光电子学完整PPT课件
合集下载
《现代通信光电子学》课件
随着微纳加工技术的发展,光电子器件将 越来越小型化,集成度越来越高,从而实 现更高效、更紧凑的光电子系统。
智能化与自动化
生物医疗与健康领域应用
光电子学将与人工智能、机器学习等交叉 融合,实现光电子系统的智能化和自动化 。
光电子学在生物医疗和健康领域的应用将 不断拓展,如光学成像、光学治疗等。
THANKS
光电子材料特性
光电子材料的特性包括光学常数、折射率、吸收光谱和热学性质等。这些特性决定了光电 子器件的性能和应用范围,因此对光电子材料的研究是推动光电子学发展的重要方向。
03
现代通信技术
光纤通信
光纤通信概述
光纤通信是一种利用光波在光纤中传输信息的技术。它具有传输容量大、传输距离远、抗电磁干扰等优点,已成为现 代通信网络的主要传输方式之一。
重点与难点
课程重点在于理解光电子学的原理和应用,难点在于掌握光电子 器件的工作原理和特性。
实验与实践
本课程包含了一系列实验和实践环节,有助于学生深入理解和掌 握课程内容。
光电子学的未来发展
新材料与新器件
集成化与微型化
随着科技的不断发展,光电子学将不断涌 现出新的材料和器件,如新型光子晶体、 光子集成电路等。
感谢观看
方向发展,以满足未来通信的需求。
光电子技术在未来通信中的展望
未来通信的需求
未来通信将面临高速、大容量、低时延、高 可靠性等挑战,需要新的技术来满足这些需 求。
光电子技术在未来通信中的 作用
光电子技术作为未来通信的关键技术,将起到更加 重要的作用,包括超高速传输、量子通信、光子计 算等。
光电子技术的发展趋势
实验目的:了解无线通信系统的基本 原理和组成,掌握无线通信系统的搭 建和调试方法。
光电子技术全套课件
光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§4 光腔的损耗
开腔的损耗及其描述
光子在腔内的平均寿命
无源谐振腔的Q值 无源腔的本征振荡模式带宽
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术 精品课程
电子科学与技术 精密仪器与光电子工程学院
光电子技术 精品课程
激 光 原 理
第二章 光腔理论的一般问题
电子科学与技术 精密仪器与光电子工程学院
§1 腔与模
光腔的构成和分类
模的概念
腔的作用
光电子技术精品课程
§1 腔与模
光电子技术精品课程
§2 共轴球面腔的稳定性条件
传输矩阵
共轴球面腔的稳定性条件
§7 方形镜共焦腔的自再现模
光电子技术精品课程
§8 方形镜共焦腔的行波场
厄米 - 高斯光束
振幅分布和光斑尺寸
模体积
等相位面的分布
远场发散角
光电子技术精品课程
§8 方形镜共焦腔的行波场
光电子技术精品课程
光电子学 (第一章3)PPT课件
1
光与物质相互作用基础
§1-1 光的波动理论与光子学说 §1-2 物质的微观结构与能量状态 §1-3 热辐射的一般概念 §1-4 黑体辐射 §1-5 自发辐射、受激吸收和受激辐射
§1-6 谱线形状和宽度
§1-7 均匀加宽和非均匀加宽 §1-8 辐射的经典理论
第三讲要点
1
2
谱线加宽 原因?
均匀加宽
自然加宽线型函数
vN—自然加宽谱线宽度
§1-1光波动理论 与光子学说
一、均匀加宽 二、非均匀加宽
§1-2物质微观结构与 §1-3热辐射一
能量状态
般概念
§1-4黑 体辐射
§1-5自发辐射, 受激吸 §1-6谱线形状
收和受激辐射
和宽度
问题:碰撞加宽原因?
§1-7均匀加宽和 非均匀加宽
§1-8辐射的经 典理论
线宽,受激跃迁引高能粒子变化:
谱线加宽dn21/dt不再=n2B21w(),
1. 辐射场线宽小(准单色) 两情况:
2. 原子与连续谱光辐射场作用
§1-1光波动理论 与光子学说
§1-2物质微观结构与 §1-3热辐射一
能量状态
般概念
§1-4黑 体辐射
§1-5自发辐射, 受激吸 收和受激辐射
§1-6谱线形状 和宽度
1. 经典的观点 2. 量子力学的观点
§1-7均匀加宽和 非均匀加宽
§1-8辐射的经 典理论
注意: 经典与量子解释!
为什么有宽度?
原(分)子阻尼振动,粒子发光, 一段t 发射有限波列;
波形频谱,若干简谐波叠,跃迁发
EM波分布中心 附近小 范围单色
波组合,谱线宽度。
Na光灯发黄光射光谱仪,达底板,若干细线光谱,每条——谱线,
第一章绪论-光电子学ppt课件
Optoelectronics):
光电子技术的特征:光源激光化、传输 波导化、手段电子化、电子学中的理论 模式和处理方法光学化。
光电子技术与微电子技术共同构成了信息技 术的两大重要支柱。
一.光电子学可发展历程
1883年,爱迪生在一次 改进电灯的实验中,将一 根金属线密封在发热灯丝 附近,通电后意外地发现, 电流居然穿过了灯丝与金 属线之间的空隙。 1884年,他取得了该发明 的专利权。这是人类第一 次控制了电子的运动,这 一现象的发现,为20世纪 蓬勃发展的电子学提供了 生长点。
电子开关的响应最短为10-7~10-9秒, 而光子开关的响应时间可以达到飞 秒数量级。光子属于玻色子,不带 电荷,不易发生相互作用,因而光 束可以交叉。光子过程一般也不受 电磁干扰。
光场之间的相互作用极弱,不会引 起传递过程中信号的相互干扰。这 些优点为光子学器件的三维互连、 神经网络等应用开拓了光明前景。
光调制器、光波导、光开关、 光放大器.以及光隔离器等各 种光学部件的发展。
在电子学技术中采用小尺寸的 光学零部件的组合。
光通信原理示意图
光技术的发展没能够 超过电子技术的发展
想得到更多的信息量、 更高的演算速度,用 现存电子技术是不可 能实现的。
光信号传输方式要比 用电布线好得多, 超并行计算机的配线 方式,
电子学已经出现不能适应新 的要求的征兆???
然而,历史却并没有简单地重演。
当电子通信容量达到最大限度而 不能继续扩大时,人们很自然地 把目光转向波长更短的光波。
光子学的信息荷载量要大得多,光的 焦点尺寸与波长成反比,光波波长比 无线电波、微波短得多,经二次谐波 产生倍频,激光可使光盘存贮信息量 大幅度增加。
发明了真空二级管整流器
光电子技术的特征:光源激光化、传输 波导化、手段电子化、电子学中的理论 模式和处理方法光学化。
光电子技术与微电子技术共同构成了信息技 术的两大重要支柱。
一.光电子学可发展历程
1883年,爱迪生在一次 改进电灯的实验中,将一 根金属线密封在发热灯丝 附近,通电后意外地发现, 电流居然穿过了灯丝与金 属线之间的空隙。 1884年,他取得了该发明 的专利权。这是人类第一 次控制了电子的运动,这 一现象的发现,为20世纪 蓬勃发展的电子学提供了 生长点。
电子开关的响应最短为10-7~10-9秒, 而光子开关的响应时间可以达到飞 秒数量级。光子属于玻色子,不带 电荷,不易发生相互作用,因而光 束可以交叉。光子过程一般也不受 电磁干扰。
光场之间的相互作用极弱,不会引 起传递过程中信号的相互干扰。这 些优点为光子学器件的三维互连、 神经网络等应用开拓了光明前景。
光调制器、光波导、光开关、 光放大器.以及光隔离器等各 种光学部件的发展。
在电子学技术中采用小尺寸的 光学零部件的组合。
光通信原理示意图
光技术的发展没能够 超过电子技术的发展
想得到更多的信息量、 更高的演算速度,用 现存电子技术是不可 能实现的。
光信号传输方式要比 用电布线好得多, 超并行计算机的配线 方式,
电子学已经出现不能适应新 的要求的征兆???
然而,历史却并没有简单地重演。
当电子通信容量达到最大限度而 不能继续扩大时,人们很自然地 把目光转向波长更短的光波。
光子学的信息荷载量要大得多,光的 焦点尺寸与波长成反比,光波波长比 无线电波、微波短得多,经二次谐波 产生倍频,激光可使光盘存贮信息量 大幅度增加。
发明了真空二级管整流器
【精品课件】光电子技术(激光器件).pptx
Pth n2th A21VRh p lcab1 ........(1.2 10)
29
三种工作物质的阈值比较
工作物质尺寸:Φ6mm×100mm,损耗系数α=0.01, 输出镜透射率T=0.5,ηL=0.5,ηc=0.8,ηab=0.2
参数
σ21(cm2) νp(S-1) ntot(cm-3) η0 Δnth(cm-3) n2th(cm-3) Eth(J)
21 0 A21 / 4 2n2
g n 21......................(1.2 2)
高斯线型
21 0 A21 ln 2 / 4 2n2
22
固体激光器阈值
受激辐射截面
红宝石 2.5E-20 cm2
Nd3+:YAG
27~88E-20 cm2
Nd3+:Glass 3E-20 cm2
20
100% I0
工作物质
固体激光器的阈值
R
I’ l
I ' I0 Re2(g )l
Re 1 阈值条件:
2(g )l
21
固体激光器阈值
gth
1 2l
ln
1 R
.................(1.2 1)
洛仑兹线型中心频率处的增益系数:
g
n
0 A21 4 2n2
其中,n
n2
g2 g1
n1
n为激光工作介质中的折射率
E1
E0
b) 四能级
量子效率0
亚稳态发射的荧光光子数 工作物质从光泵吸收的光子数
1
2
三能级1
=
S32 S32 +A31
2
A21 A21 S21
光电子技术课件ppt2[1]
22
θ1
B
半波带 a 半波带
2
21′′
1 2 1′
2′
半波带 半波带
A λ/2
两个“半波带”上发的光在P处干涉相消
形成暗纹。 • 当a sin 时3,可将缝分成三个“半波带”
2
Bθ
a
P处近似为明纹中心
A
2024/10/13
λ/2
光电子技术与应用
23
• 当 a sin 2 时,可将缝分成四个“半波
I I1 I2 2 I1I2 cos ,
若 I1 = I2 = I0 ,
则
I
4I0
cos 2
2
( d sin 2 )
I
4I0
光强曲线
2024/10/13
-4 -2 0 2 4
-2 -1 0 1 2 k
x -2 x -1 0
x1
x2
x
-2 /d - /d 0 /d 2 /d sin
光电子技术与应用
E0 sin 2
2
E0 △Φ
令 a sin
2
有
Ep
E0
sin
又
I
E
2 p
,I0 E02
P点的光强
I
I0
sin
2
2024/10/13
光电子技术与应用
27
由 得
I
I0
sin
2
可
(1) 主极大(中央明纹中心)位置:
0处, 0 sin 1 (2) 极小(暗纹)位置:
f
a
a
——衍射反比定律
2024/10/13
光电子技术与应用
sin I
第三章光电子技术-PPT课件
LD的工作特性(模式特性)
(1)
提高LD性能的方法
(2)
单纵模(SLM)激光器 设计的基本思想
使
几种典型的SLM激光器
大功率光纤激光器
包层泵浦技术
光纤耦合技术
大功率光纤激光器
美 国 IPG Photonics 公 司 、 德 国 Jena 大 学 的 应 用 物 理 所 和 英 国 Southampton 的 ORC 研 制 的 单 根 双包层光纤激光器,连续输出功率 分别达到135W、150W、1000W、 4000W, 20000W
难点
控制能力差
电子技术的发展
半导体电子学的强大生 命力在于它能够实现集 成化
处理功能和运行速度得 到大幅度提高,功耗大 大降低
尺寸大大缩小
芯片的成品率、可靠性 和性价比极大改善
但是利用电子作为信息的载体, 由于路径延迟和电磁串扰效应 的存在,无论从技术局限或是 经济代价以及信息安全的角度 来考虑,电子技术都出现了它 的阶段局限性。
5、半导体光电探测器
5.1 PN光电二极管
5.2 PIN光电二极管
5.3 APD光电二极管
5.4 光电二极管工作特性和参数
原因:W越大,光子入射到该区域的可能性 越大,被吸收产生光电流的概率就越高。
5.5 光电二极管一般性能和应用
谢谢
半导体掺杂材料的选择原则: 如果掺入的杂质原子代替半导 体晶格中的原子后存在多余的价电子,该杂质为施主杂质;如 果掺入的杂质原子代替半导体晶格中的原子后尚缺乏成键所需 要的电子,即存在电子空位,该杂质为受主杂质。
3、激光基本原理
光发射和光吸收
T为热力学温度,k=1.381×10-23J/K为玻尔兹曼常数
光电子技术第一章 绪论 PPT课件
• 1 2 3 代表材料对外场的响应;
• P代表外场作用下对传播规律的影响; • P ~ E 关系是非线性的。
7
2光电子技术的主要领域及应用
8
光电子技术的主要领域及应用
9
光电子技术的主要领域及应用
主要应用
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可以测量70 多 个物理化学量
17
•激光冷却和捕获原子技术
获得低温是科学家长期以来不断追求的一种技 术,它不但给人类带来实惠,如超导的发现和 应用,而且为研究物质的结构和性质创造了独 特的条件。在低温条件下,分子,原子热运动 的影响可以大大的减弱,原子更容易暴露出它 们的性质。20世纪80年代,借助激光技术获得 了中性气体分子的极低温状态。这种获得低温 的方法就叫激光冷却。
光学 电子学
光电子学
3
光电子技术 是光电子学在信息、能源、材料、航空航天、
生命科学和环境科学等领域的应用
4
光电子学与光电子技术
光电子学
激光与红外物理学 非线性光学
强 光 光
电 光
磁 光
()
弹 声
学效效光
效应应效
应
应
半导体光电子学
光 电 转 换 效 应
发 光 效 应
非 线 性 光 学 效 应
6
共同的基本规律
数学描述 波动方程:
电磁波源:
E
o o
2E t 2
o
E t
o
2P t 2
通常(线性)情况下
有外场作用(非线 性)情况下:
P oE
P o 1E 2EE 3EEE
• P代表外场作用下对传播规律的影响; • P ~ E 关系是非线性的。
7
2光电子技术的主要领域及应用
8
光电子技术的主要领域及应用
9
光电子技术的主要领域及应用
主要应用
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可以测量70 多 个物理化学量
17
•激光冷却和捕获原子技术
获得低温是科学家长期以来不断追求的一种技 术,它不但给人类带来实惠,如超导的发现和 应用,而且为研究物质的结构和性质创造了独 特的条件。在低温条件下,分子,原子热运动 的影响可以大大的减弱,原子更容易暴露出它 们的性质。20世纪80年代,借助激光技术获得 了中性气体分子的极低温状态。这种获得低温 的方法就叫激光冷却。
光学 电子学
光电子学
3
光电子技术 是光电子学在信息、能源、材料、航空航天、
生命科学和环境科学等领域的应用
4
光电子学与光电子技术
光电子学
激光与红外物理学 非线性光学
强 光 光
电 光
磁 光
()
弹 声
学效效光
效应应效
应
应
半导体光电子学
光 电 转 换 效 应
发 光 效 应
非 线 性 光 学 效 应
6
共同的基本规律
数学描述 波动方程:
电磁波源:
E
o o
2E t 2
o
E t
o
2P t 2
通常(线性)情况下
有外场作用(非线 性)情况下:
P oE
P o 1E 2EE 3EEE
光电显示技术 -光电子学综述ppt,43页
1
电子束首先由加在第一控制 栅极的视频电信号调制,经 加速和聚焦后,高速轰击荧 光屏上的荧光体,荧光体发 出可见光。
电子枪中阴极K被灯丝 加 热 至 200K 时 , 阴 极 K 发射大量电子。
2
最后通过偏转磁轭控制电
3
子束、在荧光屏上从上到 下,从左到右依次扫描,
从而将原被摄图像或文字
完整地显示在荧光屏上。
常利用液晶的电控双折射、旋光效应、
宾主效应。
24
液晶显示技术
3.5
LCD与CRT的对比
但LCD屏只含有固定数量的液晶单元 ,只能在全屏幕使用一种分 辨率显示。
(1)CRT尺丁显示可选择一系列分辨率,而且能按屏幕要求加以调整,
(2)CRT通常有3个电子枪,射出的电子流必须精确聚集 ,否则就得不 到清晰的图像显示。而LCD不存在聚焦问题,因为每个液晶单元都 是单独开关的,这正是同样一幅图在LCD屏幕上如此清晰的原因。 (3)LCD不必关心刷新频率和闪烁,液晶单元要么开,要么关,所以在 40 ~ 60Hz这样的低刷新频率下显示的图不会比75Hz下显示的图像 更闪烁。不过,LCD屏的液晶单元会很容易出现瑕疵。
光电显示技术综述
光电显示技术
【制作人】
xxx
【制作时间】 2015.12.25
1
目
录
1
光电显示技术概述
阴极射线管显示技术 液晶显示技术 激光显示技术
2
3 4
2
光电显示技术
1 光电显示技术概述
3
光电显示技术概述
1.光电显示技术的定义
光电显示技术是将电子设备输出的电信号转换成视觉可见的图、图形、 数码及字符等光信号的一门技术,是光电子技术的重要组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 电磁波与光波(理论基础) 第二章 激光与半导体光源 第三章 光波的传输 第四章 光波的调制 第五章 光波的探测与解调
.
未来是光通信的世界。
第一章 光波与电磁波
➢麦克斯韦方程组的积分形式 ➢高斯定理 斯托克斯定律 ➢麦克斯韦方程组的微分形式 ➢边界条件 ➢电磁波的性质 ➢电磁波谱
.
麦克斯韦方程组及其物理意义
E和H幅度成比例、复角相等
0E0 0H0
E H
电磁波的传播速度
v 1 k 00
C
1
00
3108.m/ s
介质中 真空中
为什么说光波是电磁波?
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c 1 3.107 140 8ms
00
当时通过实验测得的真空中的光速也为 3108 m s
2) 根据麦氏方程: 电磁波在介质中的速度为
玻尔频率条件: h En Em 或 En Em
h
式中h为普郎克常数:
h 6 .6 2 1 3 0 J 4s
.
激光的基本原理、特性和应用 ——玻尔假说
原子能级
原子从高能级向低能 级跃迁时,相当于光 的发射过程;而从低 能级向高能级跃迁时, 相当于光的吸收过程; 两个相反的过程都满 足玻尔条件。
(对于非铁磁质)
v c
根据光学中折射率的定义,则
.
v c
nc vc vn
为什么说光波是电磁波?
如果光波是电磁波,比较上面两式:
v c 和v c
n
n
麦克斯韦 关系式
➢而当时测得的无极分子物质,按上式计算的折射率与测量的折射率 能很好的符合。 ➢当时测得的为有极分子物质,上式中的ε用光波频率时的值,则上式 就成立了。平时ε在低频电场下测量。 ➢所以麦克斯韦判定,光波是电磁波。
光电子学基 础知识
.
前言——光电子技术定义
光电子技术是光学技术与电子技 术结合的产物,是电子技术在光频波 段的延续与发展。是研究光(特别是 相干光)的产生、传输、控制和探测 的科学技术。
.
未来是光通信的世界。
前言——本课程的结构和内容安排
出发点: 一个完整的信息系统包括光载波源,光信号的传
播,光信号的调制,光信号的探测与解调等基本部分。
n•B 2B 10
▪
界面两侧磁场的法向分量连续
边界条件表示界面两侧的场以及界面上电荷电流的制 约关系,它实质上是边界上的场方程。由于实际问题往往 含有几种介质以及导体在内,因此,边界条件的具体应 用对于解决实际问题十分重要。
.
平面电磁波的性质
电磁波是横波,电矢量E、磁矢量H和传播方 向K(K为传播方向的单位矢量)两两垂直。
.
激光的基本原理、特性和应用 ——玻尔假说
玻尔假说:
➢ 1)原子存在某些定态,在这 些定态中不发出也不吸收电磁 辐射能。原子定态的能量只能 采取某些分立的值E1、 E2 、…… 、En ,而不能采取 其它值。
➢ 2)只有当原子从一个定态跃 迁到另一个定态时,才发出和 吸收电磁辐射。
E1
E3
E2
.
激光的基本原理、特性和应用 ——玻尔假说
自发跃迁是一个只与原子特性有关而与外界 激励无关的过程,即A21只由原子本身性质 决定。假设E 2d 能级2 N 只d 向2 EN 11 能A 级2N 跃12d 迁,t 则
积分后 N 2 得 N 20e: x p A 2t1
.
电场与磁场的激发
B
D
t
t
不符合右手法则(为负)
符合右手法则
.
电磁波的传播
电场
电场
电场
磁场
电场
磁场
磁场
波源
磁场
磁场
.
边界条件
nE 2E 10
▪
界面两侧电场的切向分量连续
n H 2 H 1
▪
界面两侧磁场的切向分量发生了跃变
n•D 2 D 1
▪ 界面两侧电场的法向分量发生了跃变
.
麦克斯韦方程组的微分形式
• D
E
0
B
t
•B 0
H
j0
D t
Ⅰ
Ⅱ
Ⅲ
Ⅳ
.
1.15
麦克斯韦方程组的物理意义
➢ (Ⅰ)式:电位移矢量或电感应强度D的散度 等于电荷密度 0,即电 场为有源场。
➢ (Ⅲ)式:磁感强度B的散度为零,即磁场为 无源场。
➢ (Ⅱ)式:随时间变化的磁场激发涡旋电场。 ➢ (Ⅳ)式:随时间变化的电场激发涡旋磁场。
.
激光的基本原理、特性和应用 ——粒子数正常分布
按这个正则分布规律:
N2 exp(E2 /kT) N1 exp(E1 /kT) exp[(E2 E1)/kT]1
在热平衡状态中,高能级上的粒子数N2一定小于低能 级上的粒子数N1,两者的比例由体系的温度决定。
.
三种跃迁过程(自发辐射)
E2
h
E1
若原子处于高能级E2上,在停留一个极短的时间后就会自发地向 低能级E1跃迁,如图所示,并发射出一个能量为hv的光子。为描述这
——麦克斯韦方程组的积分形式
D • d s q0
Ⅰ
E
•
d
l
B t
•
d
s
Ⅱ
B • d s 0
Ⅲ
H • d l I0
D
•
d
s
t
Ⅳ
.
麦克斯韦方程组及其物理意义
——高斯定理 斯托克斯定律
▪ 高斯定理:
V • A d VS A • d S
▪ 斯托克斯定律:
lA • d l S A d S
基态:能级 中能量最低
E1
E3
E2
激发态
.
激光的基本原理、特性和应用 ——粒子数正常分布
➢波尔兹曼分布律:
若原子处于热平衡状态,各能级上粒子数 目的分布将服从一定的规律。设T 为原子体系的
热平衡绝对温度;Nn为在能级En上的粒子数则
N n e x E n /k p )T ( ( 2 .2 )
即随着能级增高,能级上的粒子数Nn按指数规律减少, 式中k为波尔兹曼常数。
.
第二章 激光与半导体光源
➢ 玻尔假说及玻尔频率条件 ➢ 粒子数正常分布 ➢ 三种跃迁过程能级的寿命 ➢ 爱因斯坦公式及其系数之间的关系 ➢ 粒子数反转和光放大 ➢ 激光器的结构及各部分的功能 ➢ 为什么四能级系统比三能级系统效率高 ➢ 阈值条件 ➢ 形成激光的条件 ➢ 纵模和横模 ➢ 几种典型的激光器
种自发跃迁过程引入自发辐射跃迁几率A21,它的意义是在单位时间
内,E2能级上N2个粒子数中自发跃迁的粒子数与N2的比值。如果E2
能级下只有E1能级,则在dt时间内,由高能级E2自发辐射到低能级E1
的粒子数记作dN21:
dN21 dt
A21N2
.
三种跃迁过程(自发辐射)
A21——称为爱因斯坦系数,它可以理解为每 一个处于E2能级的粒子在单位时间内发生自 发跃迁的几率。
.
未来是光通信的世界。
第一章 光波与电磁波
➢麦克斯韦方程组的积分形式 ➢高斯定理 斯托克斯定律 ➢麦克斯韦方程组的微分形式 ➢边界条件 ➢电磁波的性质 ➢电磁波谱
.
麦克斯韦方程组及其物理意义
E和H幅度成比例、复角相等
0E0 0H0
E H
电磁波的传播速度
v 1 k 00
C
1
00
3108.m/ s
介质中 真空中
为什么说光波是电磁波?
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c 1 3.107 140 8ms
00
当时通过实验测得的真空中的光速也为 3108 m s
2) 根据麦氏方程: 电磁波在介质中的速度为
玻尔频率条件: h En Em 或 En Em
h
式中h为普郎克常数:
h 6 .6 2 1 3 0 J 4s
.
激光的基本原理、特性和应用 ——玻尔假说
原子能级
原子从高能级向低能 级跃迁时,相当于光 的发射过程;而从低 能级向高能级跃迁时, 相当于光的吸收过程; 两个相反的过程都满 足玻尔条件。
(对于非铁磁质)
v c
根据光学中折射率的定义,则
.
v c
nc vc vn
为什么说光波是电磁波?
如果光波是电磁波,比较上面两式:
v c 和v c
n
n
麦克斯韦 关系式
➢而当时测得的无极分子物质,按上式计算的折射率与测量的折射率 能很好的符合。 ➢当时测得的为有极分子物质,上式中的ε用光波频率时的值,则上式 就成立了。平时ε在低频电场下测量。 ➢所以麦克斯韦判定,光波是电磁波。
光电子学基 础知识
.
前言——光电子技术定义
光电子技术是光学技术与电子技 术结合的产物,是电子技术在光频波 段的延续与发展。是研究光(特别是 相干光)的产生、传输、控制和探测 的科学技术。
.
未来是光通信的世界。
前言——本课程的结构和内容安排
出发点: 一个完整的信息系统包括光载波源,光信号的传
播,光信号的调制,光信号的探测与解调等基本部分。
n•B 2B 10
▪
界面两侧磁场的法向分量连续
边界条件表示界面两侧的场以及界面上电荷电流的制 约关系,它实质上是边界上的场方程。由于实际问题往往 含有几种介质以及导体在内,因此,边界条件的具体应 用对于解决实际问题十分重要。
.
平面电磁波的性质
电磁波是横波,电矢量E、磁矢量H和传播方 向K(K为传播方向的单位矢量)两两垂直。
.
激光的基本原理、特性和应用 ——玻尔假说
玻尔假说:
➢ 1)原子存在某些定态,在这 些定态中不发出也不吸收电磁 辐射能。原子定态的能量只能 采取某些分立的值E1、 E2 、…… 、En ,而不能采取 其它值。
➢ 2)只有当原子从一个定态跃 迁到另一个定态时,才发出和 吸收电磁辐射。
E1
E3
E2
.
激光的基本原理、特性和应用 ——玻尔假说
自发跃迁是一个只与原子特性有关而与外界 激励无关的过程,即A21只由原子本身性质 决定。假设E 2d 能级2 N 只d 向2 EN 11 能A 级2N 跃12d 迁,t 则
积分后 N 2 得 N 20e: x p A 2t1
.
电场与磁场的激发
B
D
t
t
不符合右手法则(为负)
符合右手法则
.
电磁波的传播
电场
电场
电场
磁场
电场
磁场
磁场
波源
磁场
磁场
.
边界条件
nE 2E 10
▪
界面两侧电场的切向分量连续
n H 2 H 1
▪
界面两侧磁场的切向分量发生了跃变
n•D 2 D 1
▪ 界面两侧电场的法向分量发生了跃变
.
麦克斯韦方程组的微分形式
• D
E
0
B
t
•B 0
H
j0
D t
Ⅰ
Ⅱ
Ⅲ
Ⅳ
.
1.15
麦克斯韦方程组的物理意义
➢ (Ⅰ)式:电位移矢量或电感应强度D的散度 等于电荷密度 0,即电 场为有源场。
➢ (Ⅲ)式:磁感强度B的散度为零,即磁场为 无源场。
➢ (Ⅱ)式:随时间变化的磁场激发涡旋电场。 ➢ (Ⅳ)式:随时间变化的电场激发涡旋磁场。
.
激光的基本原理、特性和应用 ——粒子数正常分布
按这个正则分布规律:
N2 exp(E2 /kT) N1 exp(E1 /kT) exp[(E2 E1)/kT]1
在热平衡状态中,高能级上的粒子数N2一定小于低能 级上的粒子数N1,两者的比例由体系的温度决定。
.
三种跃迁过程(自发辐射)
E2
h
E1
若原子处于高能级E2上,在停留一个极短的时间后就会自发地向 低能级E1跃迁,如图所示,并发射出一个能量为hv的光子。为描述这
——麦克斯韦方程组的积分形式
D • d s q0
Ⅰ
E
•
d
l
B t
•
d
s
Ⅱ
B • d s 0
Ⅲ
H • d l I0
D
•
d
s
t
Ⅳ
.
麦克斯韦方程组及其物理意义
——高斯定理 斯托克斯定律
▪ 高斯定理:
V • A d VS A • d S
▪ 斯托克斯定律:
lA • d l S A d S
基态:能级 中能量最低
E1
E3
E2
激发态
.
激光的基本原理、特性和应用 ——粒子数正常分布
➢波尔兹曼分布律:
若原子处于热平衡状态,各能级上粒子数 目的分布将服从一定的规律。设T 为原子体系的
热平衡绝对温度;Nn为在能级En上的粒子数则
N n e x E n /k p )T ( ( 2 .2 )
即随着能级增高,能级上的粒子数Nn按指数规律减少, 式中k为波尔兹曼常数。
.
第二章 激光与半导体光源
➢ 玻尔假说及玻尔频率条件 ➢ 粒子数正常分布 ➢ 三种跃迁过程能级的寿命 ➢ 爱因斯坦公式及其系数之间的关系 ➢ 粒子数反转和光放大 ➢ 激光器的结构及各部分的功能 ➢ 为什么四能级系统比三能级系统效率高 ➢ 阈值条件 ➢ 形成激光的条件 ➢ 纵模和横模 ➢ 几种典型的激光器
种自发跃迁过程引入自发辐射跃迁几率A21,它的意义是在单位时间
内,E2能级上N2个粒子数中自发跃迁的粒子数与N2的比值。如果E2
能级下只有E1能级,则在dt时间内,由高能级E2自发辐射到低能级E1
的粒子数记作dN21:
dN21 dt
A21N2
.
三种跃迁过程(自发辐射)
A21——称为爱因斯坦系数,它可以理解为每 一个处于E2能级的粒子在单位时间内发生自 发跃迁的几率。