有机化学 第四章 PPT
有机化学课件(邢其毅)-第04章
4 芳烃
4.3.2 芳烃的光谱特征 4.3.2.1 红外光谱
4.3 芳烃的物理性质
芳烃主要有三个特征吸收区域。在1600和1500 cm-1出现2个共轭双键伸缩振动吸收;在 3100~3000cm-1 出现苯环上 C―H 键伸缩振动吸收; 950~650cm-1 出现苯环上的 C―H 键面 外弯曲振动吸收。,苯环上的C―H键面外弯曲振动吸收峰的位置和个数与苯环上的氢被 取代位置和个数有关,而与取代基的类型无关,能被利用有效地确定苯环的取代类型, 区别各种位置异构体。 芳香族化合物δ外=CH频率与取代基位置的关系 取代类型 苯 单取代 1,2-二取代 1,3-二取代 1,4-取代 1,2,3-三取代 δ外=CH频率(cm-1 )(强度) 670(s) 770~730(s) 770~735(s) 810~750(s) 900~860(m) 800~770(s) 860~800(s)
芳环的吸收带
化合物 E1吸收带 λmax/nm εmax 苯 萘 180 47000 220 100000 E2吸收带 λmax/nm ε max 204 7900 275 5700 B吸收带 λmax/nm εmax 230 312 200 250
菲
蒽 苯并[ a]蒽 *B吸收带被掩盖
252 50000
4 芳烃
4.3.2 芳烃的光谱特征
4.3 芳烃的物理性质
4.3.2.2 质子核磁共振谱
Ha Hb
[18]-轮烯是芳香性分子,在1HNMR上环内的4个氢Hb 的化学位移值均为 -0.6ppm ,而环外的 10 个氢 Ha 的化学 位移值为7.6ppm。
NH N
N HN
卟吩环是自然界存在的重要芳香环结构。在1HNMR上环内 的4个吡咯氢的化学位移值均为-2.8ppm ,而环外的12个氢 Ha的化学位移值在7.0-8.2ppm之间。
基础有机化学(邢其毅、第三版)第四章PPT4
§4 烯烃§4.1 烯烃的结构1、双键(C= C)的结构π键特点: a.π键不能独立存在;与σ键共存; b.π键不能旋转;产生几何异构; c, π键富含电子;易与缺电子试剂反应; d, π键受原子核控制弱;易被极化。
CH2 = CCF3 CF3H H C H H H C C CF3 CF3H C H-CF3 为吸电子基团 2. 几何异构 A. 产生条件 a. 分子中有阻碍旋转的因素 b. 被阻碍旋转的碳原子上连有不同基团C H3 C = C H cis a C = C b♦ 产生顺反异构的条件:C H3 HH C = C C H3 tra n s c dC H3 Ha ≠ b;c ≠ d总结 —— 异构体的分类几何异构 立体异构 对映异构 构型异构 部位异构 异构 构象异构 链异构 官能团异构B. 几何异构的标识a. 顺反命名法 相同基团在同侧时称为顺(cis); 在异侧时称为反(trans);CH3 C=CCH3H C=CCH3H H 顺-2-丁烯H CH3 反-2-丁烯C1的两个基团与C2的两个基团相同时, 常使用该命名法.b. Z/E标识法 (普遍适用)含不同基团时,先按定序规则排大小, 两个大的在同侧时为Z,异侧为E1Cl C=CCH3 2Cl C=C CH3C 2H5 CH32C 2H5 1 CH3 E-2-氯-3-甲基-2-戊烯Z-2-氯-3-甲基-2-戊烯注意:顺反命名和Z/E命名的区别 顺反 两碳原子上基团相同 Z/E 各种均可,与R/S对应§4.2 烯烃的命名1.习惯命名法CH3 - C = CH2 CH3异丁烯 CH2 = CH CH3CH=CH CH2=CHCH2 CH2= (-CH2-) 乙烯基 丙烯基 烯丙基 亚甲基2. 系统命名法 a. 选含双键的最长碳链为主链; b. 从双键最近处编号; c. 双键位置写在母体化合物命名前加‘-’; 取代基写在更前面; d. 如有几何异构,在最前面用Z,E标识。
有机化学第4章 烯烃
4.1.3 烯烃的异构和Z/E标记法
•构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象 例1:丁烯有三个同分异构体 丁烯有三个同分异构体 (1) CH3-CH2-CH=CH2 1-丁烯 丁烯 (2) CH3-CH=CH-CH3 2-丁烯 丁烯 (3) CH3-C=CH2 2-甲基丙烯 异丁烯 甲基丙烯(异丁烯 甲基丙烯 异丁烯) CH3
HX=HCl,HBr,HI 烯烃 卤烷
加成反应历程 + 第一步: -C=C- + H X → -C-C- + X第一步 •生成碳正离子 H 生成碳正离子 第二步:碳正离子迅速与 结合生成卤烷. 第二步 碳正离子迅速与 X- 结合生成卤烷 -C-C- + X- → -C-C+ H HX
σ+ → σ-
4.2 烯烃的物理性质
自
学!!
4.3 烯烃的化学性质 •碳碳双键 碳碳双键 •断裂乙烷 断裂乙烷C-C σ 单键需要 单键需要347kJ/mol 断裂乙烷 •断裂双键需要 断裂双键需要611kJ/mol; 断裂双键需要 •说明碳碳 π 键断裂需要 说明碳碳 键断裂需要264kJ/mol •双键使烯烃有较大的活性 双键使烯烃有较大的活性. 双键使烯烃有较大的活性 • 烯烃的加成反应 --- 烯烃在起化学反应时往往 随着π 键的断裂又生成两个新的 σ 键,即在双键 即在双键 碳上各加一个原子或基团. 碳上各加一个原子或基团 >C=C< + Y-Z → -C-C(σ sp2) σ
4.1.1 烯烃的命名 命名规则(系统命名 命名规则 系统命名): 系统命名 • • • • (1)选择含碳碳双键的最长碳链为主链 母体 选择含碳碳双键的最长碳链为主链(母体 选择含碳碳双键的最长碳链为主链 母体); (2)碳链编号时 应从靠近双键的一端开始 碳链编号时,应从靠近双键的一端开始 碳链编号时 应从靠近双键的一端开始; (3)烯前要冠以官能团位置的数字 编号最小 烯前要冠以官能团位置的数字(编号最小 烯前要冠以官能团位置的数字 编号最小); (4)其它同烷烃的命名规则 其它同烷烃的命名规则. 其它同烷烃的命名规则 CH2﹦ –CH2CH3 C ︱ CH2CH2CH3
有机化学-第四章 环烃
环戊烷分子中,碳碳键的夹角为108°,接近sp3杂化轨 道间夹角,角张力很小,是比较稳定的环。
环己烷分子中6个碳原子不在同一平面上,碳原子之间的 键角为109°28′,分子中没有张力。
大环原子在不同的平面内,键角接近正常的键角,为
无张力环。
环三十烷
三、环己烷的构象
1 椅式构象和船式构象
六个碳原子均为sp3杂化,在保持键角109°28′不变的情况
H2SO4
NO2 NO2
甲苯硝化比苯容易,主要产物为邻位和对位取代产物。
CH3
HNO3 , H2SO4 30℃
CH3 NO2 +
CH3
NO2
(3) 磺化反应 苯与浓硫酸加热,或与发烟硫酸在室温下作用,生 成苯磺酸。苯磺酸也是强酸,酸性与硫酸接近。
浓 H2SO4 , 80℃ or H2SO4(SO3) , 室温
2 直立键和平伏键
椅式构象中的碳氢键可以分为两类,6个碳氢键与分
子的对称轴平行,叫做直立键或a键。
另外6个碳氢键指向环外,与直立键成109°28′的角, 平伏着向环外伸展,叫做平伏键或e键。
一个椅式构象的环己烷,可以通过碳碳单键的旋转变成 另一种椅式构象,叫做转环作用。
X
X
当环己烷上的氢原子被其它基团取代后,由于其它基团 都比氢原子大,所以取代基以e键和环相连占优势。
环己烷以上的环烷烃则很难发生加氢反应。
2 与溴的作用
环丙烷在室温下可以和溴进行亲电加成反应,生成开
链化合物。环丁烷要在加热条件下才能和溴加成。
+ Br2
BrCH2CH2CH2Br
1,3-二溴丙烷
+ Br2
Δ
BrCH2CH2CH2CH2Br
有机化学 第四章 立体异构
(二)、旋光仪和比旋光度
Nicol棱镜
旋光仪的工作原理
WXG-4圆盘旋光仪
t: 比旋光度 [ α ]λ
测定温度
比旋光度
[α] t λ=
波长
α
旋光度(旋光仪上的读数)
l × ρ
溶液的浓度(g/ml) 盛液管长度(dm)
质量浓度ρB = 1g/ml的旋光物质溶液,放在l = 1dm长的盛液管中测得的旋光度为这个物质的比
CHO H OH CH2OH COOH [O] HgO H OH CH2OH
D-(+)-甘油醛
D-(-)-甘油酸
If the —OH or —NH2 which attaches to the
chiral carbon atom lies on the right,the
molecule is called ―D‖;if on the left,i H H Cl F H
有对称中心的分子能和它的镜像重合,没有手性
一般来讲,一种分子不能重叠镜像的条件是这 种分子没有对称面,也没有对称中心。
Plane of Symmetry
对映异构体
对映体的物理性质和化学性质一般 都相同,比旋光度的数值相等,但旋光 方向相反;等量对映体的混合物称为外 消旋体(Racemate) ,用dl或(± ) 表示。 Racemic Mixtures
手性分子
Amino acid possesses a carbon with four different attached groups (R, NH2, H, COOH); there is no such carbon in propanoic acid.
有机化学第四章共轭二烯烃
键角和键长变形较大的,贡献小:
§4. 3
共轭二烯烃的化学性质
CH2= CH CH=CH2
一、 1,4 – 加成反应(共轭加成) CH2= CH CH CH2 Br H HBr
CH2 CH= CH CH2 Br H
(1) 为什么共轭二烯烃会有两种加成方式?
2) 影响加成方式的因素
因 素 温 溶 试 度 剂 以1,2 - 加成为主 。 低温( - 40 ~ - 80 C ) 非极性 ( 如 : Br2 ) 以1,4 - 加成为主 。 高温( 40 ~ 60 C ) 极性溶剂 ( 如:氯仿 ) 极性试剂 ( 如:HCl ) CH2 = C CH= CH2 CH3
CH2 CH CH CH2
CH2 CH CH CH2 CH2 CH CH CH2
(III)
(I)
(II)
极限结构
极限结构
二、说明: •1、任何一个极限结构都不能代表真实的分子 •2、一个分子所具有的结构式越多,分子越稳 定
三、不同极限结构对稳定性的贡献: 共价键数目相等的,贡献相同:
CH 2CH=CH 2 CH 2=CHCH 2
1,2–加成与1,4–加成势能图
结论:
1、温度升高有利于1,4加成 2、极性增加有利于1,4加成 二、双烯合成反应(Diels – Alder)
+
双烯体
。 165 C, 90 MPa 17 h
亲双烯体
O CH2 HC HC CH2 + HC HC C
苯 O 100 ° C
O C CH O CH C O
1,2–加成
H2C
CH2 Br
CH CH
CH2
H2C
δ
+
高等有机化学课件第四章 有机化合物的芳香性
丁二烯的分子轨道能量
类似处理可以得到其它单环共轭体系的轨道能量为:
芳香体系的特征—芳香性是与分子轨道的“特殊 稳定性”相联系的。分子轨道理论假设,在芳香体系 中,除了碳-碳和碳-氢之间有键以外,还存在着一种 更稳定的键 (大键)。
Hü ckel对芳香化合物的特征用简单分子轨道理论 作了满意的解释,提出以sp2杂化的原子形成的含有 4n+2个电子的单环平面体系,具有相应的电子稳定性。 通常把这个规律称为4n+2规律。
光谱研究的结果表明苯分子具有六重对称性,其 中六个碳原子位于平面正六边形的角顶,六个碳-碳 键彼此相当。X-射线分析、电子衍射和偶极矩测定, 也都证明了苯的平面六边形结构。
苯的实验结构数据
共价键理论对苯结构的解释: 苯分子的各个键角都是120,因而碳原子必须采 取sp2杂化轨道,构成六个C-C 键和六个C-H 键。而 每一个碳原子的另外一个p电子轨道,则在与环垂直的 方向形成8字形的轨道相继重叠,均匀对称地配布在整 个环上,形成一个环状共轭体系。这里,电子公共化, 电子密度平均化,环上没有单键复键的区别。因而, 经典的定域化的价键结构式(环己三烯式)不能代表苯 的结构。
NMR研究证明蓝烃的芳香性。蓝烃分子的化学活 性相当于一个活泼的芳香化合物。亲电取代很容易地 发生在1(3)位置上,亲核取代发生在4(8)位置上。蓝烃 似乎不发生加成反应。这样的化学活性也表明此烃的 芳香性。 理论计箅的结果和测定的数值是一致。以此键长 与苯的键长(1.395Å)相比就表明了蓝烃的芳香性。9, 10-键显然没有参加共轭体系,因此可以把蓝烃看作 [10]轮烯。蓝烃的共轭能是302千卡/摩尔。
(3)富烯衍生物 富烯不很稳定,但是它的寿命和偶极矩 可以被环丙基和胺基所提高。富烯、6,6—二环丙基富 烯和6,6—二(二甲胺基)富烯的偶极矩分别为1.1,1.7和 5.4D。
有机化学课件--第四章脂环烃
欢迎来到有机化学的世界。今天我们将探索脂环烃这一组合物,了解其定义、 特点、结构、化学反应以及在实际生活中的应用。
什么是脂环烃?
定义
脂环烃是一类具有环状结构且含有脂肪基团的有机化合物。
特点
脂环烃的骨架为碳环,不含杂原子,烷基称为脂基,环状结构导致化学性质独特。
类脂环烃的结构与示例
3
卤代烷环化
通过卤代烷的环化反应得到,如环丙烷环化为环丙基甲苯。
脂环烃的化学性质与反应
• 烷基脂环烃在氧化条件下易发生环内氧化作用,生成含有羟基或羰基的环状化合物。 • 类脂环烃可通过环内位阻、立体特异性、芳香性质等发生不同的化学反应。 • 环硅烷和环硅氧烷等特殊的脂环烃具有独特的缩合反应、断裂反应和环硅氧烷积分反应。
被广泛应用
脂环烃在工业、医药、生物学 等领域有着不可替代的作用, 是当今社会发展的重要支撑。
环保意义重大
研究和发展低排放、环保型新 材料和新工艺,是未来脂环烃 的发展方向。
与人工智能技术结合
结合人工智能技术,不断探索 新型催化剂、反应机制。
பைடு நூலகம்
脂环烃在生活中的应用
食品加工
如脂环烷代表食品添加剂:植物脂环酸、硬 脂环酸等,用于增加食品的稠度、保持柔软 度。
化学品制造
如环己烷广泛用于工业合成甲基环己烷,也 用于人工味料制造。
医药领域
如肝素和阿司匹林等药物的成分中含有脂环 烷结构。
生物学研究
如脂环烷、类固醇在生物学研究中有一定的 作用。
脂环烃的重要性及未来发展
萜类化合物
包括环烷类萜、环烯类萜、环 戊基萜等,常见于天然植物与 动物中。
类固醇
具有四环骨架中的三个6元环 和一个5元环,包括胆固醇、 睾酮、雌激素等。
高等有机化学PPT课件
CH3CONHNH2 HNO2 CH3CON3
CH3NCO
X
O
C=NOH
CH3NCO
X
O
O
C N O C NHCH3
乃春在芳环邻位是不饱和支链时,极易环化成五元环,这一 性质对杂环的合成具有重要意义:
AX B
H N:
A BX
N
H
第三节:自由基
自由基是共价键发生均裂,每个碎片各保留一个电子,是带 单电子的三价碳的化合物。
2004年1版 6、洪琳编《有机反应活性中间体》高等教育出版社1999.6第一版 7、斯图尔特.沃伦著《有机合成――切断法探讨》丁新腾译,上海科学
技术文献出版社1986年1月第一版 8、黄宪、吴世晖、徐汉生《有机合成》(上、下)
第一章 有机反应活泼中间体及在合成上的应用
在有机反应中,经常出现的活泼中间体是卡宾、乃春、自由基、碳正离子、 碳负离子(包括苯炔、叶立德)
第一章 有机反应活泼中间体 及在合成上的应用
第一节:卡宾(碳烯)(Carbene) 第二节: 乃春 第三节:自由基 第四节:碳正离子 第五节、碳负离子(Carbenion)(活泼亚甲基
化合物)和叶立德
第二章 官能团的选择性互变
第一节 还原反应 第二节 氧化反应
第三章 官能团的保护
第一节: 羟基的保护(醇、酚羟基的保护) 第二节:烯键的保护 第三节:羰基的保护(用醇保护) 第四节:羧基的保护-酯化 第五节:胺基的保护-酰化或成盐
(六)生物有机化学( Bioorganic Chemistry) (七)元素和金属有机化学(Element and Metal Organic Compounds Chemistry) (八)有机化学中的一些重要应用研究
有机化学课件(李景宁主编)第4章_炔烃和二烯烃
CH3 C CH
Br2
CH3 C CH Br Br
Br2
CH3
Br Br C CH Br Br
现象:溴的红棕色消失,用于检验烯烃、炔烃及其他含有碳碳 重键的化合物。
C
C
CH3 + Br2
C
Br +
C
CH3
Br-
C Br
C
Br CH3
反式加成
CH2 CH CH2 C CH + Br2
-20 C CCl4
其过程为自由基加成得反马式加成产物与水的加成烯醇式不稳定酮式稳定互变异构两种构造异构体处于相互转化的平衡中在转化tomerizm
作业
P98 2(1)(2)(3); 8; 14(6); 19. 11;
第四章 炔烃和二烯烃
alkyne and diene
AgNO3
6、聚合
TiCl4 Al(C2H5)3 聚乙炔类导电聚合物由日本化学家白川英树研 n HC CH CH CH 制成功,2000年获诺贝尔化学奖。顺式和反式 n
有机化学第四章烯烃
CH 2-CH 2 + CH 2-CH 2 + CH 2-CH 2 Br Cl Br Br Br OH
(少量)
三种产物均含溴,但无ClCH2CH2Cl生成! Why?
对实验三的解释:反应是分步进行的,首先生成环状溴鎓离子:
H H
δ +δ - H
C C H
Br
Br
H H
sp2
π 键的特点 ①键能低,易断裂。 ②π键不能单独存在。 ③π键不能自由旋转。
④易流动,可极化度大。
π键电子云呈平面 对称,重叠小,键 能因此较σ键小。
烯烃的键长、键角
CH3 C-C键长
3
CH3
3
CH2
2
CH2
2
CH3
3
CH=CH2
2
154
Csp Csp
134
Csp Csp
150pm
Csp Csp
CH3 C H
Br
+
CH3 CH3 H H C C
Br CH3
C Br
H Br 2R,3R - 2,3 - 二溴丁烷 Br CH3 H CH3 H C C Br CH3 H
CH3 C H
Br
+
C Br
2S,3S - 2,3 - 二溴丁烷
+
CH3 C H CH3 C H 反-2-丁烯 C CH3 CH3 C H H Br2
双键上电子云密度减小, 亲电加成反应速率减小 -Br是吸电子基!
烷基取代增多,双键上电子云密度增大, 亲电加成反应速率增大 CH3-是给电子基!
说明双键上电子云密度越大,反应速率越大。 即该反应是由亲电试剂首先进攻的加成反应---亲电加成!
有机化学第四章环烷烃
书P57
4′.2.2 苯的物理性质 .2.2
无色液体,比水轻,有毒 无色液体,比水轻,有毒。
4′.2.3 化学性质 .2.3 (1)亲电取代反应 a 卤代
+ Br2 Fe or FeBr3 Br + HBr
Br + Br2 Fe or FeBr3 Br +
Br + Br HBr
书P58
引入卤素活性: 引入卤素活性: Cl2>Br2>I2 b硝化
共轭,共平面 共轭, 8个e 无芳香性
共轭,共平面 共轭, 10个电子 10个电子 有芳香性
不共轭 共轭, 共轭,共平面 4个电子, 14个电子 个电子, 14个电子 无芳香性 有芳香性
4′.1 芳香烃的分类及命名 4′.1 .1 分类
苯 单环芳香烃 苯的同系物 苯取代的不饱和烃 根据分子中含苯环的数目 联苯 多环芳烃 多苯代脂肪烃 稠环芳香烃 CH CH CH3
三元环
书P47
按环的大小分为: 按环的大小分为:
四元环 五元环
单环脂环烃 按环的多少分为: 按环的多少分为: 二环脂环烃 多环脂环烃 4.1.3命名:与脂肪烃基本相同,只是在名称前加一“ 4.1.3命名:与脂肪烃基本相同,只是在名称前加一“环”字。 命名 (1)当环上连有两个或两个以上的取代基时,按着表示取代基的 当环上连有两个或两个以上的取代基时, 数字尽可能小的原则,将环编号,取代基不同时, 数字尽可能小的原则,将环编号,取代基不同时,则根据次序规则 较优的基团给以较大的编号。 ,较优的基团给以较大的编号。
3 3" 2" 1" 4 6"
5
2
6
2' 3' 1 1' 6' 5' 4'
有机化学第4章 炔烃和二烯烃
1、碳sp杂化轨道的电负性大于碳sp2杂化轨道的电负性,炔中 电子控制较牢。三键键长短,两个P轨道重叠程度大,稳定。
2、从反应形成的碳正离子的稳定性来看,炔加成形成的烯基
碳正离子中,C+与CSP2相连,SP2的电负性大,不利于正电荷 的分散,故稳定性不如烷基碳正离子。
R-C CH + E+ R-C CH2 + E+
98%
3-庚炔
(E)-3-庚烯
6、HCN、EtOH、CH3COOH等的亲核加成反应
定义:亲核试剂进攻炔烃的不饱和键而引起 的加成反应,称为炔烃的亲核加成。
常用的亲核试剂有: ROH(RO-)、HCN(-CN)、RCOOH(RCOO-)
碱,150-180oC
(1). CHCH + HOC2H5
聚合,催化剂
NH3(L) RC C Na
RC C Na + CH3X
RC C + CH3 X
RC CCH3
RC CCH3
(可看作是强碱与弱酸之间的盐的反应)
CH3CH2C≡CNa + CH3CH2CH2Br CH3CH2C≡CCH2CH2CH3 + NaBr ( R-X=1°RX)
乙炔基负离子、乙烯基负离子、乙基负离子的结构:
SP 乙炔基负离子
碱性: 酸性:
SP2 乙烯基负离子
SP3 乙基负离子
5、还原
1)催化加氢
R C C R' + H2
pd
R C
R' C
H2
H
H pd
RCH2CH2R'
Lindlar Cat. RC CR' + H2
有机化学 第四章 环烃
苯结构的表达
1. Kekulé苯
Kekulé苯结构式能解释
(a) 苯的一取代物只有一种
Br
Br
Br
(b) 苯可以加氢还原为环己烷
催化剂
+ H2
Kekulé苯结构式却不能解释
(a) 苯容易发生取代反应,却难于发生加成和氧化反应
(b) 按照Kekulé结构式,邻位二取代苯应该有两个异构体, 但实际上只有一个
5
2
2'
1 1'
6 6'
3' 4'
CH3
5'
4,4'-二 甲 基 联苯
23
1
4
6
5
1,4- 联三 苯
65
1
4
2
3
1,3- 联三 苯
(2)多苯代脂肪烃:可看作脂肪烃分子中氢原子被苯取代:
CH2
CH
CH CH
二苯 甲 烷
三苯 甲 烷
二苯 乙 烯
(3)稠环芳烃:并联:两个或两个以上苯环共用两个相邻碳原子。
CH3
1
6
2
5
3
4
CH3
1,4-二甲基环己烷
CH3
3
4
2
5
6 1 CH3
1,3-二甲基环己烷
CH3
1
6
2
5
3
4
CH
CH3 CH3
1-甲基-4-异丙基环己烷
3. 当环上连有取代基及不饱和键时,即为环烯(炔)烃时, 不饱和键以最小的号数表示。
4-甲基环已烯
CH3
4
5
3
6
2
1
4. 某些情况下,如当简单的环上连有较长的碳链时,也 可将环当作取代基,如:
有机化学第四章二烯烃
参与超共轭的C- 键越多 键越多, 参与超共轭的 -Hσ键越多, 正电荷分散程度就越大, 正电荷分散程度就越大,碳正离子 就越稳定。 就越稳定。 自由基的超共轭与之相似。 自由基的超共轭与之相似。
正碳离子的稳定性: 3o
2o
1o
例题:排列下列正碳离子的稳定顺序
A. C2H5
答案:B.
+ CH2
C.
.. 稳定性:CH3CH=CH-Br = -
>
CH2=CHCH2Br
4.3.3 超共轭
σ,π–超共轭 超共轭: 超共轭
H
SP
3
H
C CH CH2 H
H
C H
CH
CH2
H
杂化轨道与构成π键的 轨道发生部分搓开交盖, 杂化轨道与构成 键的P轨道发生部分搓开交盖 键的 轨道发生部分搓开交盖, 形成部分电子离域而起原子间相互影响的效应, 形成部分电子离域而起原子间相互影响的效应, 超共轭效应。 称为σ, 超共轭效应 称为 π–超共轭效应。 超共轭效应的原子间相互影响效果比共轭效 应弱得多, 应弱得多,使体系的稳定性增加的程度就比 共轭效应弱得多。 共轭效应弱得多。
电子离域: 电子离域
三个以上相连共平面原子的P轨道相邻侧面交 三个以上相连共平面原子的 轨道相邻侧面交 轨道上的电子(π电子 盖,P轨道上的电子 电子 并不定域在某两个碳 轨道上的电子 电子)并不定域在某两个碳 原子之间,而是扩展到整个大π键的几个碳上 键的几个碳上, 原子之间,而是扩展到整个大 键的几个碳上, 这种电子的扩散称为电子的离域 电子的离域。 这种电子的扩散称为电子的离域。
反 键 轨 道
成 键 轨 道
1,3-丁二烯的分子轨道图形 丁二烯的分子轨道图形
有机化学第四章二烯烃-共轭效应PPT课件
唯一一个两次单独获得诺贝尔奖的人。
-
23
4.4.2 书写极限结构式的基本原则 (1)
(1) 极限结构式要符合价键理论和Lewis结构理论。
H 2 CC HC H 2
1 4
H 2 CC HC H 2
1 4
提示:
➢极限结构之间只是 电子排列不同
➢共振杂化体不是极 限结构混合物
➢共振杂化体也不是 互变平衡体系
-
22
美国化学家莱纳斯·鲍林
Linus Pauling,1901.2.28-1994.8.19. 1925 年获物理化学博士学位
荣获1954年诺贝尔化学奖:贡献是阐释化学键 的本质,并将其应用于解释复杂物质的结构。 1962年诺贝尔和平奖。
RCC CH2 CH CH2
CH3 CH CH
CH3
稳
定
性
CH3 CH2
降
低
CH3 CH CH3
CH3
CH3 C
CH3
-
19
中间体稳定性小结
碳正离子:缺电子,含空p轨道。供电取代基的+C 效 应即p-p和p-π共轭效应以及σ-p超共轭效 应作用较明显。
自由基: 电中性。p-π 共轭效应作用较明显,受取 代基电负性影响很小。
➢极限结构之间只是 电子排列不同
一个分子所具有的极限结构式越多,分子越稳定。➢共振杂化体不是极
不同极限结构对共振杂化体的贡献不同
限结构的混合物
➢共振杂化体也不是
-
互变平衡体系 21
共振论的基本思想
当一个分子、离子或自由基的结构可用一个以上不同电子排列的经典 结构式(共振式)表达时,就存在着共振。这些共振式均不是这一分子、 离子或自由基的真实结构,其真实结构为所有共振式的杂化体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应的立体化学:反式加成。
C H3 H C H3 C H 顺-2-丁烯 C H C H3 H C C H3 Br2 Br+ C C Br Br+ C Br C H3 C H3 H H C C Br C H3
H Br 2R,3R - 2,3 - 二溴丁烷 C H3 H C H3 H Br C C C H3 H Br
与 σ 键相比, π 键具有自己的特 点,由此决定了烯烃的化学性 质:
1)π键没有轴对称,因此以双键相连的两个
原子之间不能再以C-C σ键为轴自由旋转,
如果吸收一定的能量,克服 p 轨道的结合力,
才能围绕碳碳σ键旋转,结果使π键破坏。
2)π键由两个p轨道侧面重叠而成,重
叠程度比一般σ键小,键能小,容易发生
实验事实 二 :
C H2 Br C H2 C H2 + NaC l 不反应
实验事实告诉我们:该加成反应一定是分步进行的。
否则,不会有1-氯-2-溴乙烷和2-溴乙醇生成。
可以断定是Br+首先进攻。否则不会有1,2-二溴乙烷的 生成。
Br
Br C H2 Br C H2 Cl C H2 O H2 C H2
反应。 而是分布在上下两侧,原子核对π电子的束
缚力较小,因此π电子有较大的流动性,在 外界试剂电场的诱导下,电子云变形,导 致π键被破坏而发生化学反应。
3) π键电子云不是集中在两个原子核之间,
注意:双键写法中C=C两 根短线的不同含义。
第二节 烯烃的同分异构和命名
一、烯烃的同分异构
碳干异构 位置异构 顺反异构体
2,4-二甲基-2-己烯
2、从距双键最近的一端起对主链碳原子进 行编号。
3)将双键位次用编号较小的一个双键 碳的位次表示,写在母体名称前面。
4)其它同烷烃命名原则。
5、顺、反异构体命名:
顺-2-丁烯
反-2-丁烯
顺、反异构体对于三取代或四取代乙 烯难以运用。
Cl C H C
I
Br
(Z) 2-氯-1-溴-1-碘乙烯
C
C
+
X2
C X
C X
(与Br2反应时,用于检验烯烃)
反应活泼性: 氟 > 氯 > 溴 > 碘
烯烃的亲电加成反应历程
1、烯烃与溴的加成历程
玻璃容器 涂石蜡 玻璃容器 实验事实 (一): C H2 C H2 + Br2/CCl4 干燥 一滴 H2O 难,几乎不反应。 反应。 不反应。 立即反应。
非极性分子
主要内容
• • • • 烯烃的构造异构,命名,烯基 烯烃的结构 顺反异构、E-Z标记法—次序规则 烯烃的来源和制法
• 烯烃的物理性质 • 烯烃的化学性质、亲电加成反应 历程
本章重点:烯烃的结构,π键的特征, 烯烃的化学性质及应用,亲电加成反 应的历程,马氏规则的应用。
本章难点:烯烃的结构,π键的特征, 亲电加成反应的历程,烯烃的结构对 亲电加成反应速率和取向的影响。
Z、E命名法:
1.依次对双键碳原子上所连接基团排序。 2.C1与C2 上序数大的基团在同侧为Z, 在不同侧为E 。
a C b C
c b (Z)-构型
a
d C C c
a>b c>d
b (E)-构型
Zusammen (同)
Entgegen(相反)
(3)含有双键和叁键基团,可认 为连有二个或三个相同原子:
H HC CH2 C 1
H 2 C H (C)
H 1 2 C CH3 CH3 C1 (C,C,H) C2 (H,H,H)
(C)
C1 (C,C,H) C2 (C,H,H)
(4)芳环按Kekule结构处理
所以
> -CH(CH3)2 > CH3 > H
C(C,C,C) C(C,C,H)
H3C CH2 CH 2 C H C
Cl Br
H3C H
C
C
CH2 CH2 CH3 CH3
(E)-1-氯-1-溴-1-戊烯
(Z)-3-甲基-2-己烯
第三节 烯烃的物理性质
第四节 烯烃的化学性质
加成反应:烯烃的双键中π键断裂,双
键的二碳原子与其它原子(或原子团)
结合,形成两个σ键,称为加成反应。
一:亲电加成反应:
1. 与卤素的加成
极性分子的存在可以加速反应的进行。
解释:
乙烯的π 键流动性大,易受外加试剂的影响而极化。
δ+
CH2
CH2
δ
δ+
H
δ
- H O
δ+
CH2
CH2
δ
δ+
Br
δ
Br
与溴的加成不是一步,而是分两步进行的。
Br C H2 Cl C H2 OH C H2
C H2 Br
C H2
C H2
+
Br2
NaC l 水溶液
C H2 Br
H H C C H H
第一步
δ Br
δ Br
H C C H
H Br H Br CH 2 CH 2 Br Br
第二步
Br ( Cl )
CH2 CH2
Br
δ+
Br ( Cl )
CH2 CH2
Br
该反应的关键步骤是因 Br 的进攻引起的,因此,
这是一个亲电加成反应。
在该反应中,Br2分子共价键的断键方式为异裂,故 该反应属于离子型反应。
第一节
烯烃的结构
单烯烃是指分子中含有一个碳碳双键 的不饱和开链烃
通式:CnH2n
乙烯的结构
实验测得: 形成乙烯分子的六个原子共平面
键角接近120º
碳碳键的键长小于烷烃的碳碳单键
H
117º
121.7º
H C
0.108nm
C
H
0.133nm
H
烯键的形成
Sp2杂化
Sp2杂化
Sp3杂化
2.π键的特点
H 3C H 2C CHCH2CH3 H C C
CH3 H
H 3C C C H
H CH3
H3C
C
H3C
CH2
1-丁烯
顺-2-丁烯
反-2丁烯
异丁烯
形成顺反异构体的条件:烯烃中的任一个双 键碳原子所连接的两个原子或基团均不相同:
a C b C
a
a C C b
a
a C C b
c
a C C a
a
b
d
d
b
—
δ+
C H2
δ C H2
+
Br
+
C H2
+
C H2 Br
Cl
C H2 Br
OH H
+
H2O
C H2 Br
C H2 Br
C H2
实验事实 三 :
H H
B r2
B rH H Br
实验事实告诉我们:既然产物以反-1,2-二溴环戊烷为 主,反应中间体就不会是实验事实(二)所提供的中间体碳 正离子。
公认的反应历程:
存在顺反烯基,如:
CH3—CH==CH—
1-丙烯基
CH3—CH==CH—CH2—
CH2==CH—CH2 — CH2==C — CH3
2-丁烯基
2-丙烯基(烯丙基)
1-甲基乙烯基(异丙烯基)
三、烯烃的命名
1、选择含双键的最长碳链为主链:
1 2 CH3 C CH3 3 CH 4 CH CH3 5 CH2 6 CH3