人教版七年级数学上册《直线、射线、线段》
2.1 直线、射线、线段 一等奖创新教学设计 人教版数学七年级上册
2.1 直线、射线、线段一等奖创新教学设计人教版数学七年级上册《4.2.1直线、射线、线段》教学设计内容和内容解析内容主要内容是关于直线、射线和线段的概念和性质以及表示方法和画法等,都是重要的几何基础知识,同时也是学习后续图形与几何的知识以及其他数学知识的必备的知识基础.内容解析首先让学生通过探究得到关于直线的基本事实:经过两点有一条直线,并且只有一条直线。
这个基本事实很好地刻画了直线这种最基本的儿何图形.接着介绍了关于直线的基本事实的实际应用,以及直线的表示,线段与射线是与直线密切相关的两个基本概念,介绍了它们的表示、画法、比较.《直线、射线、线段》是图形认识中非常重要的内容.从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的儿何图形的表示法、儿何语言等也是今后系统学习几何所必需的知识。
本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示发是由直线类比得到,渗透了类比的数学思想。
目标和目标分析教学目标(1)了解直线、射线、线段的相关概念并知道它们之间的联系与区别(2)能根据语句画出相应的图形,会用语句描述简单的图形,在图形的基础上发展数学语言.(3)初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义。
达成目标(1)的标志是:能根据概念解决相应练习。
达成目标(2)的标志是:能通过数学语言画出图形,通过图形说出相应数学语言达成目标(3)的标志是:能说出两点确定一条直线的应用实例,体会现实生活中的数学问题目标分析直线、射线、线段的内容属于“几何与图形”领域,是在已经学习了点、线、面、体的基础上,继续学习基本的几何图形。
人教版2024新版七年级数学上册第六章知识梳理2:直线、射线、线段与角
如果两个角的和等于180°,就是
角
说这两个角互为补角,即其中一个 若∠1+∠2=180°,则∠1、∠2互为补角.
角是另一个角的补角.
补角
性质:1.同角的补角相等. ∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3.
点M在点A的北偏东45°方向,在点C北偏西40°方向.
思维导图
直线、射线、线段与角
直线 射线 线段
两点确定一条直线. 特征:无端点、无限延伸、无法测量. 表示方法:两个大写字母或一个小写字母.
特征:1个端点,向一方无限延伸.
表示方法:两个大写字母,端点在前或一个小写字母.
特征:2个端点,不能延伸,能测量. 表示方法:两个大写字母或一个小写字母. 两点之间线段最短. 比较方法:度量法和叠合法. 线段中点:把一条线段分成两条相等的线段.
方位角
2.等角的补角相等. ∵∠1+∠2=180°,∠3+∠4=180°,且∠1=∠3, ∴∠2=∠4.
考点三 角
方位角
45°
A
45°
O 3km
60° B
M
40°
C
方位角确定点的位置
方法1:利用方位角和观测点到点的距离来定位. 点B在点O南偏东60°方向,且相距3km.
方法2:利用两个方位角来确定,即找到两个合 适的观测点然后按照指定的方位角画出射线,交 点即为所要确定的点的位置.
思维导图
角
定义:有共同端点的两条射线组成的图形. 表示方法:三个大写字母,端点在中间;数字或希腊字母;
单独一个角可用一个小写字母表示. 度量单位:度、分、秒:1°=60′,1′=60″. 分类:周角、平角、直角、钝角、锐角. 比较方法:度量法和叠合法. 角的计算. 角平分线:一条射线把一个角分成两个相等的角. 余角、补角.
人教版七年级数学上册几何图形初步《直线、射线、线段(第2课时)》示范教学设计
直线、射线、线段(第2课时)教学目标1.知道比较线段长短的方法,并会比较线段的长短.2.会用尺规画一条线段等于已知线段,会用尺规画出线段的和与差.3.知道线段中点、三等分点、四等分点的定义,会用数学符号语言表示.4.能够用线段中点的性质和数量关系解决问题.教学重点探究比较线段长短的方法,尺规作图的操作,线段中点及其分成的各线段间的数量关系.教学难点运用线段的和与差、线段的中点解决问题.教学准备直尺、圆规、透明纸.教学过程知识回顾1.线段、射线和直线的区别2.直线的性质(1)基本事实:经过两点有一条直线,并且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个公共点.3.直线、射线、线段的表示线段:(1)线段AB(或线段BA);(2)线段a.射线:(1)射线AB;(2)射线m.直线:(1)直线AB(或直线BA);(2)直线l.4.线段和射线都是直线的一部分.5.一个点在一条直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点.6.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.7.一条直线上有n个点,则这条直线上共有2n条射线,有112n n()条线段.新知探究一、探究学习【问题】我们是如何比较物体的高度或者长度的?【师生活动】小组探讨后给出结论,教师给出正确答案.【答案】1.目测(直接比较法)2.测量(数据比较法)【设计意图】通过生活中比较高度或长度的实例引入线段长短比较的知识.【问题】已知线段AB与线段CD,如何比较这两条线段的长短?【师生活动】教师引导,学生作答,然后教师讲解新知.【新知】第一种:度量法结论:AB<CD.第二种:叠合法把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.注意:起点对齐,看终点.点A与点C重合,点D与点B重合结论:AB=CD点A与点C重合,点D落在B,C之间结论:AB>CD点A与点C重合,点B落在C,D之间结论:AB<CD【设计意图】让学生在探究学习中掌握两种比较线段长短的方法.二、新知精讲【问题】怎么画一条线段使它等于已知线段呢?如图,已知线段AB,用尺规作一条线段等于已知线段AB.【师生活动】教师提出问题,学生思考并用自己的语言描述自己的想法.然后教师组织学生讨论,并引导学生尝试用圆规作图.最后教师做适当的总结归纳,并用课件展示尺规作法.【答案】解:作图步骤如下:(1)作射线A'C';(2)用圆规在射线A'C'上截取A'B'=AB.线段A'B'就是所求线段.【新知】画一条线段等于已知线段a,可以先量出线段a的长度,再画一条等于这个长度的线段.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.【设计意图】作一条线段等于已知线段是几何的基本作图,也是本课后续知识学习的基础,要让学生准确掌握;向学生渗透几何研究中有“数”与“形”两种不同的方法.【问题】你知道如何画线段的和与差吗?如图,已知线段m,n,用尺规作一条线段AC,使AC=m+n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在射线BM上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段和的作图方法,将用图形表示线段和与用符号表示线段和结合起来.【问题】如图,已知线段m,n,用尺规作一条线段AC,使AC=m-n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在线段AB上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段差的作图方法,将用图形表示线段差与用符号表示线段差结合起来.【问题】如图,已知线段a,求作线段AB=2a.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图如下:AB=2a,即为所求作的线段.【新知】点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.数学符号语言:AM=MB=12AB(或AB=2AM=2BM)类似地,还有线段的三等分点、四等分点等.AM=MN=NB=13 ABAM=MN=NP=PB=14 AB【设计意图】层层递进地对等分点进行学习,既让学生掌握等分点的概念,更让学生理解等分点是怎样产生的,掌握由等分点产生的数量关系.【问题】在一张透明的纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点就是线段的中点.动手试一试.【师生活动】学生先作图,然后教师用课件展示动画效果.【答案】【设计意图】通过动手操作,让学生更加形象地理解和掌握线段的中点的性质.三、典例精讲【例】如图,若线段AB=20 cm,点C是线段AB上一点,M,N分别是线段AC,BC 的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请用简洁的语言表达你发现的规律.【师生活动】学生作答,然后教师给出分析和正确答案.【分析】(1)先根据M,N分别是线段AC,BC的中点得出MC=12AC,CN=12BC,再由线段AB=20 cm即可求出结果.(2)由(1)即可得到结论.【答案】解:(1)因为M,N分别是线段AC,BC的中点,所以MC=12AC,CN=12BC.因为线段AB=20 cm,所以MN=MC+CN=12(AC+BC)=12AB=10(cm).(2)由(1)得,MN=MC+CN=12(AC+BC)=12AB=12a.即MN始终等于AB的一半.【设计意图】检验学生对线段的中点的性质的掌握程度,同时使学生能够进行线段的相关运算.课堂小结板书设计一、比较线段的长短二、尺规作图三、中点、三等分点、四等分点四、线段的运算课后任务完成教材第128页练习第1~3题.。
6.2.1 直线、射线、线段 课件 2024-2025学年人教版数学七年级上册
情境引入
生活中有哪些物体可以近似地看成线段、射线、 直线?
合作 探究
绷紧的琴弦、人行横道都可以近似 地看做线段。
探照灯的灯光给我们以射线的形象。
向两个方向无限延伸的道路给我们以直 线的形象。
合作探究
合作探究
2.过一点A可以画几条直线? 3.过两点A、B可以画几条直线?
定同一行的树坑所在的直线.
射击训练时,你知道是如何瞄准目标的吗?
合作 探究
三、线段、射线、 直线的表示法
线段 射线 直线
图形
A
B
a
O
A
n
A
B
m
表示
线段 AB、线段BA
线段 a ( 端点的字母 O 写在首位 )
射线 OA 射线 n (点A、B不能取在线尽头。 ) 直线AB(直线BA) 直线 m
在射线的表示法中,要注意两点:
合作探究
•已知一条线段,你能由它得到一条射线和一条直线吗?
A 线直段线ABB B
射线AB
射线、线段都是直线的一部分。
合作探究
端点数
延伸
度量
无端点 1个 2个
向两个方向无限 延伸
不可度量
向一个方向无 限延伸
不可度量
不向任何方向延伸 可度量
AB OP CD
达标检测 判断:
1.射线是直线的一部分。 2.线段是射线的一部分。 3.画一条射线,使它的长度为3cm。 4.如图,画一条线段ab。
(√ )
( √)
(
)
( ×)
×
a
b
5.如图,若射线AB上有一点C,下)射线BA (C)射线BC
(B)射线AC (D)射线CB
人教版七年级数学上册直线、射线、线段课件
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量
无
不能
一个
不能
两个
能
经过思考与画图,我们可以得到一个基本的事实: 经过两点有一条直线,并且只有一条直线. 简单说成:两点确定一条直线.
向两个方向无限延伸可得到直线.
2.按语句画图: (每小题15分,共60分) (1)直线EF经过点C; (2)点A在直线a外; (3)经过点O的三条线段a、b、c; (4)线段AB、CD相交于点B。
B、点B在直线 l 上 C、点A在直线 l 上
l
B
A
D、直线m不经过B点 m
4.视察下图,图中共有多少条线段?
分别有哪些?
A
答:6条线段.
B
D
分别是线段AB、线段BC、 线段AC、线段AD、线段 BD、线段DC.
C
1.判断下列说法是否正确:(每小题10分。共40分)
(1)线段AB和射线AB都是直线AB的一部分; (2)直线AB和直线BA是同一条直线; (3)射线AB和射线BA是同一条射线; (4)Βιβλιοθήκη 线段向一个方向无限延伸可得到射线,
在生活中你还见过哪 些近似射线的光线呢?
认识射线
把线段的一端无限延伸
线段向一端无限延伸形成的图形叫做射线, 射线只有一个端点。
线段
(无限延伸)
射线
端点
◇直的
◇只有一个端点
◇一端无限延伸
◇不能测量长度,无限长
人教版七年级数学上册教学PPT课件直线、射线和线段
2.下列给线段取名正确的是 ( B )
A.线段M
B.线段m
C.线段Mm
D.线段mn
3.下列四个图中的线段(或直线、射线)能相交
的是( A )
D C
D
D
C
C
AB 2
AB 3
A 4 B
A.(1) B.(2) C.(3) D.(4)
B
A 4.在挂窗帘时,只 要在两边钉两颗钉 子扯上线即可,这 是因为 两点确定一条直线。
C A
BD
点在直线上(直线经过点)
点与一条直线的位置关系 点在直线外(直线不经过点)
任务卡Ⅲ
(2)描述点与直线的位置关系: 点C和直线AB: 点C在直线AB外或直线AB不经过点C ; 点D和直线AB: 点D在直线AB外或直线AB不经过点D ; 点A和直线AB: 点A在直线AB上或直线AB经过点A ; 点B和直线AB: 点B在直线AB上或直线AB经过点B .
可度量 不可度量 不可度量
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
二、合作探究
任务卡Ⅰ 1、直线的性质
(1)经过一个已知点画直线,可 以画多少条?
无数条
(2)经过两个已知点画直线,可 以画多少条?
一条
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
任务卡Ⅱ
1、直线的表示方法:
(1)阅读课本P125,
看下图(a)的直线表示: 直线l
七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版
重要提示
内容
(1)连接AB,就是要画出以A、B为端点的线段, 不要向任何一方延伸; (2)画一条线段等于已知线段a,可以用圆规在 射线AC上截取AB=a,也可以先量出线段a的 长度,再画一条等于这个长度的线段
图例
有两个端点,不可延伸,可度量
两点之间,线段最短
(1)度量法:用刻度尺量出两条线段的长度,再比较两者的大小; (2)叠合法:把要比较的两条线段移到同一条直线上,使它们的一个端点重合,另一个端点落在 重合的端点的同一侧,进行比较
(1)两点间的距离:连接两点间的线段的长度,叫做这两点间的距离; (2)线段的中点一定在线段上; (3)“线段”是一个几何图形,而“线段的长度”是一个正数,二者是有区别的,不要混淆
.
例3 如图4-2-3,点A,B,C,D是直线l上的四个点,则图中共有几条线段?
图4-2-3 解析 解法一:(端点确定法) 以点A为左端点的线段有3条:线段AB,线段AC,线段AD;以点B为左端点 的线段有2条:线段BC和线段BD;以点C为左端点的线段有1条:线段CD. 因此共有3+2+1=6(条)线段. 说明:用端点确定法确定线段条数时,直线上的任意一点只能作为左端 点(或右端点),否则线段会重复. 解法二:(画线确定法) 先从左边第一个点(A)开始向右依次画弧线,共有3条,再从第二个点(B) 开始向右依次画弧线,共有2条,再从第三个点(C)开始向右画弧线,共有1 条,最后一点不再考虑.故题图中共有3.+2+1=6(条)线段.
图4-2-5 (2)将射线反向延伸就可得到直线;将线段向一方延伸就可得到射线;将 线段向两方延伸就可得到直线.
.
2.三者的区别如下表:
直线
人教版数学七年级上册 4.2直线、射线、线段 第一课时 直线、射线、线段 课件
B A
C
AB C
(1)可以画三条直线 (2)只能画一条直线
如果你想将一根小木条固定在木 板上, 至少需要几个钉子?
如果将细木条抽象成直线,将钉子抽象为点,你 可以得出什么结论?
直线的性质
经过两点有一条直线,并且只 有一条直线。
1、建筑工人在砌墙时会在墙的两头分别固 定两根木桩,然后在木桩之间拉一条绳子, 定出一条直的参照线,这样砌出的墙就是直 的。这其中的道理是:
人教版数学
七年级上册
第四章
4.2直线、射线、线段 第一课时 直线、射线、线段
学习目标
1、在现实情境中理解线段、射线、直线的概念, 并会用不同的方式表示。
重点及难点
重点: 线段、射线和直线的概念及它们的区别与
联系。
难点: 线段、射线和直线的表示方法。
画一条线段、射线、直线,你发 现三者有什么联系吗?又有什么 区别呢?
A
B
点A在直线a外
直线 a 不经过点 A
点B在直线a上 直线 a 经过点 B
(1)经过一点O可以画几条直线? (2)经过两点A、B可以画直线吗?可
以画几条?
·o
经过一点可以画无数
条直线
经过两点能画直线,
·A
只能画一条。
·B
请你做裁判
平面上有A、B、C三个点,过其中的任两点作 直线,小敏说能作三条;小聪说只能作一条; 小真说都有可能;你认为他们三人谁的说法对?
a
b
O
c
4、线段AB、CD相交于点B。
C A
B
D
线段: ①用两个端点的字母来表示,无先后顺序.
②用一个小写字母表示.
射线: ① 用端点及射线上一点来表示,注意端点
《线段射线直线和角》教案含教学反思
(1)线段、射线、直线的区分:对于初学者来说,这三者之间的区别较容易混淆,需要通过实例和练习来强化理解。
-举例:线段AB的长度是有限的,射线AB从点A出发向B方向无限延伸,直线l无端点,可以向两个方向无限延伸。
(2)角的度量与分类:角的度量涉及到角度的概念,学生需要理解角度的度量方法和角的分类。
1.分组讨论:学生们将分成若干小组,每组讨论一个与线段、射线、直线和角相关的实际问题,如如何在平面图上确定一个角的大小。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器测量角度,这个操作将演示角的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
2.引导学生通过观察、实践、探索,发展逻辑推理能力,能运用定义和性质进行简单的几何证明。
3.培养学生的空间想象力和创新能力,使其能够将线段、射线、直线和角的概念运用于解决实际问题,形成对几何图形的深入理解。
4.培养学生的团队合作意识,通过小组讨论和交流,提高表达与沟通能力,促进数学思维的发展。
三、教学难点与重点
在讲解角的分类时,我发现学生们对锐角、直角、钝角的概念掌握得比较好,但在涉及到周角时,有些学生出现了疑惑。针对这个问题,我及时进行了讲解和举例,帮助他们理解周角的概念。
在课程结束后,我对学生的作业进行了批改,发现他们在应用线段、射线、直线和角的知识解ห้องสมุดไป่ตู้实际问题时,还是存在一定的困难。这让我意识到,在今后的教学中,我需要加强对学生几何应用能力的培养,设计更多贴近生活的实例,让他们在实际操作中提高解决问题的能力。
-举例:锐角是小于90°的角,直角等于90°,钝角大于90°小于180°,周角等于360°。
6.2.1 直线、射线、线段 课件-人教版数学七年级上册
1
向一方无 限延伸
不可度量
部分;线段向一方无限延伸 就成为射线,向两方无限延 伸就成为直线;射线向反方
2
不能延伸 可度量 向无限延伸就成为直线
探究新知
基本 事 实
经过过一两点点O有可一以条直 线画,几并条且直只线有?一条 直两过画线点几两。确条点定直A、一线B条?可直以线
存在 唯一
·o
·
A
·
B
应用举例
探究一:
解: (1)当三点在同一直线上时,可以画1条直线; (2)当三点不在同一条直线上时,可以画3条直线。
讲解新知
直线的表示方法:
m
C
E
两个大写字母(可交换顺序) 或一个小写字母
射线的表示方法:
m
C
E
线段的表示方法:
m
C
E
两个大写字 母(不可交换 顺序,端点 字母在前) 或一个小写 字母
合作探究
将一根木条固定在墙上 (指用力那它的一端不 能转动),至少需要几 个钉子?
你知道这样做的依据是什么吗? 经过两点有一条直线,并且只有一条直线。 简单的说:两点确定一条直线
应用举例 生活中有哪些运用两点确定一条直线的例子呢?
建筑工人砌墙 植树
木工画线
打靶
合作探究 过三个点A、B、C,可以画几条直线?
A
B C
l D
探究二:
点和直线的 位置关系
合作探究
直线和直线的 位置关系
aa P
b
探究三:
当两条不同的直线有一个公共点时,我们就称这 两条直线相交,这个公共点叫做它们的交点.
新知加油站
ቤተ መጻሕፍቲ ባይዱ
动手画一画
按下列语句画出图形: (1)直线EF经过点C; (2) 点A在直线a外
数学人教版七年级上册《直线、射线、线段》课件
向两方无限 延伸 只向一方无 限延伸
b
1
c
线段AB或线段 BA或线段c
2
不能延伸
能
有/有
拓展提升:
1、平面内有3个点,过其中两个画直线,可以画 几条?
拓展提升:
2、平面内有4个点,经过其中两个画直线,可以 画几条?
课后思考:
平面内有n个点,且不存在三点共线的情况, 经过其中两个画直线,可以画几条?
N
·
b
按下列语句画出图形:
①P是直线a外一点,过点P有一条直线b与直线a相交
于点Q;
②直线AB与直线CD相交于点C ;
本课要点:
种类 图形 表示方法 端点 个数
0
延伸情况
能否 度量
不能 不能
延长线/ 反向延 长线
无/无 无/有
直线 射线
线段
B · · O·A· A· B ·
a
A
直线AB或直线 BA或直线a 射线OA或射线b
练习:用两种方法表示下列图形
a
● ●
A
B c
●
●
M
O
探究三:点和直线的位置关系
画图: 画一条直线AB经过点O,另一条直线CD也经 过点O
归纳:
点与直线的位置关系只有两种: 点在直线上 点在直线外
——直线经过点 ——直线不经过点
练习:
用恰当的语句描述图中点与直线的位置关系。
l
M·
O ·
c A B C a
探究一:直线公理
木工师傅锯木板时用墨盒弹墨线
建筑工人在砌墙时拉参照线
探究二:直线的表示方法
种类
直线
射线 线段
图形
表示方法
人教版数学七年级上册4直线、射线、线段的概念课件
射线
直线
斑马线 线段
进一步认识了线段、射线和直线的概念,知道了
(n-1)+(n-2)+…+2+1=
4.2.1 直线、射线、线段 理解直线、射线、线段的概念并掌握其表示法,认识他们之间的联系与区别;
举一个实际例子,说明“经过两点有且只有一条直线” 下面图中线段、射线和直线的表示方法是否正确?若不正确请更正. (1)过一点A可以画几条直线? 而且只能弹出一条这样的墨线(如图),请说明理由。 我们收获了很多的数学知识例如: 相同点: 它们的线都是直 的 过同一平面上的三个点中的任两个点,最多可以画3条直线 理解直线、射线、线段的概念并掌握其表示法,认识他们之间的联系与区别; 直线、射线、线段的概念及其表示法. 理解直线、射线、线段的概念并掌握其表示法,认识他们之间的联系与区别; 过同一平面上的四个点中的任两个点,可以画几条直线? 射线:用它的端点和射线方向上的另外任意一点的两个字母表示 过同一平面上的n个点中的任两个点,最多可以画几条直线? 而且只能弹出一条这样的墨线(如图),请说明理由。
直线EF(或直线FE)
根据生活经验回答:
(1)用一枚钉把一根细木条固定在墙上,木条 还能动吗? (2)最少钉几枚钉才能使一根细木条保持不动?
用心画一画
. (1)过一点A可以画几条直线? 我A们可以得出 什么数学事实? (2)经过两点A、B可以画几条直线?
.A .B
..
经过刨平的木板上的两个点,能弹出一条笔直的墨线, 而且只能弹出一条这样的墨线(如图),请说明理由。
直线、射线、线段的概念及其表示法.
你能画出来吗? 分别画出一条线段、射线和
直线.
.. .
谈一谈
6.2.1直线、射线、线段-(课件)人教版(2024)数学七年级上册
(1)画射线CD;
(2)画直线AD;
(3)连接AB;
(4)画线段BD 与直线AC 相交于点O.
感悟新知
解题秘方:紧扣直线、射线、线段的概念画图. 解:(1)(2)(3)(4)如图6 .2-8 所示.
知3-练
感悟新知
5-1. 如图,在平面内有A,B,C 三点.
知3-练
(1)画直线AC、线段BC、射线AB;
综合应用创新
一条直线把平面分成2 部分, 两条直线把平面分成2 +2 =4 部分, 三条直线把平面分成2 +2 +3=7 部分, 四条直线把平面分成2 +2 +3+4 =11 部分, 五条直线把平面分成2 +2 +3+4 +5 =16 部分… 依此可得,n条直线把平面分成2+2+3+4+5+… +n=
解题秘方:紧扣直线的定义、 表示方法以及与点的位置关系 进行解答.
知1-练
感悟新知
知1-练
(1)点B 在直线AD___上____,点C 在直线AD ____外___ ; (2)点E 是直线_A__F_(_或__A_E__或__E_F__) __与直线_C_D_(_或__D__E_或__C_E__)
感悟新知
知1-练
例 2 平面内有三个点,过其中任意两点画直线,一共可 以画几条直线?画图加以说明. 解题秘方:紧扣“直线的基本事实”,根据三点的 位置情况,逐一画出图形.
感悟新知
解:当三点在同一直线上时,可以画一条直线,如 图6.2 -3 ①; 当三点不在同一直线上时,可以画三条直线,如图 6.2 -3 ② .
知2-讲
图示
感悟新知
特别提醒
知2-讲
1.不论用大写字母还是小写字母表示射线,都必须标明
“射线××”.
2.由于射线可以向一个方向无限延伸,因此射线没有延长
七年级数学上册第四章几何图形初步《直线、射线、线段:线段的性质》
新2024秋季七年级人教版数学上册第四章几何图形初步《直线、射线、线段:线段的性质》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解线段的定义,掌握线段的基本性质(如两点确定一条直线、线段的长度可度量等),并能运用这些性质解决简单问题。
2.过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生对几何图形的兴趣,培养严谨的科学态度和探索精神。
二、导入教师行为:•教师首先展示一幅包含多条线段的图片,如网格纸上的线段、桥梁的轮廓等,引导学生观察并思考这些图形的共同点。
•提问:“同学们,你们能从这些图片中找出线段吗?线段有哪些显著的特点呢?”学生活动:•学生认真观察图片,尝试识别并指出其中的线段。
•部分学生举手回答,提出线段是由两个端点和它们之间的部分组成的,且长度有限等观点。
过程点评:•导入环节通过直观的图片展示和启发性问题,有效激发了学生的学习兴趣和探究欲望。
•学生的积极参与和初步思考为后续的深入学习奠定了良好的基础。
三、教学过程(一)线段性质的讲解教师行为:•明确线段的定义,强调线段是由两个端点和它们之间的部分组成的有限长的直线段。
•讲解线段的基本性质,包括“两点确定一条直线”(即线段的两个端点唯一确定一条线段)和“线段的长度可度量”(即可以使用工具如刻度尺来测量线段的长度)。
•通过图示和实例进一步阐释这些性质,如绘制不同长度的线段并测量其长度。
学生活动:•认真听讲,记录关键信息。
•跟随教师的讲解和图示,尝试理解并记忆线段的基本性质。
过程点评:•教师讲解清晰,图示和实例的运用帮助学生更好地理解和掌握线段的基本性质。
(二)性质应用与练习教师行为:•设计一系列练习题,包括判断题、选择题和作图题,以检验学生对线段性质的理解和应用能力。
•引导学生分组讨论,鼓励他们相互交流解题思路和方法。
•巡视课堂,关注学生的学习情况,及时给予指导和帮助。
人教版初中数学七年级上册6.2.1直线、射线、线段课件(共24张PPT)
巩固练习
2.下列现象:①农民伯伯拉绳插秧;②解放军叔叔打靶瞄 准;③学生早操队列对齐;④在墙上至少要用两根钉子才能 把木条固定;⑤改直弯曲的河道,缩短航程。其中可以用
“两点确定一条直线”来解释的有____①___②___③。④(填序号)
巩固Байду номын сангаас习
3.按下列语句画出图形: (1)点A 在线段 MN 上; (2)线段 AB 不经过点P; (3)经过点 O 的三条线段a、b、c; (4)射线 AB 和线段 CD 交于点 C 。
思考题:下图中共有几条线段?
AB
C
DE
课堂小结
数学知识: • 两点确定一条直线 • 直线、射线、线段的联系与区别 • 直线、射线、线段的表示方法 • 不同几何语言(文字语言、符号语言、图 形语言)的相互转化
数学思想及方法: • 分类思想,转化思想,有序思考
作业布置
完成本节作业本练习
联系生活
植树时,怎么样才能使所种的树在同 一条直线上?
例题
例1 图中共有几条线段?说明你分析这个问题的具体思路;
以A为端点的线段有AB,AC,AD,AE,共4条,以B 为端点且与前面不重复的线段有BC,BD,BE,共3条,以 C为端点且与前面不重复的线段有CD,CE,共2条,以D 为端点且与前面不重复的线段有DE,共1条,从而共有4+ 3+2+1=10(条)线段。
●
●
线段是直线上两个点和它们之间的部分
●
射线是直线上的一点和它一旁的部分
联系生活
生活中,有哪些物体可以近似地看成 线段、射线、直线?
东方明珠塔夜景
例题
例 如图所示,下列说法正确的是( C )
A.直线AB和直线CD是不同的直线 B.射线AB和射线BA是同一条射线 C.线段AB和线段BA是同一条线段 D.直线AD=AB+BC+CD
七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
1.通过观察、操作、思考、交流等活动,让学生自主探究直线、射线、线段的特征。
2.利用教具、模型、多媒体等工具,帮助学生直观地理解直线、射线、线段的概念。
3.引导学生通过小组合作,共同探讨直线、射线、线段的表示方法,培养学生的团队协作能力。
4.设计具有层次性的练习题,让学生在解决实际问题的过程中,巩固对直线、射线、线段的理解。
七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
一、案例背景
本节课为人教版七年级数学上册第4.2节“直线、射线、线段”,是学生初步接触几何概念的重要一课。直线、射线、线段是基本的几何元素,对于学生理解几何图形、构建几何体系具有重要意义。然而,由于这些概念较为抽象,学生可能难以理解和掌握。因此,本节课的教学旨在让学生通过观察、操作、思考、交流等过程,深入理解直线、射线、线段的特征和区别,提高空间想象能力和逻辑思维能力。
2.问题导向:本节课通过设计具有挑战性和探究性的问题,引导学生主动思考、独立解决问题。这种教学策略能够培养学生的独立思考能力,提高他们的解决问题的能力。同时,教师在问题导向的过程中,能够及时发现学生的思考情况,针对性地进行引导和帮助,提高了教学效果。
3.小组合作:组织学生进行小组讨论和合作活动,让学生共同探讨直线、射线、线段的特征和表示方法。这种教学方式培养了学生的团队合作能力,提高了学生的沟通能力。同时,小组合作活动能够激发学生的学习积极性,提高学生的学习效果。
人教版七年级数学上册 直线、射线和线段
人教版七年级数学上册 直线、射线和线段
人教版七年级数学上册 直线、射线和线段
达标检测
反馈目标
3.射线可以看做由线段__延__长__形成的,直线可以看做由线段 向两方_ 无限_延__长__形成的。
4.下列作图语句正确的是( D)
A.画直线AB=2cm
B.画射线OM=5 cm
C.延长射线OC到D使OC=CD D.延长线段MN到P,使 PN=MN
•
6.太阳和其他恒星绕着银河系的运动 ,以及 银河系 绕着其 局部星 系团的 运动也 是混沌 的。我 们观测 到,其 他星系 正离开 我们运 动而去 ,而且 它们离 开我们 越远, 就离开 得越快 。这意 味着我 们周围 的宇宙 正在膨 胀:不 同星系 间的距 离随时 间而增 加。
•
7.中国这块大地上,存在过许多民族 。这许 多民族 ,不管 是共时 态存在 还是历 时态存 在,均 可以寻 到某种 内在的 关系。 族与族 之间的 关系有 两种: 一为血 缘性; 另为社 会性。 民族之 间不只 是存在 着血缘 性的关 系,也 还存在 社会性 的关系 ,其中 最主要 是文化 关系。
人教版七年级数学上册 直线、射线和线段
人教版七年级数学上册 直线、射线和线段
数学使人周密。愿同学们以 认真的态度,做好每道题,学好 每节课,每天都有新的收获。
再见
人教版七年级数学上册 直线、射线和线段
人教版七年级数学上册 直线、射线和线段 人教版七年级数学上册 直线、射线和线段
•
1.即便我们知道了制约宇宙的有关定 律,我 们仍然 不能利 用它们 去预言 遥远的 未来。 这是因 为物理 方程的 解会呈 现出一 种称作 混沌的 性质。 这表明 方程可 能是不 稳定的 :在某 一时刻 对系统 作非常 微小的 改变, 系统的 未来行 为很快 会变得 完全不 同.
人教版(2024数学七年级上册6.2.1 直线、射线、线段
知识点2:射线、线段
活动操作三:如图,若将直线上点 A 的左侧擦去,则 该线还是直线吗?
A
B
l
A
端点
记作: 射线 AB (或射线 l ).
思考: 射线 AB 与射线 BA 有区别吗?
B
A
B
端点
射线 BA
活动操作四:如图,若再将线上点 B 的右侧也擦去, 则该线又是什么?
Aa B
端点
端点
A
B
记作:线段 AB (或线段 BA), 或线段 a.
不能延伸
能否测量
不能度量 不能度量 能度量
练一练
2. 按下列语句画出图形:
(1) 经过点 O 的三条线段 a,b,c;
(2) 线段 AB,CD 相交于点 B.
解:(1)
a b
Oc
A 回顾所学直线、射线、线段之间的关系,完成框图.
直线、 射线、 线段
直线 射线 线段
经过两点有_一___条直线,
(4) 6 条. 以 B 为端点的射线有射线 BC、射线 BA.
课后作业
见《学练优》或《新领程》对应课时练习
想一想 通过上述讨论: 那么过平面内的一点可以画__无__数____条直线.
O·
一枚钉子不能将木条固定在墙面上.
合作探究 活动操作二:过平面内的两点,可以画几条直线?
AB
l
结论:经过两点有一条直线,并且只有一条直线. 简述为:两点确定一条直线.
直线表达: 直线 AB 或直线 BA 或直线 l
练一练
点 A 在直线 l 外 或直线 l 不经过点 A (点 A 不在直线 l 上).
过点 A 再画一条直线 m. 想一想:直线 l 与直线 m 之间的位置关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 直线、射线、线段
第1课时直线、射线、线段(一)
教学目标
1.了解直线、射线、线段的表示方法,理解直线、射线、线段的联系和区别.
2.掌握“两点确定一条直线”的基本事实,并能解释生活中的一些现象.
教学重点
直线、射线、线段的表示方法.
教学难点
对“两点确定一条直线”的理解.
教学设计(设计者:)
教学过程设计
一、创设情景明确目标
生活在一个丰富多彩的图形世界里,生活中处处都有图形,如笔直的铁轨、手电筒发出的光、一根自动笔的铅芯等等,你能用图形表示以上现象吗?
二、自主学习指向目标
自学教材第125至126页,完成下列问题:
1.关于直线的基本事实是__两点确定一条直线__.
2.点与直线的位置关系有:__点在直线上,点在直线外__.
三、合作探究达成目标
探究点一直线的基本事实
活动一:阅读教材第125页,思考:
(1)经过一个已知点画直线,可以画________条.
(2)经过两个已知点画直线,可以画________条.由此,可以得出什么结论?
(3)“两点确定一条直线”的基本事实在生活中有哪些运用?
【展示点评】“确定”是有且只有的意思,表明这个事实存在,且具有唯一性.
【小组讨论】如何理解直线的基本事实?
【反思小结】直线的基本事实有两层含义:(1)经过两点有一条直线;
(2)只有一条直线.
【针对训练】见“学生用书”.
探究点二直线、射线、线段的画法与表示方法
活动二:阅读教材第125页,思考:
直线有哪几种表示方法?画图说明.射线呢?线段呢?
例如图所示,已知三点A、B、C按下列语句画出图形.
(1)画出直线AB;
(2)画出射线AC;
(3)画出线段BC.
【展示点评】画直线要出头,画射线注意A是端点,画线段注意不能出头.
【小组讨论】直线、射线和线段在表示方法上有联系和区别?
【反思小结】直线、射线和线段都可以用两个大写字母或一个小写字母表示,但用两个大写字母表示射线时要把端点写在前面.
【针对训练】见“学生用书”.
探究点三直线、射线、线段的区别与联系
活动三:请同学们先自己画出一条直线,一条射线,一条线段,然后小组合作讨论它们的区别与联系,并将讨论的结果填入下表.
比较的项目
线的类型图
形区别
端点个数能否度
量
延伸性联系
直线
射线
线段
【展示点评】根据直线、射线、线段的定义及其图形形象填空.【针对训练】见“学生用书”.
四、总结梳理内化目标
1.“两点确定一条直线”的基本事实.
2.直线、射线、线段的表示方法.
3.直线、射线、线段的区别与联系.
五、达标检测反思目标
1.判断下列说法是否正确.
(1)直线比射线长. ( × )
(2)直线AB大于直线CD. ( × )
(3)方向相反的两条射线是一条直线.( × )
(4)延长直线AB ( × )
(5)直线AB与直线BA不是同一条直线( × )
(6)直线AB上有A点( √ )
(7)直线AB与直线l不可能是同一条直线( × )
2.下列作图语句正确的是( D )
A.画直线AB=2cm
B.画射线OM=5cm
C.延长射线OC到D使OC=CD
D.延长线段MN到P,使PN=MN
3.射线可以看做由线段向一方__延伸__形成的,直线可以看做由线段
向两方__延伸__形成的.
4.在同一平面内有4个点,经过每两个点画直线,可以画直线的条数是__1或4或6__.
5.按下列语句画出图形.
(1)射线AB经过点C;
(2)点A在直线a外;
(3)经过点O的三条线段a、b、c;
(4)线段AB、CD相交于点B;
(5)点P在直线AB上,但不在直线CD上;
(6)点Q既不在直线l1上,也不在直线l2上;
(7)直线a和b相交于点P;点A在直线a上,但不在直线b外.
解:画图略.
六、布置作业巩固目标
课外作业见“学生用书”.
第2课时直线、射线、线段(二)
教学目标
1.会使用尺规作图画一条线段等于已知线段,会比较两条线段的长短.2.了解线段中点、等分点的概念,理解两点间距离的定义.
3.掌握“两点之间,线段最短”的基本事实,并能用它解释一些生活中的现象.
教学重点
会画一条线段等于已知线段,并会比较两条线段的长短.
教学难点
线段的和、差的理解和运用.
教学设计(设计者:)
教学过程设计
一、创设情境明确目标
(1)你如何比较两根筷子的长短?(2)两个人如何比身高?
二、自主学习指向目标
自学教材第126至128页,完成下列问题:
1.如何画一条线段等于已知线段?你有几种方法?如何用尺规画一条线段等于已知线段?
2.比较两条线段的长短的方法有__度量法__和__叠合法__.
3.__把一条线段分成相等的两条线段的点__叫做线段的中点.如何用折叠的方法得到一条线段的中点?
解:使线段两个端点重合对折该线段,折痕处即为中点
4.__连接两点间的线段的长度__叫做两点的距离,线段的基本性质是__两点之间,线段最短.
三、合作探究达成目标
探究点一画一条线段等于已知线段
活动一:阅读教材第126页,思考:
1.什么是尺规作图?请用尺规作图的方法作一条线段等于已知线段.2.怎样比较两条线段的长短?请再举出一些比较线段长短的实例.3.两条线段比较长短会有几种情况?并用符号表示出来.
例1 已知线段a,作线段AB,使线段AB=2a.
【展示点评】尺规作图中的直尺是指没有刻度的直尺,比较两条线段的长短可以用度量法和叠合法.
【小组讨论】例1的作图步骤分为哪几步?
【反思小结】先用无刻度的直尺画一条直线或射线,然后用圆规截取一段线段等于已知线段.
【针对训练】见“学生用书”.
探究点二线段的中点
活动二:做一做:
在一张透明的纸上画一条线段AB,折叠纸片,使端点A、B重合,折
痕与线段的交点我们叫作线段的中点,你能给线段中点下定义吗?由线段的中点,你能得到哪些线段之间的数量关系?
1.若点C是线段AB的中点则有:
AC=________=________AB;
2.你能找出线段的三等分点,四等分点吗?试一试.
AM=________=________=________AB
AM=________=________=________=________AB
【展示点评】将一条线段分成两条相等线段的点叫做这条线段的中点.【小组讨论】由AB=2AC能判断点C是线段AB的中点吗?
【反思小结】当点C在线段AB上时,点C是AB的中点;当点C在线段AB外时,则不是,思考这类问题可以结合图形分析.
【针对训练】见“学生用书”.
探究点三线段的性质
活动三:阅读教材第128页“思考”中的问题,
1.在图上画出最短路线,请说明这样画的理由.
2.由此可以得出什么结论?
3.你能举出这条性质在生活中的一些应用吗?
4.什么是两点的距离?
例2 如图,AB+BC________AC,AC+BC________AB,
AB+AC________BC(填“>”“<”“=”).
【展示点评】在铁路建设中,通常根据“两点之间,线段最短”的道理把弯曲的道路改直.
【小组讨论】两点间的距离是连接两点的线段吗?
【反思小结】两点间的距离是连接两点所得线段的长度.
【针对训练】见“学生用书”.
四、总结梳理内化目标
1.画一条线段等于已知线段.
2.画出两条已知线段的和及两条已知线段的差. 3.线段的中点.
4.“两点之间,线段最短”的基本事实.
五、达标检测 反思目标
1.如果点C 在线段AB 上,下列表达式①AC =1
2
AB ;②AB =2BC ;
③AC =BC ;④AC +BC =AB 中,能表示C 是AB 中点的有( C )
A .1个
B .2个
C .3个
D .4个 2.下列四个语句中正确的是( C )
A .如果AP =BP ,那么点P 是A
B 的中点 B .两点间的距离就是两点间的线段
C .两点之间,线段最短
D .比较线段的长短只能用度量法
3.如图,点C 是线段AB 的中点,AC =8cm ,则BC =__8__cm ,AB =__16__cm.
4.线段AB =6cm ,延长线段AB 到C ,使BC =3cm ,则AC 是BC 的__3__倍.
5.如图,C 、D 是线段AB 上的两点,且AC =CB ,CD =DB ,则线段AB 的中点是点__C __,点D 是线段__CB __的中点,AC =__2__DB ,DB
=__1
4
__AB.
6.如图,C 是线段AB 上的一点,D 是CB 的中点,DB =2cm ,AC =8cm ,则AB =__12__cm.
7.如图,已知线段a 、b ,画一条线段,使它等于2a -b.
解:画图略.
六、布置作业 巩固目标
课外作业见“学生用书”。