
【考点指津】考点一、考查一元一次方程解的概念!例1已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是解析:由题意知道方程的解是x=m,根据方程的解的定义,把m x =代入方程234=-m x 得:234=-m m ,所以2=m .点评:本题主要是在考查方程的解的定义的基础上求方程中参数的值,这类题目在近几年的中考中一考点二、利用一元一次方程找规律例2(2009年浙江台州)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n = ▲ ;②第i 行第j 列的数为 ▲ (用i ,j 表示).、第1列第2列 第3列…第n 列第1行12?3…n第2行1+n2+n 3+n ……n 2第3行 12+n 22+n 32+n… n 3…*…… ………解析:由表格中我们不难发现第4行第2列的数可表示为23+n ,又因为它的值为32,所以有23+n =32,解这个方程得:10=n 。
《一元一次方程小结复习(第二课时)》教案
![《一元一次方程小结复习(第二课时)》教案](https://img.taocdn.com/s3/m/0fbd8e8bafaad1f34693daef5ef7ba0d4a736d85.png)
《一元一次方程小结复习(第二课时)》教案我们主要复习列方程解实际问题。
列方程解实际问题的过程一般例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉.现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?分析一:等量关系:小月饼的块数=2×大月饼的块数.解:设用x kg 面粉生产大月饼,则用(4500-x )kg 面粉生产小月饼.45002.0.020.05x x-= x =2500.4500-x =2000.检验: x =2500是原方程的解且符合实际意义.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.分析二:可列方程为 450020.020.05x x -=⨯ 分析三:解:设生产y 块大月饼,则生产2y 块小月饼. 0.05y+0.02×2y=4500.y=50000. 0.05y=2500. 0.02×2y=2000.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.例2 为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒),该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元,经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款_____元,在乙商店付款_____元;(2)这个班购买多少盒乒乓球时,在甲、乙两商店付款相同?并求出此时需付款多少元?(3)若这个班购买乒乓球的数量暂时未定,选择哪家商店购买更合算?同学们能给出建议吗?分析:商店优惠方式甲商店:一副乒乓球拍送一盒乒乓球;乙商店:乒乓球拍和乒乓球全部九折.(1)在甲商店付款=5副乒乓球拍的价钱+(6-5)盒乒乓球的价钱=5×100+25=525(元),在乙商店付款=(5副乒乓球拍的价钱+6盒乒乓球的价钱)×0.9 =(5×100+6×25)×0.9=585 (元).(2)解:设购买x 盒乒乓球时,在甲、乙两商店付款相同.5×100+25(x-5)=(5×100+25x)×0.9 .x=30.(检验:x=30是原方程的解,且符合实际情况.)综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.将方程5x+2=x -5通过移项得5x -x=-5-2的根据是( ) A.加法交换律 B.分配律 C.等式的性质1D.等式的性质22.当x 取不同的值时,整式ax -b (其中a ,b 是常数)的值也不同,具体情况如表所示:则关于x 的方程ax=b -4的解为( ) A.x=-2 B.x=-1C.x=0D.x=13.在等式2×□-6=□中的“□”内填上一个数字,可使等式成立.则“□”内数字为( )A.4B.5C.6D.74.给出下列各说法:①3x+5是方程;②2x+5y=9是一元一次方程;③如果a=b ,那么ac=bc ;④x=-1是方程3x+22-1=2x -14−2x+15的解.正确的有( )A.②④B.①④C.②③D.③5.小文同学晚上写数学作业,在解方程“-5x+1=2x -a ”时,将“-5x ”中的负号抄漏了,解得x=2,则方程正确的解为( )A.x=87 B.x=78C.x=-67D.x=-766.下面解一元一次方程3(x+1)=x 的步骤中,3(x+1)=x 3x+3=x3x -x=-32x=-3x=-32没有依据“等式的性质”变形的是( )A.第①步和第②步B.第①步和第③步C.第②步和第③步D.第③步和第④步7.下列方程变形正确的是( ) A.由y0.3-1=1.2-0.3y 0.2,得10y 3-10=12-30y2B.方程3m=2m+3,移项,得3m -2m=3C.方程-75y=79,系数化为1,得y=-7579D.方程3-m -2=-5(m -1),去括号,得3-m -2=-5m -18.用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设用x 张彩纸制作圆柱侧面,则可列方程为( )A.60x=20(200-x )B.20x2=60(200-x ) C.60x=20(200-x )2D.20x=60(200-x )29.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为( )A.4,5,6B.6,7,2C.7,2,6D.2,6,710.一项工程,甲公司单独完成需要40天,乙公司单独完成需要60天.现在两公司合作,中途甲公司另有任务离开10天,完成这项工程需要的天数为( )A.25B.30C.24D.45二、填空题(将结果填在题中横线上)11.已知方程(m -3)x |m|-2+4=0是关于x 的一元一次方程,则m= . 12.已知关于x 的方程(m -1)x -3m=x 的解是x=4,则m 的值为 . 13.当x=4时,代数式5(x+2a )-3与ax+5的值相等,则a= . 14.如果方程2-x+13=x+76的解也是关于x 的方程2-a -x 3=0的解,那么a 的值是 .15.某超市规定,购买不超过50元的商品时,按全额收费;购买超过50元的商品时,超过部分按六折收费.某顾客在一次消费中,支付212元,那么在此次消费中该顾客购买了价值为 元的商品.三、解答题(解答应写出文字说明、证明过程或演算步骤) 16.解下列方程: (1)2(1-2x )=5x+8; (2)2x+13=1-x -14.17.某工厂生产一批太空漫步器(如图),每套设备包含3根立柱和4个脚踏板.工厂现有40名工人,每人每天平均生产36根立柱或48个脚踏板,应如何分配工人才能使每天生产的立柱和脚踏板恰好配套?18.小明解关于x 的方程2x -13=x+a2-3,由于粗心大意,在去分母时,方程右边的-312没有乘6,由此求得的解为x=2,试求a 的值,并求出原方程的解.19.下表是某次篮球联赛部分球队的积分表:(1)直接写出胜一场的积分和负一场的积分;(2)进行16场比赛后,某队说他们的总积分为45分,你认为可能吗?为什么?综合训练1.C2.D3.C4.D5.C6.B7.B8.D9.B 解析:由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2. 10.B 11.-3 12.8 13.-2 14.7 解析:2-x+13=x+76, 去分母,得12-2(x+1)=x+7. 去括号,得12-2x -2=x+7. 移项、合并同类项,得-3x=-3. 系数化为1,得x=1. 将x=1代入2-a -x3=0,得2-a -13=0. 去分母,得6-(a -1)=0. 去括号,得6-a+1=0.解得a=7.15.320 解析:设购买了价值为x 元的商品,根据题意得,50+60%(x -50)=212,解得x=320.16.解:(1)2(1-2x )=5x+8. 去括号,得2-4x=5x+8. 移项,得-4x -5x=8-2. 合并同类项,得-9x=6. 系数化为1,得x=-23. (2)2x+13=1-x -14. 去分母,得4(2x+1)=12-3(x -1). 去括号,得8x+4=12-3x+3. 移项,得8x+3x=12+3-4. 合并同类项,得11x=11. 系数化为1,得x=1.17.解:设安排x 名工人生产立柱, 则有(40-x )名工人生产脚踏板,由题意,得4×36x=3×48(40-x ),解得x=20,40-x=20.答:安排20名工人生产立柱,20名工人生产脚踏板恰好配套. 18.解:去分母时方程右边的-3漏乘了6, 此时变形为2(2x -1)=3(x+a )-3. 将x=2代入,得2(2×2-1)=3(2+a )-3. 解得a=1. 则原方程应为2x -13=x+12-3. 去分母,得2(2x -1)=3(x+1)-18. 去括号,得4x -2=3x+3-18. 解得x=-13.19.解:(1)设胜一场积x 分,则由A 球队积分知负一场积36-10x6分,根据B 球队的积分,得9x+7×36-10x6=34,=1,解得x=3,此时36-10x6所以胜一场积3分,负一场积1分.(2)不可能.理由如下:设胜y场,则负(16-y)场,.3y+16-y=45,解得y=292因为y为非负整数,所以y=29不符合题意.所以总积分不可能为45分.214。
一元一次方程小结与复习教案
![一元一次方程小结与复习教案](https://img.taocdn.com/s3/m/755aaf6d590216fc700abb68a98271fe900eaf62.png)
一元一次方程小结与复习教案一、教学目标1. 回顾一元一次方程的定义、解法及应用,加深对概念的理解。
2. 培养学生运用一元一次方程解决实际问题的能力。
二、教学内容1. 一元一次方程的定义及组成。
2. 一元一次方程的解法。
3. 一元一次方程在实际问题中的应用。
4. 一元一次方程的拓展与提高。
三、教学重点与难点1. 重点:一元一次方程的定义、解法及应用。
2. 难点:一元一次方程的解法及在实际问题中的应用。
四、教学方法1. 采用案例分析法,让学生通过具体例子理解一元一次方程的解法及应用。
3. 运用练习法,巩固学生对一元一次方程的掌握程度。
五、教学过程1. 导入新课:回顾一元一次方程的定义,引导学生思考一元一次方程的组成。
2. 讲解与示范:讲解一元一次方程的解法,并结合实际例子进行分析。
3. 课堂练习:布置练习题,让学生独立解决一元一次方程问题。
5. 复习与拓展:复习一元一次方程的相关知识点,引导学生思考一元一次方程的拓展与提高。
7. 布置作业:布置课后作业,巩固所学知识。
六、教学评价1. 课后作业:检查学生对一元一次方程的掌握程度。
2. 课堂练习:评估学生在课堂练习中的表现,了解学生的学习进度。
3. 学生讨论:观察学生在讨论中的参与程度,评价学生的理解能力。
4. 教学反馈:根据学生的反馈,调整教学方法及进度。
七、教学资源1. 教案、PPT及相关教学资料。
2. 练习题及答案。
3. 教学视频或课件。
八、教学时间1课时(40分钟)九、教学环境1. 教室环境:宽敞、明亮,有利于学生集中精力学习。
2. 教学设备:电脑、投影仪、黑板等。
3. 学习氛围:营造积极、和谐的学习氛围,鼓励学生提问和参与讨论。
十、教学后记六、教学活动设计1. 复习导入:通过提问方式复习一元一次方程的定义和组成。
2. 案例分析:选取几个实际问题,让学生运用一元一次方程进行解答。
4. 练习巩固:布置练习题,让学生独立解决一元一次方程问题。
七、教学反思2. 关注学生在课堂上的参与程度,调整教学方法,提高教学效果。
一元一次方程复习课教案
![一元一次方程复习课教案](https://img.taocdn.com/s3/m/cee68f5517fc700abb68a98271fe910ef02dae65.png)
一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。
(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。
(3)能够应用一元一次方程解决实际问题。
2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。
(2)培养学生运用一元一次方程解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。
二、教学内容1. 一元一次方程的概念及基本性质。
2. 一元一次方程的解法:代入法、加减法、乘除法。
3. 应用一元一次方程解决实际问题。
三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。
(2)一元一次方程的解法。
(3)应用一元一次方程解决实际问题。
2. 教学难点:(1)一元一次方程的解法。
(2)运用一元一次方程解决实际问题。
四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。
(2)引导学生回忆一元一次方程的解法。
2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。
(2)举例演示解题过程,引导学生跟随步骤进行解题。
3. 课堂练习:(1)布置练习题,让学生独立完成。
(2)选取部分学生的作业进行点评,纠正错误,解答疑问。
4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。
(2)分小组讨论,分享解题思路和方法。
五、课后作业1. 复习一元一次方程的概念及其基本性质。
2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。
3. 运用一元一次方程解决实际问题。
4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。
六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。
2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。
3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。
110一元一次方程解法复习课教案设计110.doc
![110一元一次方程解法复习课教案设计110.doc](https://img.taocdn.com/s3/m/3a991f843b3567ec112d8aa9.png)
—元一次方程解法复习复习目标:1 •准确地理解一元一次方程的解题步骤;2.熟练地解一元一次方程。
复习重点:复习巩固解一元一次方程解法步骤和解题思想复习难点:能够熟练准确地解一元一次方程复习准备:课件、导学案复习教学设计:一、要点梳理1、相关概念(1)方程相关概念把含有未知数的等式叫做方程能使方程左、右两边相等的未知数的值叫做方程的解.(2)一元一次方程的概念只含有一个未知数,并且未知数的次数是1,我们把这样的方程叫做一元一次方程。
2、等式的性质等式的性质等式两边都加上(或减去)同一个数(或式),所得结果仍是等式.即:如果a二b,那么a±c=b±c ;如:①x-6 = 0 ②1 = 0等式的性质2:等式两边都乘(或除以)同一个数(或式)(除数或除式不能为0),所得结果仍是等式.即:如果a二b,那么ac = be , — = —(d0)女口:① 2x = 6 ②-x = 2cl d 33、一元一次方程的解法(1)利用移项、合并同类项解一元一次方程(2)利用去括号解一元一次方程(3)利用去分母解一元一次方程(4)解一元一次方程的基本步骤①去分母②去括号③移项④合并同类项⑤系数化为1。
二、考点讲练考点一:一元一次方程例1:有下列方程:①2/—6 = 9;②*(3x+4) =2/—10;③£+2 = 8;④x +2 = 6;⑤x=0;⑥3x+4y=9;⑦站+3 = 0(x为未知数).其中是一元一次方程的是()A.①②③④⑤⑥B.①②③⑤⑥⑦C.①②③⑤⑦D.①②⑤3 1[解析]方程②化简后为和+2 = 2x—10,即存=12,故②是一元一次方程;方程③中未知数在分母上,故③不是一元一次方程;方程④屮;r 的最高次数是2,而不是1, 故排除④;方程⑥中含有两个未知数;r, y,故排除⑥;⑦中若a=0,就不是方程了, 故⑦不一定是一元一次方程.而①②⑤符合一元一次方程的概念. [归纳总结]一元一次方程是只含有一个未知数口未知数的次数是1的整式方程.它有三个特点:第 一,方程的两边都是整式;第二,只含一个未知数;第三,含未知数的那些项的次数都 是1次. 当堂练习1、下列方程中,是一元一次方程的是()考点二:解一元一次方程 例2:解方程(1)(兀+ 1) — 10= 2(4 兀一 1)[归纳总结]解一元一次方程的一般步骤是(1)去分母;(2)去括号;(3)移项;(4)合并 同类项;(5)系数化为1.对其步骤不要死搬硬套,要根据各题特点采用适当的步骤•另 外,去分母时,常数项也要乘各分母的最小公倍数;分数线具有除号和括号的双重作用. 当堂练习1、下列解方程去分母正确的是()考点三根据方程的解构造一元一次方程例3若x = 4是关于x 的方程5x-3m=2的解,则m 的值是()A. -6 B ・ 1 C ・ 6 D ・ 3[解析]由于x = 4是方程5x-3m = 2的解,将其代入方程,可化为关于m 的一元一次 方程,从而求出m.[归纳总结]如果一个数是方程的解,那么将这个数代入原方程,方程的左右两边应相 等.利用方程的解的意义解题是常用的方法. 当堂练习1、如果x = 2是关于兀的方程3-2兀“ + d 的解,那么a 的值应是()A> 2 B 、_2 C 、3 D 、一3A 、- + 2 = 5X3兀一1 2+ 4 = 2% C 、才+3丿=0 D 、9x-y = 2x -1 (3 - 2x) ----------- 2 = ------------------23A 、tl —1=—,得2一 1 = 3-3兀B 、由兰三一辿三3 2 2 4由空_1 =二1,得 12^-1 =5x + 20 5 3由"+" = — - —~- -x,得3x + 3 = 2兀一3x +1 — 6x 2 3 6解下列方程=—1,得 2(x — 2) — 3x — 2 = —4 C 、D 、2、(1) 12x-l=5x + 20(2) 25x-(x-5)= 292、如果兀=1是关于兀的方程2-i (m-%) = 2x 的解,那么关于y 的方程 m^y -3)-2 = m (2y _ 5)的解是()4A 、y = -10B 、y = 0C 、y = 〒D 、y = 4三、 课堂小结「四、 课后作业1、解下列方程 ®3x + 20 = 4x-25②(兀 + 1) — 10=2(4兀一1)2、 当兀= _____ 吋,单项式5/叫2与8严芳是同类项.3、 当时’关于x 的方程宁-穿“的解是。
人教版七年级上册第三章一元一次方程全章小结复习教学设计
![人教版七年级上册第三章一元一次方程全章小结复习教学设计](https://img.taocdn.com/s3/m/f6ab484af08583d049649b6648d7c1c708a10ba9.png)
2.培养学生面对问题时,能够勇于尝试、积极思考的良好品质,增强其克服困难的信心。
3.通过解决实际问题,让学生认识到数学在生活中的重要作用,增强其应用数学知识解决实际问题的意识。
本教学设计旨在帮助学生在复习一元一次方程的基础上,进一步提高知识与技能、过程与方法、情感态度与价值观等方面的能力。在教学过程中,注重理论与实践相结合,鼓励学生积极参与,培养其数学素养。
-结合实际案例,进行情境教学,让学生在实际问题中发现数学的价值和应用。
2.教学策略:
-对于教学重点,通过精讲精练的方式,帮助学生巩固基础知识,提高解题技能。
-对于教学难点,采用分步指导、逐步推进的策略,让学生在教师的引导下逐步攻克难题。
-针对学生的个体差异,提供差异化教学,确保每个学生都能在原有基础上得到提高。
教学过程:
-布置基础练习题,让学生独立完成,巩固方程的解法。
-设置提高练习题,鼓励学生尝试解决,培养其解题技巧。
-对学生的练习进行及时反馈,指导其改进解题方法。
2.设计意图:通过有针对性的练习,帮助学生查漏补缺,提高解题能力。
(五)总结归纳
1.教学内容:对本章节的一元一次方程全章小结进行归纳总结。
教学过程:
(二)过程与方法
1.通过对一元一次方程全章的复习,引导学生自主总结方程的相关概念、性质和解法,培养其自主学习能力。
2.设计具有层次性的练习题,让学生在解决问题的过程中,逐步提高分析问题和解决问题的能力。
3.利用小组合作、讨论交流等形式,培养学生合作学习的意识,提高课堂互动性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发其学习热情,使其在解决方程问题的过程中感受到数学的魅力。
列一元一次方程解应用题复习课(一)-北京版七年级数学上册教案
![列一元一次方程解应用题复习课(一)-北京版七年级数学上册教案](https://img.taocdn.com/s3/m/f4436f613069a45177232f60ddccda38376be136.png)
列一元一次方程解应用题复习课(一)北京版七年级数学上册教案
课时目标
通过本课的复习,学生能够掌握列一元一次方程解应用题的基本方法,提高综合运用能力。
教学重点
1.掌握列一元一次方程解应用题的思路和方法;
2.能够熟练解决一元一次方程解应用题。
教学难点
1.独立思考、灵活运用;
2.应用题目的理解。
教学过程
一、引入
1.讲解本课程内容,并解释为什么要学习列一元一次方程解应用题。
2.针对上课前老师提前留下的练习题,让学生思考解决方案。
二、学习及练习
1.分段讲解列一元一次方程解应用题的基本方法和套路,同时,老师演示如何列方程。
2.帮助学生思考列方程的过程,并针对不同的题目类型,进行多种列方程方法的练习。
3.引导学生独立思考和举一反三,让学生尝试自己解决列方程问题。
三、巩固和拓展
1.让学生在小组内,相互交流,分享解决列一元一次方程解应用题的经验和方法;
2.提出对应用题应用更加广泛的一元一次方程问题,让学生进行思考。
课后作业
1.根据老师练习题目要求,解决练习题目;
2.课堂内容复习。
课程反思
该节课主要是通过讲解及练习,让学生掌握列一元一次方程解应用题的基本方法,并提高其综合运用能力。
在今后的教学中,要更加注重引导学生独立思考,让其在课堂和作业中灵活应用解决问题的方法和过程。
人教版七年级数学上册3.4《实际问题与一元一次方程》复习课优秀教学案例
![人教版七年级数学上册3.4《实际问题与一元一次方程》复习课优秀教学案例](https://img.taocdn.com/s3/m/5e41145b366baf1ffc4ffe4733687e21af45ffa0.png)
一、案例背景
本节复习课以人教版七年级数学上册3.4《实际问题与一元一次方程》为主题,旨在巩固学生对一元一次方程的理解和应用能力。通过复习课的形式,帮助学生回顾和梳理已学知识,提高他们在实际问题中运用数学知识解决问题的能力。
在案例背景中,我选择了几个与学生生活密切相关的实际问题,如购物问题、行程问题等。这些问题能够激发学生的学习兴趣,使他们更加主动地参与到课堂讨论中来。同时,这些问题也具有一定的挑战性,需要学生运用所学的知识进行分析和解决。
在教学过程中,我注重引导学生运用一元一次方程的知识对实际问题进行建模,并通过解方程的方法求解。这样既能让学生巩固基础知识,又能提高他们分析问题和解决问题的能力。此外,我还设计了一些小组合作活动,鼓励学生相互讨论、交流,培养他们的团队合作意识。
为了保证教学的实用性,我选择了与学生生活密切相关的实际问题作为教学素材。这样既能激发学生的学习兴趣,又能让他们感受到数学在生活中的实际应用。在教学过程中,我注重启发学生思考,引导他们运Hale Waihona Puke 所学的知识对实际问题进行分析和解决。
二、教学目标
(一)知识与技能
1.知识目标:通过复习课的形式,使学生回顾和梳理人教版七年级数学上册3.4《实际问题与一元一次方程》的相关知识,加深对一元一次方程的理解。引导学生掌握一元一次方程的解法,并能灵活运用解决实际问题。
2.技能目标:培养学生运用数学知识对实际问题进行建模的能力。通过小组合作、讨论等方式,提高学生解决问题的合作能力和沟通能力。
(四)总结归纳
1.学生总结:引导学生对自己所学的内容进行总结和归纳。通过学生的总结,检验他们对知识的掌握程度。
2.教师归纳:教师对学生的总结进行归纳和点评,强调一元一次方程在实际问题中的应用。通过教师的归纳,帮助学生形成系统化的知识结构。
一元一次方程复习优秀教案.docx
![一元一次方程复习优秀教案.docx](https://img.taocdn.com/s3/m/bd0a08d152ea551810a687f6.png)
一元一次方程复习(一)-------- 解一元一次方程教学设计(平行班)【课题】:一元一次方程复习(一)——解一元一次方程【学情分析】:学生己经学习了一元一次方程的有关知识,在学习过程中大部分同学能掌握上述知识,但学生在学习过程屮缺少把知识点系统成知识网,因而知识的应用灵活性不够。
所以在单元复习过程中以引导学生学会白己归纳知识为主。
【教学目标】:1、在复习一元一次方程解法的过程中,查漏补缺,引导学生对知识进行自我归纳;2、通过复习一元一次方程解法,进一步渗透“转化”的思想方法;3、引导学牛对知识进行自我归纳的习惯,提高学牛的学习能力。
【教学重点】:解一元一次方程【教学难点】:去分母解一元一次方程【教学突破点】:在去分母的过程中,强调等式性质2的应用。
【教法、学法设计】:引导学生自我归纳知识,解决问题,老师进行点评。
【课前准备】:课本、【教学过程设计】:全章复习⑴ 测试与练习班级 __________ 姓名 ____________A 层1. 已知4x 2n -5+5=0是关于x 的一元一次方程,贝山= _______ ・2. 若x=-l 是方程2x-3a 二7的解,则a 二 _____ .1 3X -23. 当x 二 ___ 吋,代数式一x-1和一^的值互为相反数.2 44. 方程2m+x=l 和3x-l 二2x+1有相同的解,则m 的值为().1A. 0B. 1C. 一2D.--25. 方程| 3x |二18的解的情况是().A.有一个解是6B.有两个解,是±6C.无解D.有无数个解6. 在800米环形跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同 地、同时、同向起跑,t 分钟后第一次相遇,t 等于(). A. 10 分 B. 15 分 C. 20 分 D. 30 分7. 足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了 14场比 赛,负了 5场,共得19分,那么这个队胜了()场.32139-解方程•• 7 (x_1)(3x+2)冷710. —个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若 将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.A. 3B. 4C. 5D. 68.解方程:C 层11. 如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之 间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想 要配三张图片來填补空白,需要配多大尺寸的图片.12.某公园的门票价格规定如下表:购票人数 「50人 5广100人 100人以上 票价5元4. 5 7G4元某校初一甲、乙两班共103人(其屮甲班人数多于乙班人数)去游该公园,如果两班都 以班为单位分别购票,则一共需付486元.(1) 如果两班联合起来,作为一个团体购票,则可以节约多少钱? (2) 两班各有多少名学生?(提示:本题应分情况讨论)全章复习(1)解答 1. 3 2. -3 (点拨:将戸-1代入方程2x-3a=7,得-2-3沪7,得a=-3)(1Q OA3.— (点拨:解方程一xT 二- --------- ,得 x= — )4. D5. B6. C 5 2 4 5 8. 解:原方程变形为A400-600y-4. 5=l-100y9. 5 500y 二4049. 解:去分母,得15 (x-1) -8 (3x+2) =2-30 (x-l) A21x=63 /. x=310. 解:设十位上的数字为x,则个位上的数字为3X-2,百位上的数字为x+1,故100 (x+1) +10x+ (3x-2) +100 (3x-2) +10x+ (x+1)二1171 解得X 二3 答:原三位数是437.11. 解:设卡片的长度为x 厘米,根据图意和题意,得5x=3 (x+10),解得 x=15所以需配正方形图片的边长为15-10=5 (厘米) 答:需要配边长为5厘米的正方形图片. 12. 解:(1) V103>100・・・每张门票按4元收费的总票额为103X4二412 (元)7. C200 (2-3y) -4.5二3 —300y~3~-9.5••• y=101 125可节省486-412=74 (元)(2)・・・甲、乙两班共103人,甲班人数>乙班人数・••甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4・5 (103-x) =486解得x二45, A 103-45=58 (人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4. 5 (103-x) =486・・•此等式不成立,・••这种情况不存在.故甲班为58人,乙班为45人.。
一元一次方程复习课教案
![一元一次方程复习课教案](https://img.taocdn.com/s3/m/b136cd885122aaea998fcc22bcd126fff7055d8b.png)
一元一次方程复习课教案第一章:一元一次方程的定义及解法一、教学目标1. 理解一元一次方程的定义及其基本形式;2. 掌握一元一次方程的解法及其应用。
二、教学内容1. 一元一次方程的定义:讨论方程中未知数的个数、次数和系数等概念;2. 一元一次方程的基本形式:ax + b = 0;3. 一元一次方程的解法:移项、合并同类项、系数化为1。
三、教学方法1. 采用讲解法,讲解一元一次方程的定义及解法;2. 利用例题,演示一元一次方程的解题步骤;四、教学步骤1. 引入新课,回顾一元一次方程的定义及解法;2. 讲解例题,让学生跟随老师一起解题,理解解题步骤;3. 布置练习题,让学生独立完成,巩固所学知识;五、课后作业1. 复习一元一次方程的定义及解法;2. 完成课后练习题,加深对一元一次方程解法的理解。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,并能灵活运用;2. 了解一元一次方程在实际问题中的应用。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、代入法等;2. 一元一次方程的实际应用:长度、面积、体积等问题。
三、教学方法1. 采用案例教学法,让学生通过实际问题学习一元一次方程的解法;2. 利用多媒体演示,直观展示一元一次方程在实际问题中的应用;3. 引导学生通过小组合作,探讨一元一次方程的解题策略。
四、教学步骤1. 讲解一元一次方程的解法,如加减法、乘除法、代入法等;2. 利用多媒体展示实际问题,引导学生运用一元一次方程解决问题;3. 布置练习题,让学生独立完成,巩固所学知识;4. 组织小组合作,让学生共同探讨一元一次方程的解题策略;五、课后作业1. 复习一元一次方程的解法;2. 完成课后练习题,加深对一元一次方程解法的理解;3. 思考实际生活中的一元一次方程问题,提高运用能力。
第三章:一元一次方程的检验与解的存在性一、教学目标1. 学会检验一元一次方程的解是否正确;2. 理解一元一次方程解的存在性。
一元一次方程小结与复习教案
![一元一次方程小结与复习教案](https://img.taocdn.com/s3/m/b0de605abb1aa8114431b90d6c85ec3a87c28b33.png)
一元一次方程小结与复习教案一、教学目标1. 理解一元一次方程的概念及特点。
2. 掌握一元一次方程的解法及其应用。
3. 能够运用一元一次方程解决实际问题。
4. 通过对一元一次方程的复习,提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 一元一次方程的概念及特点(1)概念:未知数的最高次数为1,一次项系数不为0的方程。
(2)特点:只有一个未知数,未知数的次数为1,一次项系数不为0。
2. 一元一次方程的解法(1)代入法(2)加减法(3)乘除法3. 一元一次方程的应用(1)实际问题转化为方程求解(2)方程在生活中的应用4. 复习题例(1)选择题(2)填空题(3)解答题三、教学重点与难点1. 教学重点:一元一次方程的概念、特点和解法。
2. 教学难点:一元一次方程在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解一元一次方程的概念和特点。
2. 运用案例分析法,让学生通过实际问题学会运用一元一次方程求解。
3. 利用练习法,巩固学生对一元一次方程解法的掌握。
4. 采用小组讨论法,培养学生的合作精神和解决问题的能力。
五、教学过程1. 导入新课:通过复习导入,回顾一元一次方程的概念和特点。
2. 讲解与示范:讲解一元一次方程的解法,并结合实际问题进行示范。
3. 课堂练习:布置练习题,让学生独立完成,检查对一元一次方程解法的掌握程度。
4. 小组讨论:学生分组讨论实际问题,运用一元一次方程求解,并分享解题过程。
6. 布置作业:布置课后作业,巩固所学知识。
六、教学评估1. 课堂练习:通过课堂练习题,评估学生对一元一次方程解法的掌握程度。
2. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作精神和解决问题的能力。
3. 课后作业:批改课后作业,了解学生对课堂内容的巩固情况。
七、教学资源1. 教学PPT:制作精美的教学PPT,辅助讲解和展示一元一次方程的相关概念和例题。
2. 练习题库:准备一定数量的练习题,包括选择题、填空题和解答题,用于课堂练习和课后作业。
数学人教版七年级上册《一元一次方程》解法复习课教学设计
![数学人教版七年级上册《一元一次方程》解法复习课教学设计](https://img.taocdn.com/s3/m/d6189469e45c3b3567ec8b9f.png)
《一元一次方程》解法复习课教学设计黄威文一:教学目标(1)培养学生观察分析、类比归纳的探究能力,加深对一元一次方程解法的理解与应用。
(2)培养学生独立思考又善于合作交流的好习惯。
二:教学重难点重点:解一元一次方程的五大步骤难点:正确熟悉地运用此五大步骤解一元一次方程。
三:教法说明遵循“教为主导、学生主体、练为主线”的教学思想,力求精讲多练,通过学生自主探索,合作交流,引导学生善于归纳旧知,对知识的认知从感性到理性,从而使学生对知识的理解与运用更上一个层次。
四:学法说明倡导自主、合作、探究、归纳的学习方式。
五:教学过程 (一)知识回顾 1、以中考题引入解方程 (08年贵州中考题) 师生共同求出此方程的解,并把过程板书黑板,然后归纳出解一元一次方程的五大步骤。
2、知识的归纳解一元一次方程的一般步骤31101154x x ++-=(二)知识的巩固1、下列变形中,正确的是( ) A 、 B 、C 、D 、 2、判断下列方程的解法对不对223,3725,2574(2)1,421x x x x x x -=-=-=-=--=-=950,95x x +==-99 4 ( )4351 ( )5302 ( )2x x x x xx =-=-====得得得3、合并同类项:4、去括号:5、下列方程中,去分母正确的是( )6、在解方程 131236x x ++-= 过程中错误始于( )(三)考场链接 1、直击期末(1)下列变形正确的是( )578234x x x x x x +=-+=--=11A 12,212552210,416365(3)4,5(3)2827211,32133x x x x B y y x C x x x x x D x x -=+-=+-=-=-=--=---=--=、去分母得、去分母得、去分母得、去分母得A 223112 2312211111x x B x x C x D x +--=-=-+-==-、、、、55332310227744A x xB x xC x xD x x ==-=-=+==-==-、由3-得、由得、由得、由得8)(7)2(3)4(21)x x x x +-=--=+=--=((2)已知,那么6y+4= (3)如果x=1是2x-a=0的解,则a=(4)如果x=-4是关于x 的方程2x+k=x-1的解,那么k= (5)解方程 ① ②③ ④ 2、挑战中考(1)当 等于什么数时,代数式 与的值相等? (2)若关于 的一元一次方程 的解是4,则 = (四)知识的拓展 解方程 (五)小结及布置作业 (附:板书设计)321y +=7834y y -=+43(5)6x x --=2431132x x +--=332168x x+-=-x 83x -154x +23132x kx k ---=xk 23110.52x x -++=课后反思:1.在归纳方程解法的时候老师包办太多,未能发挥学生学习主动性。
北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计
![北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计](https://img.taocdn.com/s3/m/a2562ba6760bf78a6529647d27284b73f242369e.png)
3.学生活动:学生积极参与总结,分享自己的学习心得和体会,提高自己的表达能力。
4.教师总结:教师对本节课的教学内容进行梳理,强调重点和难点,布置课后作业,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的一元一次方程应用知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
2.教学方法:采用小组合作学习,促进学生之间的交流与互动,提高解决问题的能力。
3.学生活动:小组成员共同分析问题,列出方程,讨论解题方法,分工合作,共同解决问题。
4.教师指导:教师巡回指导,关注各小组的讨论情况,给予适当的提示和指导,确保学生掌握解题方法。
(四)课堂练习,500字
1.教学内容:布置适量的课堂练习题,涵盖一元一次方程的不同类型,让学生独立完成。
4.掌握一元一次方程在科学、社会、经济等方面的应用,提高解决问题的能力。
(二)过程与方法
1.在解决实际问题的过程中,培养观察、分析、抽象、概括的能力。
2.通过小组合作、讨论、交流等方式,提高解决问题的策略和方法。
3.学会对一元一次方程的解进行检验,培养反思、调整、优化的思维品质。
4.能够运用画图、列表等方法辅助解题,提高解决问题的直观性和形象性。
2.新课导入:呈现不同类型的实际问题,引导学生运用一元一次方程解决问题。
3.例题讲解:选取具有代表性的例题,详细讲解解题思路和方法。
4.小组合作:分组讨论,共同解决实际问题,培养学生的合作能力和解决问题的能力。
5.总结:对本章所学知识进行总结,提炼关键点,形成知识体系。
6.作业布置:布置适量的练习题,巩固所学知识,提高解题能力。
1.请同学们从生活中选取一个实际问题,运用一元一次方程的知识解决问题,并将解题过程和答案写在作业本上。
一元一次方程复习课教学设计(正确的)房友营
![一元一次方程复习课教学设计(正确的)房友营](https://img.taocdn.com/s3/m/3c9700294b35eefdc8d33357.png)
一元一次方程复习课一元一次方程单元测试卷一、选择题1. 已知下列方程:①22x x-=; ②0.31x =; ③512x x =+; ④243x x -=;⑤6x =;⑥20x y +=.其中一元一次方程的个数是 ( ).A .2B .3C .4D .52.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ). A .-5 B .-6 C .-7D .83.方程3521x x +=-移项后,正确的是 ( ). A .3251x x +=-B . 3215x x -=-+C .3215x x -=-D . 3215x x -=--4.方程2412332x x -+-=-,去分母得 ( ). A .22(24)33(1)x x --=-+ B . 123(24)183(1)x x --=-+ C .12(24)18(1)x x --=-+ D . 62(24)9(1)x x --=-+5.甲、乙两人骑自行车同时从相距65 km 的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5 km ,则乙的时速是 ( ). A .12.5 km B .15 km C .17.5 km D .20 km6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是 ( ).A .不赚不赔B . 赚8元C .亏8元D . 赚15元 7.如果等式ax=bc 成立,则下列等式成立的是( D ) A .abx=abc ; B .x= bca; C .b-ax=a-bc D .b+ax=b+bc8.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( C )。
A .80元;B .85元;C .90元 ;D .95元 二.填空题9.使(1)60a x --=为关于x 的一元一次方程的a =______(写出一个你喜欢的数即可). 10.当m =______ 时,式子273m -的值是-3. 11.若3122m xy -与224n x y 在某运算中可以合并,则_____m =,_____n =.12.设某数为x ,根据下列条件列出方程: (1)某数的23比它的相反数大5.______________________________; (2)某数的13与12的差刚好等于这个数的2倍.________________________. 13.某次数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分.若某同学得36分,他选对了________道题(不选算错).14.某商场对某种商品作调价,按原价8折出售,此时商品的利润率为10%,此商品的进价是1000元,则商品的原价是________.15.某人将1000元存入银行,定期两年,若年利率为2.27%,则两年后利息为________元,若扣除20%的利息税,则实际得到的利息为________元,银行应付给该储户本息共____________元.16. 根据你们班男、女生人数编一道应用题:_________________________________________________________________ _______________________________________.假设适当的未知数,列出方程 _______________________________________.17.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税。
复习教案 一元一次方程及应用
![复习教案 一元一次方程及应用](https://img.taocdn.com/s3/m/efb1ae908762caaedd33d455.png)
第九课时 一元一次方程及应用一、复习目标:1、理解等式的基本性质、方程、方程的解、一元一次方程的概念;2、能利用等式的基本性质进行方程的变形,能熟练地解一元一次方程;3、能用一元一次方程来解决简单的实际问题.二、复习重点难点:(一)复习重点:解一元一次方程和二元一次方程组的一般步骤与方法.(二)复习难点:能用一元一次方程来解决简单的实际问题.三、复习过程:(一)知识梳理:1、等式性质:(1)如果a=b,那么c b c a ±=±; (2)如果a=b,那么)0(,≠==c cb c a bc ac ; 2、方程的有关概念:(1)方程:含有未知数的的等式叫方程。
(2)方程的解:使方程左右两边相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
(3)解方程:求方程的解或判断方程无解的过程叫做解方程。
3、一元一次方程:(1)一元一次方程的一般形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0);(2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0);(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、列方程解应用题的一般步骤:(1)审题:(2)设未知数;(3)找出相等关系,列方程;(4)解方程(组);(5)检验,作答;5、列方程(组)解应用题常见类型题及其等量关系;(1)工程问题①基本工作量的关系:工作量=工作效率×工作时间②常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量③注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题(2)行程问题①基本量之间的关系:路程=速度×时间②常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程(3)水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度(二)典例精析:例1、(1)已知x =-2是关于x 的方程()x m x m -=-284的解,则m 的值= ;.(2)若关于x 的方程03)1(22=+-x x a 式一元一次方程,则a= ;【方法总结】:1、第1题是已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样,先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将2x =-代入原方程,转化为关于m 的方程求解.2、在运用一元一次方程定义时,要注意两点:一是未知数的次数为1,二是未知数系数不能为0;例2、解方程:12733)1(2-=-++x x x ; 【方法总结】:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1,需要注意去分母时不要漏乘不含分母的项,去括号时,括号前是负号要注意括号内各项均要改变符号,移项要变号,系数化为1要注意方程两边要未知数的系数;例3、某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?【方法总结】:1、有比时,应根据比值设未知数;2、应找好等量关系:横标两边的边空+18个字的字宽+18个字之间的字距=12.8cm ;然后根据所设未知数和等量关系就可列出方程;例4、剃须刀由刀片和刀架组成,某时期,甲乙两厂家分别生成老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获利的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少刀架和刀片?【方法总结】:等量关系是:1、刀架数×50=刀片数;2 、甲厂家利润×2=乙厂家的利润例5、某省公布的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故得小华家5月份的用电量在第二档;设小华家5月份的用电量为x,则210×0.52+(x﹣210)×(0.52+0.05)=138.84解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;【方法总结】:解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断。
人教版初中七年级数学上册《一元一次方程复习》教案
![人教版初中七年级数学上册《一元一次方程复习》教案](https://img.taocdn.com/s3/m/a21acc02a300a6c30c229f94.png)
一元一次方程复习第一课时教学目标:1.系统复习本章知识2.通过复习提高学生归纳能力教师提问的方式,学生互答,共同回忆,以及讲练结合巩固本章知识。
教学重点:本章各知识点教学难点:应用本章知识解决实际问题教学过程:(一)基本概念1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4、解方程:求方程的解的过程叫做解方程。
(二)等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
(三)解一元一次方程的一般步骤及根据1、去分母-------------------等式的性质22、去括号-------------------分配律3、移项---------------------等式的性质14、合并同类项-------------分配律5、系数化为1---------------等式的性质26、验根---------------------把根分别代入方程的左右边看求得的值是否相等(四)解一元一次方程的注意事项1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
(五)列方程解应用题的一般步骤1、审题2、设未数3、找相等关系4、列方程5、解方程6、检验7、写出答案(六)应用题的类型(及常用的公式)行程问题,商品销售问题 等(七)作业设计课本111页复习题组三第1~4题第二课时教学目标:1.系统复习本章知识2.通过复习提高学生归纳能力教师提问的方式,学生互答,共同回忆,以及讲练结合巩固本章知识。
北师大版2024新版七年级数学上册教案:第五章 一元一次方程 小结与复习
![北师大版2024新版七年级数学上册教案:第五章 一元一次方程 小结与复习](https://img.taocdn.com/s3/m/a58fe36703020740be1e650e52ea551811a6c945.png)
第5章一元一次方程回顾与思考一、教材和学情分析本节课是北师大版义务教育教科书七年级上册第五章《一元一次方程》回顾与思考.学生在小学也学习过方程,会解较简单的一元一次方程,本章所学习的方程是小学知识的继续和提升.前面用9个课时完成了本章的全部学习内容,学生能够说出一元一次方程的定义,会判断一个数是否为已知一元一次方程的解,会解数字系数的一元一次方程,能列方程解决实际问题.解方程是本章的重点也是难点,能准确快速地解方程需要一个过程,学生在学习过程中会暴露出许多不可预知的问题.二、教学任务分析(一)教学任务方程是刻画现实世界的有效数学模型,准确快速地解方程是对学生最基本的要求.列方程解应用题的关键是找到“等量关系”.在寻找等量关系时有时候需要借助图表等,在得到方程的解后,要检验它是否符合实际意义.“回顾与思考”是进行有效学习的重要方法,它既能使学生有目的地梳理所学知识,形成知识体系,又能促进学生反思知识获得的过程,形成自己对所学知识较为深刻、独特的见解.学生在此过程中还能提高自己的归纳、概括等能力,形成反思的意识.教师要给学生足够的时间进行独立思考,然后同伴交流,在学生充分交流的基础上,引导学生建立本章的知识框架.(二)学习目标1. 通过对本章基本概念的复述,能理解概念,并应用概念解决相关问题;2. 通过观察分析解一元一次方程问题中的常见问题,能熟练求解一元一次方程;3. 通过用方程表述数量关系的过程,能根据具体问题中的数量关系列出方程,体会模型的思想.(三)学习重、难点1.重点:通过观察分析解一元一次方程问题中的常见问题,能熟练求解一元一次方程.2.难点:通过用方程表述数量关系的过程,能根据具体问题中的数量关系列出方程,体会模型的思想.(四)学习评价针对学习目标1,2,设计了交流式评价和表现式评价,引导学生在学过的基础上进一步理解一元一次方程的相关概念.针对目标3:设计了表现式评价,引导学生能根据具体问题中的数量关系列出方程,体会模型的思想.(五)教法与学法分析结合学生自身的和教材内容的特点,本课时秉持“学生为主体,教师为主导”的原则,在探究过程中,设置问题串让学生先自主探究,再去组内讨论,展示交流的学习方法.三、教学过程(一)情境引入教师:《一元一次方程》这一章我们已经学完了,那么本章学了哪些内容?知识要点是什么?学习每一个知识要点时需要注意哪些问题?带着这些疑问我们这节课进行回顾与思考.【设计意图】揭示课题,给学生进行回顾与思考的方法指导.(二)自主探究,展示交流自主探究一:认识一元一次方程问题1:判断下列各式哪些是方程?哪些是一元一次方程?为什么?()()()()()()()2122511533213224205210614375135x x x x x x x x xx y--=+->+-+=+-==-+=+ 【设计意图】通过本题所给七个不同类型的方程,让学生在交流辨析中学会“识”一元一次方程,巩固一元一次方程的概念.应用提升:1.关于x 的方程:1210k x -+=是一元一次方程,则k =___变式1:关于x 的方程()12210k k x --+=是一元一次方程,则k =___变式2:关于x 的方程:(a +2)+5x -2=3 是一元一次方程,则a =___总结:对于“数学概念题”一看指数、二看系数.【设计意图】1.通过教师启发与学生自主交流,根据一元一次方程的概念求解出字母系数或指数的值,进一步巩固一元一次方程的概念.2.通过教师对概念题的方法总结,引导学生归纳此类概念题目的做法,从而达到学生由会做一道题到会做一类题.自主探究二:认识方程的解问题2.请你根据方程解的定义确定x =8是下面哪个方程的解.()()118822271x x x x +=--=+方程的解:使方程左右两边相等的未知数的值叫做方程的解.求方程的解的过程叫解方程.【设计意图】通过两道小题让学生自主归纳方程的解及解方程的概念.应用提升:变式1:你能写出一个解为4并且未知数系数为负数的一元一次方程吗?【设计意图】变式1在问题1的基础上进行题目变形与难度的加深,对学生的能力要求逐步上升,加强学生对一元一次方程解的概念的理解.2.已知关于x 的方程23x m m x -=+的解与方程1322x x +=-的解相等,求m 的值. 变式 2:解互为相反数时,求m 的值.【设计意图】通过两道有难度梯度的题目,让学生通过小组合作交流,认识方程解的概念. 自主探究三:解一元一次方程注意事项解一元一次方程的一般步骤:去分母-去括号-移项-合并同类项-未知数系数化为1“错从你们中来”【设计意图】教师呈现学生在解方程组过程中的易错点,通过学生自主总结其中的问题,从而达到知错改错,做题不错的效果.2.不要漏乘括号里的任何一项移项1.移项要变号2.防止漏项; 合并同类项 系数相加,字母及其指数不变 系数化为1分子分母不要颠倒(三)活学活用,能力提升“请给自己的表现亮分”你得分的二分之一来自于你的实力;你得分的三分之一来自于你的自信;你得分的十二分之一来自于同学的合作;再加8分来自于你我的缘分.你能知道这位同学的表现到底得了几分吗?解析:设这位同学得了x 分,由题意得:11182312x x x x +++= 解 得: x =96答:这位同学得了96分.【设计意图】通过一道实际问题,引导学生建立数学模型解决设计问题.(四)反思升华,妙笔生花本节课你收获了什么?你学会了哪些基本概念和思想方法?我们在解题过程中要注意哪些事项?(五)布置作业A 组:课本复习题第1、2、3题:B 组:课本复习题第4、5、6题;五、板书设计六、教学反思。
第五章一元一次方程复习课(教案)
![第五章一元一次方程复习课(教案)](https://img.taocdn.com/s3/m/b914d3b2f9c75fbfc77da26925c52cc58bd69034.png)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
课堂上,我尝试用不同的案例来展示一元一次方程的应用,希望以此来激发学生们的兴趣。从他们的反应来看,这种方法是有效的。我看到了他们在解决问题时的积极性和主动性,这让我相信,只要教学方法得当,学生们是完全能够理解和掌握这些数学概念的。
在小组讨论环节,我发现学生们能够积极地参与到讨论中,互相交流想法,共同解决问题。这种合作学习的方式不仅提高了他们的问题解决能力,也增强了他们的团队协作精神。但同时,我也观察到有些学生在讨论中不够主动,可能需要我在今后的教学中更多地鼓励他们发言,增强他们的自信心。
3.重点难点解析:在讲授过程中,我会特别强调移项和合并同类项这两个重点。对于难点部分,我会通过具体的方程例题来帮助大家理解和掌握。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解实验。这个操作将演示如何将实际问题转化为方程并求解。
5.引导学生掌握一元一次方程及其解法,培养严谨的数学思维和精确的计算能力。
三、教学难点与重点
1.教学重点
-重点一:一元一次方程的定义及解法。掌握方程的解法是解决相关问题的基础,需重点讲解移项、合并同类项、系数化为1等方法。
-举例:讲解如何将方程3x + 5 = 2x + 10的解法步骤详细解释,强调每一步的运算规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《一元一次方程》专项复习(一)教案
授课人:朱兆玉
七年级数学备课组
教学目标
1.准确地理解方程、方程的解、解方程和一元一次方程等概念;
2.熟练地掌握一元一次方程的解法;
3.通过列方程解应用题,提高学生综合分析问题的能力;
4.使学生进一步理解在解方程时所体现出的化归思想方法;
5.使学生对本章所学知识有一个总体认识.
教学重点和难点
1、进一步复习巩固解一元一次方程的基本思想和解法步骤,
2、利用一元一次方程解决实际问题
教学手段
引导——活动——讨论
教学方法
启发式教学
教学过程
一、挑战记忆,复习有关概念
1、下列各式是否是一元一次方程
(1) 5x=0 (2)1+3x (3)y2=4+y
(4)x+y >5 (5) (6) 3m+2=1–m
2 、若关于x 的方程 是一元一次方程,则m=_____
3、若x =-3是方程x +a =4的解,则a 的值是 .
(通过习题唤起学生对已有知识的记忆)
1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
二、火眼金睛,
下面方程的解法对吗若不对,请改正 。
解方程:
3141136x x --=-
解:去分母()132-x 去括号 14126--=-x x
移 项 1214x 6-+=+x
合 并 210=x
系数化为1 5
1=x 让学生通过观察发现其中的错误并进行改正,进一步熟悉解方程的步骤,为下面的环节做好铺垫。
X X 41=0232=+-m x m
三、解方程
1、解方程的步骤:去分母——去括号——移项——合并同类项——系数化为一
2、即学即练(1)2(x+3)-5(1-x)=3(x -1)
(2)3
7524123--=+y y (加强解方程准确率的训练,通过练习,同桌交流总结出有关每一步的注意事项。
)
3、归纳解一元一次方程的注意事项:
(1)分母是小数时,根据分数的基本性质,把分母转化为整数;
(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,
分数线相当于括号,去分母后分子各项应加括号;
(3)去括号时,不要漏乘括号内的项,不要弄错符号;
(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
(6)不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
四、勇往直前
1132231的差是与时,代数式、当+-=x x x
=+-x x x 是互为相反数,则与、若代数式2
23122 互为倒数的值与时,代数式、当3313x x x ++=
(设计意图:灵活应用方程解决实际问题)
五、实际应用
1、我能行
在日历中,一个竖列上的三个连续数字之和能不能是42可以是52吗
(设计意图:培养学生发现问题解决问题的能力)
2、列方程解应用题的一般步骤
(1)审题(2)设未数(3)找相等关系(4)列方程(5)解方程(6)检验(7)写出答案
3、一展身手
一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的
新数比原数大9,则原来的两位数为多少
(前后四人一小组合作交流解决问题)
六、感悟与收获
1.一元一次方程及其有关概念
2.解一元一次方程的一般步骤及简单应用
七、作业布置
作业:同位互相出题
1、一道解方程
2、一个填空题
3、一道应用题
课堂练习与作业
1、下列是一元一次方程的是( )
A 、2x+1
B 、x+2y=1
C 、x 2+2=0
D 、x=3
2、解为x=-3的方程是( )
A 、2x-6=0
B 、235+x =6
C 、3(x-2)-2(x-3)=5x
D 、4
562341--=-x x 3、下列说法错误的是( ) A 、若 x a =y a ,则x=y
B 、若x 2=y 2,则-4ax 2=-4ay 2
C 、若- 14 x=-6,则x=32
D 、若1=x ,则x=1
5、下列方程由前一方程变到后一方程,正确的是( )
A 、9x=4,x=- 32
B 、5x=- 12 ,x=- 52
C 、=1,x=
D 、=- 12 ,x=1
6、解方程2(x-2)-3(4x-1)=9,下列解答正确的是( )
A 、2x-4-12x+3=9,-10x=9+4-3=10,x=1;
B 、2x-4-12x+3=9,-10x=10,x=-1
C 、2x-4-12x-3=9,-10x=2,x=- 15 ;
D 、2x-4-12x-3=9,-10x=10,x=1
8、某书中一道方程题 +1=x ,
程的解为x=,则 )
A 、
B 、2.5
C 、5
D 、7
9、已知3x+1=7,则2x+2=_______
10、|3x-2|=4,则x=____________
11、已知2x m-1+4=0是一元一次方程,则m=________
12、解方程
(1)1+17x=8x+3 (2)2(x+3)-5(1-x)=3(x-1)
(3)x+45 -(x-5)= x+33 - x-22 (4)错误!+8x=错误!+4
5、今有鸡兔共50只同笼,共有180条腿,则笼子里鸡兔各有多少只。