南京工业大学概率统计模拟题
概率论与数理统计-模拟题 2
《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。
资料:概率统计模拟试卷1
南京工业大学概率统计课程考试题库(A )所在院(系) 班 级 学号 姓名 题 分 一二三四 五六 七 八九总 分一、填空题(每空2分,计14分):1. 设P (A )=41,P (B )=31,P (A ⎪B )=21,则P (AB )= ;P (A ∪B )= 。
2. 设随机变量ξ的概率密度为⎩⎨⎧<<=.,0,10,2)(其它x x x f , 以η表示对ξ的三次独立重复观察中事件{ξ≤21}出现的次数,则P {η=2}= 。
3.若随机变量ξ在(0,5)上服从均匀分布,则方程4x 2+4ξx +ξ+2=0有实根的概率是 。
4.设总体X ~),(2σμN ,其中μ未知,2σ已知,(X 1,X 2,X 3)是样本。
作样本函数如下:①321313234X X X +-;②∑=-ni i X n 12)(1μ;③321323231X X X -+; ④321313232X X X -+。
这些函数中是统计量的有 ;是μ的无偏估计量的有 ;最有效的是 。
二、选择题(每题3分,计9分):1.设随机变量ξ服从正态分布),(2σμN ,则随σ的增大,概率}|{|σμξ<-P 。
(A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定2.如果随机变量ξ与η满足)()(ηξηξ-=+D D ,则下列式子肯定正确的是 。
(A )ξ与η相互独立 (B )ξ与η不相关 (C )0=ηD (D )0=⋅ηξD D 3. 在假设检验中,H 0为原假设,备择假设H 1,则称( )为犯第一类错误。
(A ) H 0为真,接受H 0 (B ) H 0为假,拒绝H 0 (C ) H 0为真,拒绝H 0 (D ) H 0为假,接受H 0三.(10分)一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分别占产量的25%、35%、40%,如果每个车间成品中的次品率分别占产量的5%、4%、2%。
概率统计练习题库
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为的泊松(Poisson )分布,且已知)]2)(1[(X X E =1,则___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当p 1/2_____时,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121N ,则X 的边缘分布为),(211N 。
7、已知随机向量(X ,Y )的联合密度函数其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望EX,方差2DX,k 、b 为常数,则有)(b kX E = ,k b ;)(b kX D =22k。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2,25)。
10、是常数21?,的两个无偏估计量,若)?()?(21D D ,则称1?比2?有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X B (2,p ),Y B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2,则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5、设随机变量X 的概率密度是:其他0103)(2x x x f ,且784.0X P ,则=0.6 。
概率论和数理统计(南航)练习题
第四章 数字特征一.主要内容随机变量的数学期望 方差 协方差和相关系数二.课堂练习1.一台设备由三大部件构成, 在设备运转中各部件需要调整的概率分别 为0.10.2和0.3,假设各部件的状态相互独立, 以X 表示同时需要调整的部件数, 试求X 的数学期望和方差.()()222:X :P(X 0)0.504,P(X 1)0.398P(X 2)0.092,P(X 3)0.006E(X)00.50410.39820.09230.0060.6E(X )0.820,D X E(X )E(X)0.46=========⨯+⨯+⨯+⨯===-=解法一先求出的分布律则i 1231231231231,i ,:X i 1,2,3,0,i ,X X X X ,X ,X ,X ,E(X)E(X )E(X )E(X )0.10.20.30.6,D(X)D(X )D(X )D(X )0.46⎧==⎨⎩=++==++=++===++=第个部件需要调整解法二设第个部件不需要调整且相互独立2X 2.X ~U(0,1),(1)Y e ;(2)Cov(X,Y)=设求的概率密度求2Y X X 1,1y e ,11112yf (y)f (ln y)(ln y)f (ln y)2222y 0,.⎧<<⎪'===⎨⎪⎩其它12X 2x 2012X2x 202211(2)E(X),E(Y)E(e )e dx (e 1)221E(XY)E(Xe )xe dx (e 1),4Cov(X,Y)E(XY)E(X)E(Y)111(e 1)(e 1).442====-===+=-⋅=+--=⎰⎰则3.(X,Y)1,|y |x,0x 1,f (x,y):E(X),E(Y),Cov(X,Y)0,,<<<⎧=⎨⎩设随机变量的概率密度为求其它1x 0x 1x0x 1xx2E(X)xf (x,y)dxdy xdx dy ,3E(Y)yf (x,y)dxdy dx ydy 0,E(Y)yf (x,y)dxdy dx ydy 0,Cov(X,Y)E(XY)E(X)E(Y)0+∞+∞-∞-∞-+∞+∞-∞-∞-+∞+∞-∞-∞-=========∴=-⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰E(X),E(Y)X,Y 求时,也可以先求的边缘密度,再用一个随机变量的数学期望公式求。
概率统计考试试卷
概率统计考试试卷一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ, σ^2),下列说法正确的是:A. X的期望值是μB. X的方差是σ^2C. X的取值范围是(-∞, +∞)D. 以上说法均正确答案:D2. 已知随机变量X的概率密度函数为f(x),下列关于X的分布函数F(x)的说法正确的是:A. F(x)是单调递增的B. F(x)是连续的C. F(x)在x=0处的值为0.5D. F(x)在x=0处的值为0答案:A3. 设随机变量X服从二项分布B(n, p),下列说法正确的是:A. X的期望值是npB. X的方差是np(1-p)C. X的取值范围是{0, 1, ..., n}D. 以上说法均正确答案:D4. 已知随机变量X和Y相互独立,下列说法正确的是:A. X和Y的期望值之和等于它们的期望值B. X和Y的方差之和等于它们的方差C. X和Y的协方差为0D. 以上说法均正确答案:C5. 设随机变量X服从泊松分布,下列说法正确的是:A. X的期望值等于其方差B. X的取值范围是{0, 1, 2, ...}C. X的概率质量函数为P(X=k) = λ^k / k! * e^(-λ)D. 以上说法均正确答案:D6. 已知随机变量X服从均匀分布U(a, b),下列说法正确的是:A. X的期望值是(a+b)/2B. X的方差是(b-a)^2/12C. X的概率密度函数为f(x) = 1/(b-a)D. 以上说法均正确答案:D7. 设随机变量X服从指数分布,下列说法正确的是:A. X的期望值是1/λB. X的方差是1/λ^2C. X的概率密度函数为f(x) = λe^(-λx)D. 以上说法均正确答案:D8. 已知随机变量X和Y的联合概率密度函数为f(x, y),下列说法正确的是:A. X和Y的边缘概率密度函数可以通过对f(x, y)积分得到B. X和Y的期望值可以通过对f(x, y)积分得到C. X和Y的协方差可以通过对f(x, y)积分得到D. 以上说法均正确答案:A9. 设随机变量X服从正态分布N(0, 1),下列说法正确的是:A. X的期望值是0B. X的方差是1C. X的概率密度函数为f(x) = 1/√(2π) * e^(-x^2/2)D. 以上说法均正确答案:D10. 已知随机变量X服从t分布,下列说法正确的是:A. X的期望值是0B. X的方差是1C. X的概率密度函数为f(x) = Γ((ν+1)/2) / (√(νπ) *Γ(ν/2) * (1+x^2/ν)^((ν+1)/2))D. 以上说法均正确答案:C二、填空题(每题2分,共20分)1. 设随机变量X服从正态分布N(μ, σ^2),则X的期望值E(X) = ________。
南京工业大学概率统计(江浦12~13-2B)t
南京工业大学 概率统计 课程考试试题(B 、闭)2012-2013学年第二学期(公办)所在学院 班 级 学号 姓名一、填空题(每题3分,计18分)1、袋中有5个黑球,3个白球,大小相同,一次随机摸出4球,其中恰有3个白球的概率为 。
2、设A 、B 为随机事件,且11(),(|)43P A P B A ==,1(|)2P A B =,则()P B = 。
3、已知随机变量X ,Y 的方差为DX =49,DY =64,相关系数0.5XY ρ=,则()D X Y -= 。
4、设随机变量X 的概率密度为23, 01,()0, x x f x ⎧<<=⎨⎩其他,以Y 表示对X 的三次独立重复观察中事件{0.5}X ≤出现的次数,则P {Y =2}= 。
5、设随机变量X 服从(1,2)-上的均匀分布,则随机变量1, 0,0, 0,1, 0X Y X X >⎧⎪==⎨⎪-<⎩的数学期望EY = 。
6、设(X 1,…,X 5)为来自正态总体N (0,1)的样本,若统计量服从t 分布,则c = 。
二、选择题(每题3分,计12分)1、假设事件A 和B 满足P (B |A )=1,则( )。
(A )A 是必然事件 (B )0)|(=A B P (C )A ⊃B (D )A ⊂B2、设随机变量X 服从参数为n ,p 二项分布,且已知EX =2.4,DX =1.44,则此二项分布中的参数(n ,p )=( )。
(A ) (3,0.8) (B ) (4,0.6) (C ) (6,0.4) (D ) (8,0.3)3、设二维随机变量(X ,Y )的联合概率密度是(),0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩其它,则X 与Y 为( )的随机变量。
(A )独立同分布 (B ) 独立不同分布 (C )不独立同分布 (D ) 不独立也不同分布 4、在假设检验中,H 0为原假设,则称( )为犯第二类错误。
概率论(09~10(2)A江浦)课程考试试题
南京工业大学 概率论 课程考试试题(A 、闭)(2009-2010学年第二学期)所在院(系) 江浦 班 级 学号 姓名一、填空(每空3分,计15分)1、已知P (A )=41,31)|(=A B P ,21)|(=B A P ;则P (B )= ;P )(B A ⋃= 。
2、已知5.0)0(=Φ(其中)(x Φ是标准正态分布函数),随机变量X ~N (1,4),且5.0}{=≥a X P ,则a = 。
3、设二维随机向量(X ,Y )的联合概率密度为,0(,)0,y e x yf x y -⎧<<=⎨⎩其它,则X 的边缘密度=)(x f X ,P { X + Y ≤1} = 。
4、设随机变量的方差()4D X =, 则(23)D X += 。
5、设在 n 次独立试验中事件 A 发生的次数为A n ,在每次试验中事件 A 发生的概率为 p ,则对于任意给定的正数ε>0 ,恒有 lim A n n P p n ε→∞⎛⎫-<⎪⎝⎭= 。
二、选择(每题3分,计15分)1、设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( )。
(A ) A 与B 不相容 (B ) A 与B 相容 (C ) P (AB )=P (A )P (B ) (D ) P (B A -)=P (A ) 2、设随机变量X 与Y 均服从正态分布:X ~N (μ,9),Y ~N (μ,16),而 }3{1-≤=μX P p ,}4{2+≥=μY P p ,则( )。
(A ) 对任何实数μ,都有p 1=p 2 (B ) 对任何实数μ,都有p 1<p 2 (C ) 只对μ的个别值,才有p 1=p 2 (D ) 对任何实数μ,都有p 1>p 2 3、对于任意两个随机变量X 和Y ,若EY EX XY E ⋅=)(,则( )。
(A ) DY DX XY D ⋅=)( (B )DY DX Y X D +=+)( (C )X 和Y 独立 (D )以上均不正确 4、设随机变量X 与Y 相互独立,其分布函数分别为)(x F X 、)(y F Y ,则()max ,Z X Y =的分布函数是( )(A ))()(z F z F X Z = (B ))()(z F z F Y Z =(C )()()()Z X Y F z F z F z = (D ){})(),(m in 1)(z F z F z F Y X Z -=5、设随机变量X 的分布函数为()⎪⎩⎪⎨⎧>≤≤<=1110003x x xx x F ,则EX =( ) (A )⎰+∞4dx x (B )⎰+∞33dx x (C )14x dx ⎰ (D )⎰133dx x三(12分)、甲、乙、丙三组工人加工同样的零件,它们出现废品的概率:甲组是,乙组是,丙组是,它们加工完的零件放在同一个盒子里,其中甲组加工的零件是乙组加工的2倍,丙组加工的是乙组加工的一半。
南京工业大学07~08概率统计A卷
概率统计(A 、闭)1.假设P (A )=0.4, P (A ∪B )=0.7,那么(1)若A 与B 互不相容,则P (B )= ______ ;(2)若A 与B 相互独立,则P (B )= ____ 。
2.将英文字母C,C,E,E,I,N,S 随机地排成一行,那么恰好排成英文单词SCIENCE 的概率为____________。
3.设随机变量ξ的概率密度为4421)(-+-=x x e x f π,则=2ξE 。
4.设随机变量ξ与η相互独立,且均服从参数为0.6的0-1分布,则{}ηξ=p =______。
5.某人有外观几乎相同的n 把钥匙,只有一把能打开门,随机地取出一把开门,记ξ为直到把门打开时的开门次数,则平均开门次数为__________。
6.设随机变量ξ服从)21,8(B (二项分布), η服从参数为3的泊松分布,且ξ与η相互独立,则)32(--ηξE =__________;)32(--ηξD =__________。
7.设总体X ~),(2σμN , (X 1,X 2,…X n )是来自总体X 的样本,已知2111)(∑-=+-⋅n i i i X X c 是2σ的无偏估计量,则=c 。
二、选择题(每题3分,计9分)1.当事件A 和B 同时发生时,必然导致事件C 发生,则下列结论正确的是( )。
(A )P (C )≥ P (A )+ P (B )1- (B )P (C )≤P (A )+ P (B )1-(C )P (C )=P (A ⋃B ) (D )P (C )= P (AB )2.设ξ是一随机变量,C 为任意实数,E ξ是ξ的数学期望,则( )。
(A )E (ξ-C )2=E (ξ-E ξ)2 (B ) E (ξ-C )2≥E (ξ-E ξ)2(C ) E (ξ-C )2 <E (ξ-E ξ)2 (D ) E (ξ-C ) 2 = 03.设总体X ~),(2σμN , (X 1,X 2, X 3)是来自总体X 的样本,则下列估计总体X 的均值μ的估计量中最好的是( )。
南京工业大学概率论与数理统计试卷(全-吐血整理-必做) (1)
南京工业大学 概率统计 课程考试试卷(A闭)(2011/2012学年第1学期-2012年1月)所在系(院) 班 级 学号 姓名一、填空题(每空3分,共18分)1.假设()14P A =,()13P B A =,()12P A B =,则=)(B P ,()P A B = .1/6, 1/32. 设连续随机变量的密度函数为)(x f ,则随机变量X e Y 3=的概率密度函数为=)(y f Y.⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f yY 3. 随机变量);4,0;1,0(~),(ρN Y X =221122(,;,;)N μσμσρ,已知(2)1D X Y -=,则ρ=答: 7 / 8 (或0.875) ;4. 在0H 为原假设,1H 为备择假设的假设检验中,若显著性水平为α,则表示概率:P ( )=α10(|);P H H α=接受成立5. 设某种清漆干燥时间),(~2σμN X (单位:小时),取9=n 的样本,得样本均值和方差分别为33.0,62==S X ,则μ的置信度为95%的单侧置信区间上限为 答:上限为 6.356 .二、 选择题(每题3分,共12分)1. 掷一颗骰子600次,则“1”点出现次数的均值为 . (A) 50; (B) 100; (C) 120; (D)150.2. 随机变量,X Y 相互独立且服从同一分布,3/)1()()(+====k k Y P k X P ,1,0=k ,则()P X Y ==.(A )1/9; (B )4/9;(C )5/9; (D )1.3. 离散型随机变量X 的概率分布为k A k X P λ==)(( ,2,1=k )的充要条件是 . (A )1)1(-+=A λ且0>A ; (B )λ-=1A 且10<<λ; (C )11-=-λA 且1<λ; (D )0>A 且10<<λ.4. 设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(A )A ; (B )A 1.0; (C )A 2.0; (D )A 10.答:(C )(B )(A )(B )三.(8分) 某厂卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花. 到目的地时发现丢失1箱,不知丢失哪一箱. 现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率. 解: A —任取2箱都是民用口罩,k B —丢失的一箱为k , 3,2,1=k 分别表示民用口罩,医用口罩,消毒棉花. 2分3685110321)()()(29252925292431=⋅+⋅+⋅==∑=C C C C C C B A P B P A P k k k3分 .83368363)(/21)(/)()()(2924111=÷=⋅==A P C C A P B A P B P A B P3分四.(8分)设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥-<≤<=--1,110,0,)()1(x Ae x B x Ae x F x x 求:(1)A ,B 的值;(2)X 的概率密度函数()f x ;(3){}1/3P X >。
概率论和数理统计练习和测试-第五章-南工大应用数学系-编---苏大版-----大数定律和中心极限定理
概率论与数理统计练习与测试第五章(南工大应用数学系 编)(苏大版)大数定律与中心极限定理1. 设随机变量ξ的方差为2。
5。
利用契贝雪夫不等式估计:{}5.7||≥-ξξE P 的值。
解:由契贝雪夫不等式:2}|{|εξεξξD E P ≤≥-,又已知5.7,5.2==εξD ,故 044.05.75.2}5.7|{|2=≤≥-ξξE P 。
2. 已知某随机变量ξ的方差D ξ=1,但数学期望E ξ=m 未知,为估计m ,对ξ进行n 次独立观测,得样本观察值ξ1,ξ2,…,ξn 。
现用 {}∑=≥<-=n i i p m P m n n 15.0||1ξξξ多大时才可能使问当估计, 。
解:因∑===n i i m E n E 1,1ξξ又ξ1,ξ2,…,ξn 相互独立,故∑∑=====n i n i i i n D n n D D 1121)(1)1(ξξξ,根据契贝雪夫不等式,有 25.01}5.0|{|ξξξD E P -≤<-,即n m P 41}5.0|{|-≤<-ξ,再由p n p n -≥≥-14,41得。
3. 设在由n 个任意开关组成的电路的实验中,每次试验时一个开关开或关的概率各为12。
设m 表示在这n 次试验中遇到的开电次数,欲使开电频率mn 与开电概率p =0.5的绝对误差小于ε=0。
01,并且要有99%以上的可靠性来保证它实现。
试用德莫佛—拉普拉斯定理来估计,试验的次数n 应该是多少? 解:欲使99.0}01.0|{|≥<-p n m P ,即99.0}//01.0//|{|≥<-n pq n pq p n m P ,亦即,则t ~N (0,1)且有 ,99.001.0≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<pq n t P 由58.201.0995.0)58.2(≥⇒=Φpq n,以p =q =1/2代入可得 n =16641。
P43T3 4。
用某种步枪进行射击飞机的试验,每次射击的命中率为0。
南京工业大学概率论与数理统计试题及答案(1)
南京工业大学 概率统计 试题(A )卷(闭)2004 -2005 学年第 二 学期 使用班级 江浦校区03级所在院(系) 班 级 学号 姓名 题号一 二 三 四 五 六 七 八 九 总分 得分一.填空(18分)1.(4分)设P (A )=0.35, P (A ∪B )=0.80,那么(1)若A 与B 互不相容,则P (B )= ;(2)若A 与B 相互独立,则P (B )= 。
2. (3分)已知5.0)0(=Φ(其中)(x Φ是标准正态分布函数),ξ~N (1,4),且21}{=≥a P ξ,则a = 。
3.(4分)设随机变量ξ的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x f对ξ独立观察3次,记事件“ξ≤2”出现的次数为η,则=ηE ,=ηD 。
4.(3分)若随机变量ξ在(0,5)上服从均匀分布,则方程4t 2+4ξt +ξ+2=0有实根的概率是 。
5.(4分) 设总体),(~2σμN X ,X 是样本容量为n 的样本均值,则随机变量∑=⎪⎪⎭⎫ ⎝⎛-=n i i X X 12σξ服从 分布,=ξD 。
二.选择(每题3分,计9分)1.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是(A )A 与B 不相容 (B )A 与B 相容(C )P (AB )=P (A )P (B ) (D )P (B A -)=P (A )2.设随机变量ξ与η均服从正态分布ξ~N (μ,42),η~N (μ,52),而 }5{},4{21+≥=-≤=μημξP p P p ,则( )。
(A )对任何实数μ,都有p 1=p 2 (B )对任何实数μ,都有p 1<p 2(C )只对μ的个别值,才有p 1=p 2 (D )对任何实数μ,都有p 1>p 23.对于任意两个随机变量ξ和η,若ηξξηE E E ⋅=)(,则( )。
(A )ηξξηD D D ⋅=)( (B )ηξηξD D D +=+)((C )ξ和η独立 (D )ξ和η不独立三(12分)、在电源电压不超过200伏,在200~240伏和超过240伏三种情况下,某种电子元件损坏的概率分别为0.1,0.001和0.2。
概率论与数理统计模拟试题5套带答案
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
南京工业大学概率统计(09~10(2)A江浦)课程考试试题
南京工业大学 概率统计 课程考试试题(A 、闭)(2009-2010学年第二学期)所在院(系) 江浦 班 级 学号 姓名一、填空(每空2分,计20分)1、已知P (A )=41,31)|(=A B P ,21)|(=B A P ;则P (B )= ;P )(B A ⋃= 。
2、已知5.0)0(=Φ(其中)(x Φ是标准正态分布函数),随机变量X ~N (1,4),且5.0}{=≥a X P ,则a = 。
3、设二维随机向量(X ,Y )的联合概率密度为⎩⎨⎧<<-其它,00,),(yx e y x f y ,则X 的边缘密度=)(x f X ,P { X + Y ≤1} = 。
4、已知随机变量X ,Y 的方差分别为DX =25,DY =36,相关系数,4.0=ρ 则)(Y X D += ,)(Y X D -= 。
5、若随机变量X 在(0,5)上服从均匀分布,则方程02442=+++X t X t 有实根的概率是 。
6、设随机变量X 和Y 相互独立,且都服从正态分布)3,0(2N ,而921,,,X X X 和921,,,Y Y Y 是分别来自总体X 和Y 的简单随机样本,则统计量292221921YY Y X X X U ++++++= 服从 分布,参数(自由度)为 。
二、选择(每题3分,计12分)1、设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( )。
(A )A 与B 不相容 (B ) A 与B 相容 (C ) P (AB )=P (A )P (B ) (D ) P (B A -)=P (A ) 2、设随机变量X 与Y 均服从正态分布:X ~N (μ,9),Y ~N (μ,16),而 }3{1-≤=μX P p ,}4{2+≥=μY P p ,则( )。
(A )对任何实数μ,都有p 1=p 2 (B )对任何实数μ,都有p 1<p 2 (C )只对μ的个别值,才有p 1=p 2 (D )对任何实数μ,都有p 1>p 2 3、对于任意两个随机变量X 和Y ,若EY EX XY E ⋅=)(,则( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工业大学概率统计模拟题
一、填空题
1.设()0.4P A =,()0.7P A B =U ,那么
(1)若A 与B 互不相容,则P(B)= ;
(2)=)(B P B A 相互独立,则与若 .
2.已知(0)0.5(()x Φ=Φ其中是标准正态分布的分布函
数(1,4),N ξ,~且21=≥}(a P ξ,=a 则 。
3.设随机变量的概率密度为ξ
的三次对立重复表示对,以其它
ξη⎩⎨⎧<<=,010,2)(x x x f 观察中事件=出现的次数,则}{}{221=≤ηξP ,
=ηE , =ηD 。
4.若随机变量,求方程
)5,0(~U ξ02442=+++ξξx x 有实根的概率为 。
5.设总体X 服从
),,((32122X X X N 已知,未知,),其中,σμσμ是样本。
作样本函数如下:①;321313234X X X +- ②;∑=-n i i X X n 1
2)(1 ③;321323231X X X -+ ④.313232321X X X -+这些函数中是统计量的有 ;是μ的无偏估计量的有
;最有效的是 。
二、选择题:
1.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( )
不相容与B A A )( 相容与B A A )(
)()()()(B P A P AB P C = )()()(A P B A P D =-
2.袋中有5个黑球,3个白球,大小相同,一次随机摸出4球,其中恰有3个白球得概率为( )。
83)(A )()()(8
1835B )()()(81833C
3.对任意两个随机变量,则,若和ηξξηηξE E E ⋅=)(( )。
ηξξηD D D A ⋅=)()( ηξηξD D D B +=+)()( 独立和ηξ)(C 不独立和ηξ)(D
三、在电源电压不超过200伏,在200~240伏和超过240伏三种情况下,某种电子元件损坏的概率分别为0.1,
0.001和0.2。
假设电源电压
)25,220(2N 服从正态分布ξ,试求(已知)(788.0)8.0(x Φ=Φ,其中是标准正态分布函数):
(1)该电子元件损坏的概率;
(2)该电子元件损坏时,电源电压在200~240伏的概率。
四、设连续随机变量的分布函数为:ξ
⎪⎩
⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F , 试求:1)系数A ; 2)的概率密度;随机变量ξ 3)}..{7030≤≤ξP
五、设有100个电子器件,它们的使用寿命λξξξ均服从参数为,,,10021Λ)=(050.λ的指数分布,其使用情况为:第一个损坏第二个立即使用,第二个损坏第三个立即使用等等。
令个电子器件使用表示这100ξ的总时间,ξ试求超过1800h 的概率。
).)((841301=Φ已知
六.设总体X 的概率密度为
1,01()0,x x f x θθ⎧<<=⎨⎩(+)其他
其中n X X X ,121Λ,
,是未知参数,->θ是来自总体X 的一个容量为n 的简单随机样本。
试分别用矩估计法和极大似然估计法求θ的估计量。
七、已知总体),2(~σμN X ,试分别在下列条件下求指
定参数的置信区间:
(1)的置信区间;。
求=,=,未知,μασ05.052.13,2122S x n ==
(2)的置信区间。
求=,=未知,2202.0356.1,12σαμS n =
(已知,,,725.24)11(0796.2)21(0860.2)20(201.0025.0025.0===χt t
,053.3)11(299.0=χ)571.3)12(217.26)12(299.0201.0==χχ,
八、设某厂生产的灯泡寿命(单位:h )X 服从正态分布的为=,,μμσμ1000)(02N 标准值,2σ为未知参数,随机抽取其中16只,测得样本均值22120946==s x ,样本方差。
试在显着性水平下,考察下列问题:05.0=α
(1) 这批灯泡的寿命与1000是否有显着差异(即检验)1000100010≠μμ:,=:H H ;
(2) 这批灯泡是否合格(即检验
)1000100010
<'≥'μμ:,:H H . (已知,,,1315.2)15(7459.1)16(7531.1)15(025.005.005.0===t t t 1199.2)16(025.0=t )
九、设随机变量)的联合概率密度,ηξ(
⎩
⎨⎧<<=-其它,00,),(y x xe y x f y (1)求的与的边际概率密度并考察,ηξηξ独立性;
(2)求的概率密度函数;+=ηξζ
ρ。
(3)求ξη。