统计学13典型相关分析
统计学中的相关性分析
统计学中的相关性分析相关性分析是统计学中一种重要的数据分析方法,用于研究两个或多个变量之间的关系。
通过相关性分析,我们可以了解变量之间的相关程度,并从中推断可能存在的因果关系或者预测未来的趋势。
本文将介绍相关性分析的基本概念、常用方法和实际应用场景。
一、相关性分析的基本概念相关性是指两个或多个变量之间存在的关联程度。
通过相关性分析,我们可以测量这种关联程度,并判断其强度和方向。
常用的相关系数有皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数等。
1. 皮尔逊相关系数皮尔逊相关系数是一种衡量线性相关性的指标,通常用r表示。
其取值范围在-1到1之间,0表示没有线性相关性,正数表示正相关性,负数表示负相关性。
绝对值越接近1,相关性越强。
2. 斯皮尔曼等级相关系数斯皮尔曼等级相关系数是一种非参数的相关性指标,适用于不满足线性假设的数据。
它通过将原始数据转化为等级或顺序,然后计算等级的相关性来衡量两个变量之间的关联程度。
3. 判定系数判定系数是衡量相关性的一个指标,也是回归分析中的常用指标。
判定系数的取值范围在0到1之间,表示因变量的变异程度中有多少可以被自变量解释。
越接近1,代表自变量对因变量的解释程度越高。
二、常用的相关性分析方法在统计学中,常用的相关性分析方法有:1. 直接计算相关系数最直接的方法是直接计算相关系数,即根据数据计算皮尔逊相关系数、斯皮尔曼等级相关系数等。
这种方法适用于数据量较小、手动计算较为简便的情况。
2. 统计软件分析对于大规模数据或者需要进行更加深入的相关性分析,可以使用统计软件。
常用的软件包括SPSS、R、Python等,通过简单的代码或者拖拽操作,即可得到相关性分析的结果和可视化图表。
3. 相关性图表和散点图相关性图表和散点图可以直观地展示变量之间的关系,有助于理解和解释数据。
通过绘制散点图,我们可以观察到数据点的分布情况,进而判断变量之间的相关性。
三、相关性分析的实际应用场景相关性分析在各个领域中都有广泛的应用,以下列举几个常见的应用场景:1. 经济学领域在经济学中,相关性分析可用于研究经济指标之间的关联程度。
统计学中的相关分析
统计学中的相关分析统计学是一门研究数据收集、分析和解释的学科,而相关分析是其中一个重要的分析方法。
相关分析是用来量化两个或更多变量之间关系强度的技术,它可以帮助我们理解和预测现象之间的相关性。
本文将介绍相关分析的基本概念、应用以及在实际问题中的运用。
一、相关分析的概念相关分析是统计学中用来确定两个或多个变量之间关系强度的方法。
关系强度通过相关系数来度量,相关系数的取值范围为-1到1。
相关系数为正值表示两个变量是正相关的,即随着一个变量的增加,另一个变量也会增加;相关系数为负值表示两个变量是负相关的,即随着一个变量的增加,另一个变量会减少;相关系数为零表示两个变量之间没有线性关系。
相关分析可以帮助我们了解变量之间的关系,并进行进一步的预测和分析。
二、相关分析的应用相关分析在实际问题中有着广泛的应用。
以下是几个常见领域的相关分析应用示例:1. 经济学领域:相关分析可以帮助经济学家确定不同经济指标之间的关系,如通货膨胀率与失业率之间的相关性,利率与投资之间的相关性等。
这些关系可以用来预测经济发展趋势,为经济政策制定提供参考依据。
2. 医学研究:相关分析在医学研究中的应用非常广泛。
例如,研究人员可以使用相关分析来确定吸烟与肺癌之间的关系,体重与心血管疾病之间的关系等。
这些关系可以帮助医生们更好地了解疾病的发展机制,并提供有效的预防和治疗方案。
3. 市场调查:相关分析可以用来确定市场调查数据中不同变量之间的关系。
例如,一家公司可以使用相关分析来确定广告投资与销售额之间的关系,从而确定最佳的广告投放策略。
相关分析还可以帮助市场调查人员找到潜在的目标客户群体,以提升市场营销效果。
三、相关分析的实际案例为了更好地理解相关分析的应用,我们将通过一个实际案例来说明其具体操作。
假设一个电商公司想要研究用户购买行为与广告点击率之间的关系。
他们分析了一段时间内的用户购买记录和广告点击数据,并进行了相关分析。
他们计算了购买金额和广告点击率之间的相关系数,并得到了一个正值0.75。
典型相关分析的应用前提是
典型相关分析的应用前提是典型相关分析是统计学中一种重要的分析方法,用于研究两组变量之间的关系。
在进行典型相关分析之前,有一些前提条件需要满足,以确保结果的有效性和可靠性。
1. 数据的正态性:典型相关分析是基于正态分布假设的。
因此,在进行分析之前,需要确保所使用的变量满足正态分布的要求。
可以通过正态性检验(如Shapiro-Wilk检验)来判断数据是否符合正态分布。
如果数据不符合正态分布,可以尝试进行变换(如对数变换或Box-Cox变换)来使其满足正态分布假设。
2. 相关性:典型相关分析是用于研究两组变量之间的关系的方法。
因此,在进行分析之前,需要确保所选择的变量之间存在相关性。
可以通过计算变量之间的相关系数(如Pearson相关系数或Spearman相关系数)来评估它们之间的相关性。
如果两个变量之间不存在或弱相关,则不适合使用典型相关分析方法。
3. 样本量要求:典型相关分析需要有足够的样本量才能获得可靠的结果。
一般来说,至少需要50个观测样本以进行典型相关分析。
较小的样本量可能会导致结果的不稳定性和不可靠性。
如果样本量较小,可以考虑使用其他方法(如相关分析或线性回归)进行数据分析。
4. 独立性:在进行典型相关分析之前,需要确保所选取的样本是独立的。
独立的样本是指各个观测值之间相互独立,不受其他观测值的影响。
如果样本之间存在依赖关系或相关性,可能会导致结果的偏差和不准确性。
5. 同方差性:典型相关分析假设不同组变量的方差是相等的。
因此,在进行分析之前,需要检验不同组变量的方差是否相等。
可以使用方差齐性检验(如Levene检验)来评估不同组变量的方差是否具有显著差异。
如果不同组变量的方差不相等,可能会对典型相关分析的结果产生影响。
总之,典型相关分析是一种有用的统计分析方法,可以帮助研究人员探索和理解两组变量之间的关系。
然而,在进行典型相关分析之前,需要确保数据满足正态分布、具有相关性、样本量足够、样本独立以及方差相等等前提条件,以保证分析结果的有效性和可靠性。
典型相关分析和协整
2 应用领域
具体应用领域也是选择方 法的一个因素,例如需要 研究市场平衡时可以使用 协整分析。
3 实际需求
根据实际问题中的需求, 选择合适的分析方法。
总结
典型相关分析和协整是两种不同的统计分析方法,各自有其适用领域和局限 性。使用这些方法可以从不同维度和角度解读变量之间的关系,有助于更好 地理解和分析数据。
原理和应用领域
适用于研究两个或两个以上时间序列之间的长期关 系,可以用于股票市场、汇率、商品价格等领域的 分析。
步骤和计算方法
选择需要分析的时间序列,进行单位根检验以判断
优势和限制
可以排除短期市场波动的影响,更容易发现市场中
典型相关分析与协整的不同之处
基础理论
典型相关分析基于主成分分析, 而协整分析基于时间序列分析。
原理和应用领域
适用于研究多个变量之间的关系,既可以揭示 变量之间的线性关系,也可以检测非线性关系。
优势和限制
可以提高变量之间的关系解释效果,但需要数 据具有一定的正态性和线性性。也会受到样本 数量的限制,在样本量较少时易受到误导。
什么是协整分析
定义
在时间序列分析中,指两个或两个以上的时间序列 彼此关联,但是它们的差分是平稳的。即可以通过 线性组合消除非平稳性。
分析对象
典型相关分析基于多个变量之 间的关系,而协整分析常用于 两个或两个以上时间序列的分 析。
数据要求
典型相关分析对数据正态分布 和线性相关性的要求较高,而 协整分析对数据平稳性的要求 较高。
如何选择方法
1 数据类型
对于数量型变量,可以考 虑使用典型相关分析;对 于时间序列数据,可以使 用协整分析。
典型相关分析ቤተ መጻሕፍቲ ባይዱ协整
多元统计分析——典型相关分析
多元统计分析——典型相关分析典型相关分析(Canonical correlation analysis)是一种多元统计分析方法,用于研究两组变量之间的关联性。
与传统的相关分析不同,典型相关分析可以同时考虑多组变量,找出最佳的线性组合,使得两组变量之间的相关性最大化。
它主要用于探索一组自变量与另一组因变量之间的线性关系,并且可以提供详细的相关性系数、特征向量和特征值等信息。
典型相关分析的基本原理是将两组变量分别投影到最佳的线性组合上,使得投影后的变量之间的相关性最大。
这种投影是通过求解特征值问题来实现的,其中特征值表示相关系数的大小,特征向量表示两组变量的线性组合。
通常情况下,我们希望保留具有最大特征值的特征向量,因为它们对应着最强的相关性。
典型相关分析的应用广泛,可以用于众多领域,如心理学、社会科学、经济学等。
例如,在心理学研究中,我们可能对人们的人格特征和行为方式进行测量,然后使用典型相关分析来探索它们之间的关系。
在经济学研究中,我们可以将宏观经济指标与企业盈利能力进行比较,以评估它们之间的相关性。
典型相关分析的步骤如下:1.收集数据:首先,我们需要收集两组变量的数据。
这些数据可以是定量数据(如收入、年龄)或定性数据(如性别、职业)。
2.建立模型:然后,我们需要建立一个数学模型,用于描述两组变量之间的关系。
这可以通过线性回归、主成分分析等方法来实现。
3.求解特征值问题:接下来,我们需要求解特征值问题,以获得相关系数和特征向量。
在实际计算中,我们可以使用统计软件来完成这一步骤。
4.解释结果:最后,我们需要解释典型相关分析的结果。
通常情况下,我们会关注最大的特征值和对应的特征向量,因为它们表示着最强的相关性。
典型相关分析的结果提供了一组线性组合,这些组合可以最大化两组变量之间的相关性。
通过分析这些组合,我们可以洞察两组变量之间的潜在关系,并提供有关如何解释和预测这种关系的指导。
总结而言,典型相关分析是一种强大的多元统计分析方法,可以用于研究两组变量之间的关联性。
统计学-线性相关分析
二、计算公式
样本相关系数 r 的计算公式为:
r ( X X )(Y Y ) l XY ( X X )2 (Y Y )2 l XX lYY
例13-2:
第三节 相关系数的假设检验
目的是推断总体相关系数 是否等于0 ?
检验统计量 t 的计算公式为:
tr
r 0 Sr
r ,v n2 1 r2 n2
零相关(r=0)
相关系数 r 的取值及两变量间相关关系的直观图示:
r=0
零相关(r=0)
相关系数 r 的取值及两变量间相关关系的直观图示:
r=0
零相关(r=0)
相关系数 r 的取值及两变量间相关关系的直观图示:
r=0
零相关(r=0)
第二节 线性相关系数
一、概念
相关系数又称pearson积差相关系数, 符号: 常用 r 表示样本相关系数,用 表示总体相 关系数。相关系数可用来说明具有直线关系 的两变量间相关的方向和密切程度。
第十二章 线性相关分析
第一节 线性相关的概念
一、散点图
例13-1 为研究中年女性体重指数和收缩压 之间的关系,随机测量了16名40岁以上女性 的体重指数和收缩压,见表13-1,试作分析。
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
合计
体重指数 X 2.86 3.41 3.62 3.20 2.79 2.96 3.84 4.01 3.75 3.96 3.36 3.62 3.91 4.12 3.33 3.76
4. 不能直接根据样本相关系数r绝对值的大小 来说明两事物间有无相关关系及相关的紧密方 向而需对总体相关系数作假设检验。
第六节 直线回归与直线相关的区别和联系
学术研究中的典型相关分析方法
学术研究中的典型相关分析方法一、引言典型相关分析是一种广泛应用于社会科学和生物统计学领域的统计方法,主要用于研究两个或多个变量之间的关系。
典型相关分析能够从大量数据中提取出有用的信息,帮助研究者更好地理解研究对象之间的相互作用。
本文将详细介绍典型相关分析的基本原理、步骤和应用,为学术研究提供有益的参考。
二、典型相关分析的基本原理典型相关分析是一种用于探索多个变量之间关系的方法。
它通过寻找一组代表性变量,来反映原始变量之间的相关关系。
这些代表性变量通常被称为主成分或典型变量,它们能够反映原始变量的绝大部分信息。
通过分析典型变量之间的关系,可以推断出原始变量之间的潜在关系。
典型相关分析的基本原理可以概括为以下三个步骤:1.数据的降维:通过主成分分析或类似的方法,将原始数据从多个维度降至少数几个典型变量。
2.寻找代表性变量:根据典型变量的方差贡献和相关性,选择最重要的几个典型变量。
3.解释原始变量之间的关系:通过分析典型变量之间的关系,推断出原始变量之间的潜在关系。
三、典型相关分析的步骤典型相关分析通常包括以下步骤:1.准备数据:收集并整理需要进行分析的数据,确保数据的质量和准确性。
2.降维:使用主成分分析、独立成分分析或其他降维方法,将数据从多个维度降至少数几个典型变量。
3.确定典型变量:根据方差贡献和相关性,选择最重要的几个典型变量。
4.统计分析:使用适当的统计方法,如线性回归、相关系数等,分析典型变量之间的关系,并解释其意义。
5.结果解释:将典型变量之间的关系与原始变量之间的相关性进行比较,推断出原始变量之间的潜在关系。
四、典型相关分析的应用典型相关分析在许多领域都有广泛的应用,包括但不限于社会学、心理学、生物学和医学。
以下是一些典型相关分析的应用实例:1.研究社会现象:在研究社会现象时,典型相关分析可以用于探索人口统计学特征(如年龄、性别、教育水平等)与行为、态度和价值观之间的关系。
通过分析典型变量,可以更深入地了解社会现象的内在机制。
多元统计分析 典型相关分析
第六步:验证与诊断
与其他的多元分析方法一样,典型相关分析的结 果应该验证,以保证结果不是只适合于样本,而是 适合于总体。最直接的方法是构造两个子样本(如 果样本量允许),在每个子样本上分别做分析。这 样结果可以比较典型函数的相似性、典型载荷等。 如果存在显著差别,研究者应深入分析,保证最后 结果是总体的代表而不只是单个样本的反映。
现在的问题是为每一组变量选取一个综合 变量作为代表;而一组变量最简单的综合形 式就是该组变量的线性组合。
由于一组变量可以有无数种线性组合(线 性组合由相应的系数确定),因此必须找到 既有意义又可以确定的线性组合。
典型相关分析的概念
典型相关分析(canonical correlation analysis)就是要找到这两组变量线性组 合的系数使得这两个由线性组合生成的 变量(和其他线性组合相比)之间的相 关系数最大。
2、典型载荷
由于典型权重的缺陷,典型载荷逐步成为 解释典型相关分析结果的基础。典型载荷, 也称典型结构相关系数,是原始变量(自变 量或者因变量)与它的典型变量间的简单线 性相关系数。典型载荷反映原始变量与典型 变量的共同方差,它的解释类似于因子载荷, 就是每个原始变量对典型函数的相对贡献。
3、典型交叉载荷
第五步:解释典型变量.
建立典型相关分析模型后,需要对模型的结果 进行解释,可以用以下三种方法来说明。
三种方法:
1 典型权重(标准化的典型变量系数)
2 典型载荷(解释典型相关分析结果的基础; 反应原始变量与典型变量的共同方差,即每 个原始变量对典型变量的相对贡献)
典型相关分析因子分析
结论和总结
本文介绍了典型相关分析和因子分析的概念、公式、步骤和应用案例。这两 种数据分析方法可以帮助研究者从不同角度分析数据,揭示潜在关系,并为 决策提供依据。
2
定变量之间的关联程度。
利用特征向量和特征值,计算出典型相关变
量,即两组变量之间的最大相关性。
3
解释结果
分析典型相关系数和贡献率,解释典型相关 分析的结果。
因子分析的公式与步骤
1
提取因子
2
根据主成分分析或最大似然估计等方法,提
取潜在因子,解释变量之间的共变异。
3
解释结果
4
Hale Waihona Puke 分析因子载荷和解释方差,解释因子分析的 结果。
金融
典型相关分析可以用于分析金融市场上不同变量之间的关系,为投资决策提供参考。
因子分析的应用案例
心理学
因子分析可以帮助心理学家理解人 的多个特质和行为之间的关系,揭 示心理结构。
教育研究
因子分析可以帮助研究者理解学生 学习成绩和学习动机等变量之间的 关系,指导教育改革。
市场调研
通过因子分析,市场研究人员可以 揭示消费者对产品特性的偏好和认 知结构。
典型相关分析因子分析
典型相关分析与因子分析是统计学中重要的数据分析方法。本文将介绍这两 种分析方法的基本概念、公式与步骤,并提供一些实际应用案例。
典型相关分析介绍
典型相关分析是一种用于探究两组变量之间关系的方法。它能够找到两组变量之间存在的最大相关性,并且给出相 应的统计量。该方法在市场研究、社会科学和金融等领域被广泛应用。
因子分析介绍
因子分析是一种用于揭示观测数据之间潜在关系的方法。通过将观测变量转 化为几个潜在因子,因子分析可以简化数据结构,帮助研究者理解复杂性问 题。该方法在心理学、教育研究和市场调研等领域得到广泛应用。
典型相关分析
典型相关分析典型相关分析是一种统计学方法,用于研究两组变量之间的关系。
典型相关分析可以帮助我们了解这两组变量之间的相互关系以及它们是否能够彼此预测。
在本文中,我们将探讨典型相关分析的基本概念、应用场景、计算方法以及结果的解释和解读。
典型相关分析,又称为典型相关系数分析,是一种多变量统计技术,它可以在两组变量之间寻找最具相关性的线性组合,这个线性组合被称为典型变量。
典型相关分析的核心思想是将两组变量转化为一组最具相关性的综合变量,以便探索和解释它们之间的关系。
典型相关分析通常用于探索两组变量之间的关系,并确定是否存在一个或多个典型相关系数。
在许多实际应用中,这些变量可能代表相互关联的特征或维度,比如市场规模和销售额、学习时间和考试成绩等。
典型相关分析可以用于许多领域的研究。
例如,在市场研究中,我们可以使用典型相关分析来研究不同市场因素之间的关系,并确定市场的发展趋势。
在教育研究中,我们可以使用典型相关分析来研究学生的学习习惯和学术成绩之间的关系,以帮助教育者改进教学方法和学习环境。
接下来,我们将介绍典型相关分析的计算方法。
假设我们有两组变量X和Y,其中X包含p个变量,Y包含q个变量。
首先,我们计算X和Y的样本协方差矩阵SXX和SYY,以及它们之间的协方差矩阵SXY。
然后,我们对SXX和SYY进行特征值分解,得到它们的特征向量和特征值。
接下来,我们选择最大的r个特征值和对应的特征向量。
最后,我们计算典型相关系数以及典型变量。
结果的解释和解读是典型相关分析的最后一步。
典型相关系数的取值范围为-1到1,其中取值为1表示两组变量之间存在完全正相关的关系,取值为-1表示存在完全负相关的关系,取值为0表示两组变量之间不存在相关性。
此外,我们还可以通过检验统计量来判断典型相关系数是否显著。
总结起来,典型相关分析是一种统计学方法,用于研究两组变量之间的关系。
它可以帮助我们了解这两组变量之间的相互关系以及它们是否能够彼此预测。
统计学例题-方差分析、相关分析、卡方检验和交互分析
第一章方差分析例1、1977年,美国的某项调查从三种受过不同教育类型的妇女中各分别抽取了50位全日制工作的妇女样本,她们的年收入(单位:千美元)数据整理后归纳如下:完成的学历年数收入平均值()初中(8年)X1 高中(12年)X2 大学(16年)X37.89.714。
0183524424707解:: =:三组收入均值有显著差异F =,即组间均方/组内均方其中,组间自由度=3-1=2,组内自由度=(50-1)╳3=147由于样本均值=(7。
8+9.7+14。
0)/3=10.5所以组间偏差平方和=50=50*(++)=1009组内偏差平方和==1835+2442+4707=8984所以,F = ≈ 8.2548419 >(2,147)=3。
07拒绝原假设;认为不同学历的妇女收入存在差异.例2、月收入数据:男:2500,2550,2050,2300,1900女:2200,2300,1900,2000,1800如果用Y表示收入,哑变量X表示性别(X=1为女性),计算Y对X的回归方程,并在5%的水平下检验收入是否与性别无关(先求回归系数的置信区间).解:令Y=+X+根据最小二乘法,可知=(1)VAR()=(2)=(3)1计算如下::收入与性别无关收入与性别不完全无关Y 2500255020502300190022002300190020001800 X 0 0 0 0 0 1 1 1 1 1 240 290 —210 40 -360 160 260 —140 —40 —240 =2150=0。
5根据公式1,得=—220;,即Y=—220X+根据公式2、3,得VAR()=≈156。
3549577n=10。
,n—2=8;当df=8时,=2.306的0.05置信区间求解方法如下:-2.036〈=〈=2。
306,得140。
57769。
由于原假设=0落入了这个置信区间,所以接受原假设,认为系数不显著,收入与性别无关。
统计学案例——相关回归分析
《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。
通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。
经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。
2、数据的收集序号回流温度(℃)液化气收率(%)序号回流温度(℃)液化气收率(%)1 2 3 4 5 6 7 8 9 10 11 12 13 14 1536 39 43 43 39 38 43 44 37 40 34 39 40 41 4413.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.116 17 18 19 20 21 22 23 24 25 26 27 28 29 3042 43 46 44 42 41 45 40 46 47 45 38 39 44 4512.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。
3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。
因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。
从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。
统计学案例分析
[案例13-1] 我国人身保险业的发展情况保险可分为财产保险和人身保险两大类。
人身意外伤害险是人身保险的一部分。
随着我国国民经济的快速发展,我国保险业也呈现出良好的发展态势,由人身意外伤害险的保费收入的变化可见一斑。
表8—14是我国2000—2006年各月的人身意外伤害险保费收入,数据来源于中国保险监督管理委员会网站的统计信息(网址:www.circ.go~cn),由编者根据各年各月的《保险业经营情况表》中的数据整理而成。
根据这些数据可以分析研究我国人身意外伤害保险的水平、速度和构成因素等各种数量特征,为研究保费收入变化的数量规律、分析保费收入变化的影响因素、制定发展计划以及指导保险机构发展相关业务等提供重要的参考信息。
案例思考与分析要求:1.利用Excel绘制出该动态序列的折线图。
2.按本章第四节中所讲的动态数列构成因素的分类和特征,观察折线图并说明我国人身意外伤害险保费收入的变化中受哪几种构成因素的影响?3.对上述月度数据计算同比增长速度和环比增长速度各有什么意义?4.汇总出各年度保费收入总额,并根据年度数据计算2000---2006年间的:(1)年平均发展水平。
(2)各年的逐期增长量、累计增长量和年平均增长量,验证逐期增长量与累计增长量之间的关系。
(3)各年的增长速度(环比、定基)、平均发展速度和平均增长速度,并指出增长速度超过一般水平的是哪几年?(4)年度保费收入总额呈现出哪种形态的长期趋势?用恰当的数学模型将这种长期趋势表达出来(利用Excel拟合出具体的方程式),说明拟合效果的好坏,并预测2007年和2008年的发展水平。
5.如果要根据月度数据来测定保费收入序列的长期趋势,适合采用移动平均法还是数学模型拟合法?为什么?若采用移动平均法,平均的项数应为几项?试用Excel的移动平均工具进行计算并输出图表。
[案例11-1] 表8—12中是16只公益股票某年的每股账面价值和当年红利:根据表8—12中的资料:(1)画出这些数据的散点图;(2)根据散点图,表明二变量之间存在什么关系?(3)求出当年红利是如何依赖每股账面价值的估计的回归方程;(4)对估计的回归方程中的估计回归系数(斜率)的经济意义作出解释;(5)若序号为6的公司的股票每股账面价值增加1元,估计当年红利可能为多少?[案例11-2]股票分析案例背景随着中国经济的发展和经济体制改革的深入,建立一个繁荣有效的金融市场势在必行,证券市场作为它的重要组成部分,正在发挥越来越重要的作用。
统计学中的相关性分析方法
统计学中的相关性分析方法统计学是一门研究数据收集、处理、分析和解释的科学方法。
在统计学中,相关性分析是一种用于确定两个或多个变量之间关系的重要方法。
本文将介绍统计学中常用的相关性分析方法。
一、皮尔逊相关系数皮尔逊相关系数是最常用的相关性分析方法之一。
它用来衡量两个变量之间的线性相关程度。
皮尔逊相关系数的取值范围为-1到+1,其中-1表示完全负相关,+1表示完全正相关,0表示没有线性相关关系。
皮尔逊相关系数可以通过计算两个变量的协方差和标准差来得到。
二、斯皮尔曼相关系数斯皮尔曼相关系数是一种非参数的相关性分析方法,它用来衡量两个变量之间的单调相关程度。
与皮尔逊相关系数不同,斯皮尔曼相关系数不要求变量呈线性关系。
斯皮尔曼相关系数的取值范围也是-1到+1,其中-1表示完全负相关,+1表示完全正相关,0表示没有单调相关关系。
三、判定系数判定系数是用来衡量变量之间关系的强度的指标。
判定系数也被称为决定系数,表示因变量的变异程度可以由自变量解释的比例。
判定系数的取值范围为0到1,取值越接近1表示自变量对因变量的解释程度越高。
四、假设检验假设检验是一种用来检验两个变量之间是否存在统计上显著的相关关系的方法。
在假设检验中,我们通常设立一个零假设和一个备择假设,然后通过统计方法计算出一个p值。
如果p值小于事先设定的显著性水平,我们就可以拒绝零假设,认为两个变量之间存在相关关系。
五、回归分析回归分析是一种常用的相关性分析方法,它用来建立变量之间的数学模型,通过最小化因变量与自变量之间的残差平方和来确定两个变量之间的关系。
回归分析可以衡量两个变量之间的线性相关程度,并预测因变量的取值。
六、主成分分析主成分分析是一种用于降维和提取数据主要特征的方法。
通过主成分分析,我们可以将大量的变量转化为少数几个无关的主成分,从而减少数据的复杂性。
主成分分析可以帮助我们理解变量之间的相关关系,并提取出最重要的特征。
结论统计学中的相关性分析方法有很多种,本文介绍了其中几种常用的方法,包括皮尔逊相关系数、斯皮尔曼相关系数、判定系数、假设检验、回归分析和主成分分析。
经济统计学中的相关性分析
经济统计学中的相关性分析导语:经济统计学是研究经济现象和经济活动的科学,而相关性分析是经济统计学中常用的一种统计方法。
相关性分析可以帮助我们了解经济变量之间的关系,为经济决策提供依据。
本文将探讨经济统计学中的相关性分析,包括相关系数的计算方法、相关性的解释以及相关性分析的局限性。
一、相关系数的计算方法相关系数是衡量两个变量之间关系强度的指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
1. 皮尔逊相关系数(Pearson correlation coefficient)是最常用的相关系数,它衡量的是两个变量之间的线性关系。
计算公式为:r = cov(X,Y) / (σX * σY)其中,cov(X,Y)表示X和Y的协方差,σX和σY分别表示X和Y的标准差。
皮尔逊相关系数的取值范围为-1到1,当r为正值时表示正相关,为负值时表示负相关,为0时表示无关。
2. 斯皮尔曼相关系数(Spearman correlation coefficient)是一种非参数统计方法,它衡量的是两个变量之间的单调关系,不要求变量之间的关系是线性的。
计算公式为:ρ = 1 - (6 * Σd^2) / (n * (n^2 - 1))其中,d表示两个变量的秩次差,n表示样本量。
斯皮尔曼相关系数的取值范围为-1到1,与皮尔逊相关系数类似。
二、相关性的解释相关性分析可以帮助我们了解经济变量之间的关系,从而提供决策依据。
1. 正相关:当两个变量呈现正相关关系时,意味着它们的变化趋势是一致的。
例如,收入与消费之间的正相关关系意味着收入增加时,消费也会增加。
2. 负相关:当两个变量呈现负相关关系时,意味着它们的变化趋势是相反的。
例如,失业率与经济增长之间的负相关关系意味着失业率上升时,经济增长可能下降。
3. 无关:当两个变量之间的相关系数接近于0时,可以认为它们是无关的。
但需要注意的是,相关系数接近于0并不意味着两个变量之间不存在任何关系,可能存在非线性关系或其他复杂的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 之间的相关关系最大。这种相关关系是用典 型相关系数(canonical correlation coefficient) 来衡量的。
典型相关系数
这里所涉及的主要的数学工具还是
矩阵的特征值和特征向量问题。而 所得的特征值与V和W的典型相关系 数有直接联系。 由于特征值问题的特点,实际上找 到的是多组典型变量(V1, W1), (V2, W2),…,其中V1 和W1 最相关,而V2 和W2次之等等,
因此l2既是A又是B的特征值, 而相应的特征 向量为l,m
1 11 12
1 22
1 22
1 21 11 12
A和B的特征根有如下性质: (1)A和B有相同 的非零特征根, (2)其数目为p1. A和B的特征 根非负. (3) A和B的特征根均在0和1之间. 我们表示这些称为典型相关系数的非零特 征值和相应的特征向量为
而 X (1) 的协方差阵S>0,均值向量m=0, S X (2) 的剖分为: S11 S12 S X S 21 S 22
对于前面的新变量U=l’X(1)和V=m’X(2) Var(U)=Var(l’X(1) )=l’S11l Var(V)=Var(m’X(2) )=m’S22m Cov(U,V)=l’S12m, rUV=l’S12m/[(l’S11l)(m’S22m)] ½ 我们试图在约束条件Var(U)=1, Var(V)=1下寻求 l和m使rUV= Cov(U,V)=l’S12m达到最大.
再点击一个向右的三角形图标(运行目前程序,Run current),就可以得到所需结果了。 还可以把Syntax1.sps另以其他名字(比如tv.sps) 存入一个文件夹。下次使用时就可以通过File- Open-Syntax来打开这个文件了。
SPSS的实现
注意1:典型相关分析是本书内容中唯 一不能用SPSS的点击鼠标的“傻瓜” 方式,而必须用写入程序行来运行的模 型。读者不必要再去研究语法的细节, 只要能够举一反三,套用这个例子的程 序即可。 当然,如果读者愿意学习SPSS的语法, 则在处理数据时,肯定会更方便。
和X(2)是否相关,如不相关, 就不必讨论.如果
X ( X (1) , X (2) ) ' N p1 p2 ( m , S). H 0 : Cov( X (1) , X (2) ) S12 0
这是为检验第1个典型相关系数的显著性 p ˆ 检验统计量为 (1 li2 )
ˆ 检验统计量为 r 1 (1 li2 )
i r p1
under H 0 , Q0 m ln 2 ( f ) ( when n 1) 1 m n r ( p1 p2 1); f ( p1 r 1)( p2 r 1) 2
统计学
─从数据到结论
第十三章 典型相关 分析
13.1两组变量的相关问题
我们知道如何衡量两个变量之间是
否相关的问题;这是一个简单的公 式就可以解决的问题(Pearson相关 系数、 Kendall’s t、 Spearman 秩相关系数)。公式 如果我们有两组变量,如何能够表 明它们之间的关系呢?
典型变量
假定两组变量为X1,X2…,Xp 和Y1,Y2,…,Yq ,那么, 问题就在于要寻找系数a1,a2…,ap 和b1,b2,…,bq , 和使得新的综合变量(亦称为典型变量 (canonical variable))
V a1 X 1 a2 X 2 a p X p W b1Y1 b2Y2 bqYq
1
1 ˆ 其中 li2为 A R111R12 R22 R21 的特征根.
i 1
under H 0 , Q0 m ln ( p1 p2 ) ( when n 1)
2
1 m n 1 ( p1 p2 1). 2
如果H0为检验第r(r<k)个典型相关系数的显著性
SPSS的实现
对例tv.sav,首先打开例14.1的SPSS数据tv.sav, 通过File-New-Syntax打开一个空白文件(默认 文件名为Syntax1.sps),再在其中键入下面命令 行:
MANOVA led hed net WITH arti com man /DISCRIM ALL ALPHA(1) /PRINT=SIG(EIGEN DIM).
l l l 0; l ,l
2 1 2 2 2 p1 (1)
( p1 )
; m ,m
(1)
( p1 )
可得到p1对线性组合Ui=l(i)’X(1), Vi=m(i)’X(2),称 每一对变量为典型变量. 其极大值 rU1V1 l1 称为第一典型相关系数. 一般只取前几个影响 大的典型变量和典型相关系数来分析.
当然在实际例子中一般并不知道S。因 此在只有样本数据的情况下, 只要把S用 样本协差阵或样本相关阵代替就行了。 但是这时的特征根可能不在0和1的范围, 因此会出现软件输出中的特征根(比如 大于1)不等于相关系数的平方的情况, 这时,各种软件会给出调整后的相关系 数。
典型相关和回归分析的关系 把X(1)和X(2)换成回归中的X和Y, 这就是因 变量和自变量之间的相关问题. 而Y在X上 的投影,就是回归了.
例子(数据tv.txt)
业内人士和观众对于一些电视节目的观点有 什么样的关系呢?该数据是不同的人群对30 个电视节目所作的平均评分。 观众评分来自低学历(led)、高学历(hed)和网 络(net)调查三种,它们形成第一组变量; 而业内人士分评分来自包括演员和导演在内 的艺术家(arti)、发行(com)与业内各部门主 管(man)三种,形成第二组变量。人们对这样 两组变量之间的关系感到兴趣。
计算结果
对于众多的计算机输出挑出一些来介绍。下面表格 给出的是第一组变量相应于上面三个特征根的三个 典 型 变 量 V 1 、 V2 和 V3 的 系 数 , 即 典 型 系 数 (canonical coefficient)。注意,SPSS把第一组变 量称为因变量(dependent variables),而把第二组 称为协变量(covariates);显然,这两组变量是完 全对称的。这种命名仅仅是为了叙述方便。 这些系数以两种方式给出;一种是没有标准化的原 始 变 量 的 线 性 组 合 的 典 型 系 数 (raw canonical coefficient) , 一 种 是 标 准 化 之 后 的 典 型 系 数 (standardized canonical coefficient)。标准化的 典型系数直观上对典型变量的构成给人以更加清楚 的印象。
典型变量的性质:
(1)X(1)和X(2)中的一切典型变量都不相关. (2) X(1)和X(2)的同一对典型变量Ui和Vi之间的 相关系数为li, 不同对的Ui和Vj(i≠j)之间不 相关.
样本情况, 只要把S用样本协差阵或样本相关阵R代替. 下面回到我们的例子。
典型相关系数的显著性检验: 首先看X(1)
附录
两个变量时,用线性相关系数研究两 个变量之间的线性相关性:
Cov( X , Y ) Corr ( X , Y ) Var ( X )Var (Y ) rxy
( x x )( y y )
i i
(x x ) ( y y)
2 i i i i
i
2
返回
典型相关分析
目的:研究多个变量之间的相关性 方法:利用主成分思想,可以把多个
变量与多个变量之间的相关化为两 个变量之间的相关. 即找一组系数 (向量)l和m, 使新变量U=l’X(1)和 V=m’X(2)有最大可能的相关关系.
数学: 设两组随机变量
X (1) ( X1,..., X p1 )', X (2) ( X p1 1,..., X p1 p2 )', p1 p2 p, p1 p2
SPSS的实现
注意2:一些SPSS的输出很长,这时输出窗 口截去了一些内容没有显示(这有些随意 性)。这时输出窗口(SPSS Viewer)中结果的 左下角有一个红色的三角型。 如果想要看全部内容,可以先点击鼠标左键, 选中输出结果,然后从点右键得到的菜单中 选择Export,就可以把全部结果(包括截去 的部分)存入一个htm形式的文件了供研究和 打印之用。
寻找代表 如直接对这六个变量的相关进行两两分 析,很难得到关于这两组变量之间关系 的一个清楚的印象。 希望能够把多个变量与多个变量之间的 相关化为两个变量之间的相关。 现在的问题是为每一组变量选取一个综 合变量作为代表; 而一组变量最简单的综合形式就是该组 变量的线性组合。
13.2 典型相关分析
典型相关系数 而且V1, V2, V3,…之间及而且W1, W2, W3,…之间互不相关。这样又出现了选 择多少组典型变量(V, W)的问题了。实 际上,只要选择特征值累积总贡献占主 要部分的那些即可。 软件还会输出一些检验结果;于是只要 选择显著的那些(V, W)。 对实际问题,还要看选取的(V, W)是否 有意义,是否能够说明问题才行。至于 得到(V, W)的计算,则很简单,下面就 tv.txt数据进行分析。数学原理?
由于一组变量可以有无数种线性组合 (线性组合由相应的系数确定),因此 必须找到既有意义又可以确定的线性组 合。 典型相关分析(canonical correlation analysis)就是要找到这两组变量线性组 合的系数使得这两个由线性组合生成的 变量(和其他线性组合相比)之间的相 关系数最大。
这是Lagrange乘数法求下面f的极大值
f l ' S12 m (l ' S11l 1) (m ' S 22 m 1)