裂缝性油藏数值模拟方法(正文)
裂缝性潜山油藏地质建模与数值模拟一体化研究
裂缝性潜山油藏地质建模与数值模拟一体化研究聂玲玲;张占女;童凯军;房娜【摘要】为了准确模拟和预测裂缝性潜山油藏的油水运动规律,以渤海海域J油田为例,综合岩心、测井、地质、地震及生产测试等多方面资料,分步建立了双重介质储集层的三维地质模型并开展了数值模拟研究.首先建立起工区构造模型,并建立了基质单元属性模型,然后利用岩心成像测井裂缝描述成果,以地震叠前属性反演成果为约束条件,模拟建立了裂缝分布网络模型,最后将基质属性和裂缝分布网络模型有机结合并建立了双重介质储集层三维地质模型.在此基础上,开展研究区历史拟合研究.结果表明:①采用该模型能够很好地表征裂缝性变质岩储层的渗流介质特征,数值模拟区块和单井历史拟合符合率高达90%;②潜山油藏开发可以划分为裂缝主要供油阶段、裂缝和基质同时供油阶段、基质主要供油阶段三个阶段;③运用定性-定量相结合方法研究得出的剩余油分布,能够客观地反映裂缝及基质系统对流体流动规律的影响,有力地指导了研究区下一步调整措施的实施.【期刊名称】《物探化探计算技术》【年(卷),期】2016(038)001【总页数】8页(P131-138)【关键词】潜山油藏;基质系统;裂缝系统;地质建模;数值模拟;剩余油分布【作者】聂玲玲;张占女;童凯军;房娜【作者单位】中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452【正文语种】中文【中图分类】TE122.2目前,我国在冀中、辽河、济阳、黄骅坳陷及渤海海域等地区先后发现了近百个潜山油气藏,其中大部分已投入开发。
潜山油气藏将成为新世纪我国油气勘探开发的主要目的层。
对于变质岩潜山油藏而言,由于变质岩储层中裂缝分布的强烈非均质性,往往使得该类油藏的开发难度极大,对于海上油田开发尤为如此。
裂缝性低渗透油藏流—固耦合理论与数值模拟
隙很 小 ,储 层 有 效 压 力升 高 ,容 易造 成 渗 透 率 的 降低 【.同 时, 有 效 压 力 的改 变 也 可 能 导 致 裂 4 】 缝 的开 启 或 闭合 , 导 致 渗 透 率 的 改变 _. 裂 缝 性 低 渗 油 藏 的 流 .固耦 合 渗 流 理 论 进行 研 究很 5 对 】
维普资讯
第 3 卷 第 5 期 4
20 年 02 9 月
力
学 学 报
V0 .3 .No 1 4 .5
ACTA ECH AN I M CA I I S N CA
裂缝 性低 渗 透油 藏流 -固耦 合理 论 与数 值模 拟 ,
刘 建 军
2 0)0 - 2收 到 第 一 稿 , 2 0 - 5 1 0 {- 8 1 - 0 2 0 — 0收 到 修 改 稿
渗 透 率 为 , 假 定 存 在 一 个 等 效 的渗 透 率 ,使 得在 同样 的 压 力梯 度 的作 用 下 ,传 导 相 同 的流 量 .
) 6 ,
() 1
有必要.
低 渗 透 油 藏 中 的裂 缝 具 有 不 连 续 、不 均 匀 、 向异 性 的特 点 ,双 重介 质 模 型 很 难 适 应 裂缝 性 各
低 渗 透 储 层 的特 点 .本 文根 据 裂 缝 性 低 渗 透 油 藏 的储 层 特 点,建 立 起 既 反 映裂 缝 对 油藏 渗 流 的
( 武汉工业学院土木工程系,武汉 4 0 2 ; 国科学 院武汉岩土力学研究所,武汉 303 中 407) 30 1
张盛 宗
刘先贵
胡 雅 初
( 中国科学 院渗流流体 力学研究所,廊坊 0 5 0 ) 6 0 7
摘 要 根据 裂缝性 低 渗 油藏 的储层特 征,建立 适合 裂缝 性砂 岩油 藏渗 流 的等效 连续 介质模 型 .
采用数值模拟优化裂缝性油藏开发技术
t i o n,a l t e r n a t i v e a r r a n g e me n t o f o i l a n d wa t e r we l l a n d wa t e r a r r a n g e me n t a l o n g c r a c k d i r e c t i o n c a n
I SSN 1 0O 8— 9446 承源自德 石油高 等
专 科
学
校
学 报
第 1 5卷 第 1期 ,2 0 1 3年 2月
Vo 1 . 1 5, No . 1, Fe b.2 01 3
而
J o u r n a l o f Ch e ng d e Pe t r o l e u m Co l l e g e
H e b e i , C h i n a ; 3 .O n s h o r e Wo r k A r e a , J i d o n g O i l i f e l d C o m p a n y , T a n g s h a n 0 6 3 0 0 0 , H e b e i , C h i n a )
Abs t r a c t : Th i s t e x t a i ms a t t h e r e s e a r c h o f t h e p r o c e s s o f c r a c k r e s e r v o i r s d e v e l o p me n t . Nu me r i c a 1
裂缝性油藏多尺度有限元数值模拟方法研究
关键 词 :裂缝性油藏 ; 等效介质 ; 多尺度 ; 有限元 ; 数值模 拟
网络 出版 地址 : t / ht / p: www.n i e/c / eal 11 8TE.0 1 9 40 1 .0 .t l c k . t msd ti 5 .71 . 2 1 0 2 .0 90 2hm n k /
双重 介质 模 型和 近年 出现 的离散 裂缝 网络模 型都 有
开 ii Mutcl Fnt i e e
E e n to , F M ) 之 后 , 一 钊 , e de l me t h d Ms E , Me 侯 F n iv
藏 , 服 了有 限差 分 法 网格 效应 严 重 、 限体 积 法 克 有
有高非均质性 的裂缝性油藏中饱和度场 、 压力场等
分 布特 征 的基 函数 。
1等效介质模型
等效 介 质 模 型最 早 由 Mi alSo g和 Ji m c e, en h aa r K m t等人【 提出 , aa h 5 ] 渗透率是描述储层流体流动特
规则网格 的网格趋 向性问题 , 最后用有 限单元法求 解模型 , 提高了计算精度。 经 过 几 十 年 的发 展 , 现 了多 种 数 值解 法 。这 出
些 方 法 的 主 要 区别 在 于 对 控 制 方 程 的 离 散 方 式 。
根 据 离 散 的 原 理 不 同 , 体 上 可 分 为有 限 差 分 法 、 大 有 限 体 积 法 和有 限 单 元 法 。 有 限 单 元 法 因适 用 于 复杂 边 界 、 阶微 分 方 程 和 网格 取 向性 弱 、 算 精 高 计 度 较 高 的 特 点 , 用 于 非 均 质 性 很 强 的 裂 缝 性 油 适
低渗透裂缝性油藏渗吸数值模拟研究
要 大得 多
。此 类 油 藏进 行 注 水 开 发 时 , 注 入 水
先沿 裂缝 推进 , 同时进 入 裂缝 的水 由于 毛管 力 作 用 被 吸入 岩块 , 并 从其 中置换 出油 , 渗 吸可 以表示 为 :
q: ( P ~G 。一P , ) ( 1 )
窜、 水淹严重 , 仍然有大量 的剩余 油富集在基质岩
⑥ 2 0 1 3 S c i . T e c h . E n g r g .
低渗透 裂缝性油藏渗吸数值模拟研究
王希 刚 宋学峰 姜 宝益 蔡喜 东 刘 刚
( 中国石化胜利油 田测井公司 ,东营 2 5 7 0 9 6; 中国地质大学能源学院 , 北京 1 0 2 2 3 5; 吐哈油田勘探开发研究院。 ,哈密 8 3 9 0 0 9 ; 延长石油集团研究院 ,西安 7 1 0 0 0 0 )
中压 力 大 小 1 0 ~M P a ;G 。为 启 动 压 力 梯 度 大 小
国家 自然科学基金 ( 1 0 8 0 2 0 7 9 ) 、 松辽盆地 C O 驱油与
埋存技术示范工程( 2 0 1 1 Z X 0 5 0 5 4 ) 、 胜利油 田特高含 水期提高采收率技 术( 2 0 1 1 Z X 0 5 0 1 1 ) 、 中石油创新
中国石 油大学 ( 华东) 硕士研究 生 , 研究方 向: 油气 田开发及测 井解
释。E - ma i l : c o v e r _ s t a r @1 6 3 . 1 2 o e。 r
7期
王希刚 , 等: 低渗透裂缝性油藏渗 吸数值模 拟研究
第 1 3 卷
第 7期
2 0 1 3年 3月
科
学
技
《2024年裂缝性特低渗透油藏物理模拟实验方法及其应用》范文
《裂缝性特低滲透油藏物理模拟实验方法及其应用》篇一裂缝性特低渗透油藏物理模拟实验方法及其应用一、引言随着全球能源需求的不断增长,特低渗透油藏的开发利用逐渐成为石油工业的焦点。
其中,裂缝性特低渗透油藏因其独特的储层结构和渗流特性,对开发技术和方法提出了更高的要求。
物理模拟实验作为研究此类油藏的有效手段,能够为实际生产提供有力的技术支持。
本文将介绍裂缝性特低渗透油藏物理模拟实验的方法,并探讨其在实践中的应用。
二、实验原理物理模拟实验以实际地质条件为基础,通过对油藏储层结构和流体的特性进行简化与再现,对油气开采过程中的各种现象进行观测和分析。
其核心思想是通过物理模拟方法模拟储层内部的多尺度孔隙结构和复杂的流动过程,揭示特低渗透油藏的渗流规律。
三、实验方法(一)实验设备裂缝性特低渗透油藏物理模拟实验需要使用专门的物理模拟设备,包括模拟储层、流体注入系统、压力测量系统等。
其中,模拟储层应能够模拟实际储层的孔隙结构、裂缝分布等特性。
(二)实验步骤1. 准备实验样品:根据实际储层条件制备相应的实验样品,如模拟岩心等。
2. 建立实验装置:搭建物理模拟设备,设置相关参数,如压力、温度等。
3. 注入流体:通过流体注入系统向模拟储层注入原油或其他流体。
4. 观测记录:通过压力测量系统等设备观测并记录实验过程中的各种数据。
5. 数据分析:对收集到的数据进行处理和分析,得出结论。
四、应用实例以某裂缝性特低渗透油藏为例,采用物理模拟实验方法对储层特性和流体流动规律进行了研究。
首先,通过物理模拟设备建立与实际储层相似的物理模型;然后,向模型中注入原油,观测其渗流过程;最后,通过压力测量等手段收集数据,分析得出该油藏的渗流规律和开发策略。
根据实验结果,优化了开采方案,提高了采收率。
五、结论与展望裂缝性特低渗透油藏物理模拟实验方法为研究此类油藏提供了有效的手段。
通过物理模拟实验,可以更准确地了解储层的特性和流体的流动规律,为实际生产提供有力的技术支持。
强非均质时变性裂缝性油藏数值模拟研究
点 : 类井所 在 区域 以发育大 裂缝 为主 , I 油水井 间存在
优 势渗流通道 ,动态 上反映为 油井高产 且在对 应水井 注水之后很快 水窜 : Ⅱ类井所 在区域裂缝 发育适 中 , 既 增 加 了储层 渗流能力 又不至于 导致水窜 ;Ⅲ类 井所在 区域主要 以发育微 隐裂缝为 主 , 渗透性较 差 。 3类油井
l. a原始 饱和 压力 l. P 。 51 MP , 7 31 M a 4
油藏 裂缝发育 明显 。岩 心观察 和测井 资料表 明全 区均 有 裂缝 分 布 。 岩 心观 察 裂 缝最 长 1 . m,平 均 9 6 O5 以高角度 ( . m, 7 大于 7 。直劈 缝为 主 。裂 缝 系统 发 9) 育为 “ ” 米 字型 , 明显 主方 向 。油 藏 由单 一裂 缝介 质 无 ( 裂缝+ 大 基质 ) 双重介 质 ( 、 中裂缝 + 基质 ) 和单 一孔 隙 介质 ( 微隐裂 缝+ 基质 ) 3种 渗流介 质组成 , 种渗 流介 各 质交错组 合 . 形成 了复杂 的油藏渗 流结构 系统 。 H 3油组 于 18 9 7年 投产 , 至 2 0 截 0 8年 6月 , 有 共 油水 井 14口 。 合含 水 7 . %. 9 综 7 9 采油 速 度 04 %, 0 .3 采 出程 度 1.8 由于裂缝 的普遍存在 ,8 %的井 层 固 3 %。 9 5. 2 井质量 中一差 , 施效果 不佳 。渗 流介质 的差异 , 措 导致 产 吸剖面极不平 衡 . 油井 初期产能 差异大 。
第 1 第 3期 7卷
丁 祖 鹏 . : 非 均 质时 变 性 裂 缝性 油 藏 数 值模 拟 研 究 等 强
1 油 藏 概 况
火烧 山油 田构造 上位于 帐北隆起 带北端 的沙 帐凸 起 上 。 油 组为近南 北 向的背斜构造 , H3 属小型河 流一 三 角洲沉积 ,平面及纵 向上相 变较快 ,储 层非 均质程 度 高, 物性 极差 。油藏 含油 面积 2 . k 原始地 层压 力 75 m ,
重复压裂裂缝转向时油藏数值模拟研究
究了不同储集层渗透率下 , 复压裂的裂缝穿透率 重 及导流能力等对采油动态 的影响 , 取得了规律性的 认识 , 从而为重复压裂的选井选层 、 优化设计及评估
力, 但对注采井网注 入水 的驱替体积及地层中孔隙
压力分布形式的影 响是有限的; 二是对进入 中高含 水 开发期 的油 田来 说 , 由于地 层 的非均 质性 , 力 压 水 裂对注入水具有引效作用 , 常规增大施工规模有可 能导致重复压裂后施工井 的含水率急剧上升 。为 此, 许多油田开展了重复压裂垂直裂缝转 向技术的
维普资讯
第2 8卷 第 6 采 工 艺
O L DRI L NG & P DUC l E I L I R0 T 0N T CHN0 OCY L
V0 . 8 No 6 12 . De . 2 0 c 06
3 大 庆 油 田井 下 作 业 分 公 司 , . 黑龙 江 大庆 130 6 00)
124 ; 0 29
摘要 : 裂缝转 向的 实现及选 井、 选层、 优化设 计等 的数 值模拟 和机理是 转向 重复压 裂需进 一 步研 究解 决的 问 题, 为此 , 用黑油模 型, 究 了在反九点注采井 网中, 采 研 不同储集层渗透率 下, 转向重复压 裂的裂缝 穿透 率和导流能 力等对采油动态的影响。研 究表明 , 不论是渗透率 高的地 层还是 渗透率低 的地层 , 不利 裂缝 方位 的边 井最适合 实 施 转向重复压裂且需要 比常规 重复压裂更大的缝 长 , 而有利裂缝 方位的边井和 角井 只需要 与常规 重复压裂相 当的 缝长 ; 同时, 转向重复压裂需要 比常规重复压裂更 高的裂缝导流能力。 关键词 : 重复压裂 ;裂缝转向 ; 油藏数值模拟
文 章 编 号 :00— 3 3 20 )6— 0 5— 3 10 7 9 (0 6 0 0 6 0
裂缝各向异性油藏孔隙度和渗透率计算方法
; 同时有如下关系 : ( 3)
[ 16 ]
k i = kf i + k b , i = Ⅰ, Ⅱ, Ⅲ. 采用随机裂缝模型 关系 : φ f = 0 . 029 6 kf / b .
2
, 则裂缝孔隙度 φ f 与方
向平均裂缝渗透率 kf 、 平均裂缝宽度 b 之间有如下
( 4)
3 孔隙度与渗透率的计算
2 基础数据处理
根据岩心分析 、 测井解释及薄片分析等资料统 计得到裂缝宽度分布及裂缝平均宽度。 裂缝密度 L fd 指的是沿垂直于裂缝方向单位长 度内裂缝的条数 。 以单井单层段为目标 ,将裂缝测井 的解释结果进行统计分析 ,结果见表 1 , 由此计算该 井段上的裂缝密度 。
表 1 裂缝测井解释结果
作者简介 : 张吉昌 (1969 - ) ,男 ( 汉族) ,辽宁沈阳人 ,高级工程师 ,中国矿业大学博士研究生 ,从事油藏地质与开发研究工作 。
第 30 卷 第 5 期 张吉昌 ,等 : 裂缝各向异性油藏孔隙度和渗透率计算方法
・6 3 ・
分裂缝与基质的贡献 , 难以提供油藏的微观结构特 征 。文献 [ 13215 ] 提出了裂缝性油藏静动态综合建 模的思路 ,但大都局限于定性或经验方法 ,且没有考 虑裂缝渗透率的各向异性特点 。笔者将静动态研究 相融合 ,尝试建立完善而实用的裂缝性油藏孔隙度 和渗透率的定量计算方法 。
…
152 155 160
油藏总各向异性渗透率张量 K 由裂缝渗透率 张量 Kf 和基质渗透率 k b 组成 。 记 I 为二阶单位张 量 , 则有 K = Kf + k b I .
( 2)
考虑井筒方向与裂缝间夹角的影响 , 确定裂缝 密度的公式为
m
一种裂缝性油藏岩石物理模拟方法的建立
第20卷第2期山东科技大学学报(自然科学版)Vol.20 2 2001年6月Journal of Shandong University of Science and Technology(Natural Sc ience)Jun.2001文章编号:1000-2308(2001)02-0084-03一种裂缝性油藏岩石物理模拟方法的建立徐 刚,李世杰,尚 明,贾 刚(胜利石油管理局,山东东营257017)摘 要:阐述了一种获得符合裂缝性油藏地下特征岩块的人工造缝技术。
通过模拟该类型油藏岩石成缝机理,利用拉伸和单、三轴压缩试验,监测体应变或渗透率变化,来控制岩心上生成裂缝的方向、大致缝宽和数量。
研究该项技术,对于推动低渗透裂缝岩心室内分析技术的发展以及该类型油藏的开采具有重要的意义。
关键词:裂缝性油气藏;岩心;岩石力学;测试;模拟试验中图分类号:T E321 文献标识码:ADevelopment of a Physical S imulation Methodof Factured Reservoir-type RockXU Gang,LI Sh-i jie,SHANG Ming,JIA Gang(Sheng li Petroleum Administrati on,Dong ying,Shandong257017,China)Abstract:A man-made fracture technique accorded w ith the feature of fractured reservoir-type rock is put forth in the paper.Throug h the fracturing mechanism simulation,the tensile testing and uniaxially or triax-i ally-compressed testing,body strain and permeability variation are monitored to control fracture direction, w idth and quantity.The technique is useful to the development of lab analysis technique of low permeability fractured cores and reservoir ex ploitation.Key words:fractured reservo ir;core;rock mechanics;testing;simulation test致密低渗透裂缝性储层在我国占相当突出的比重。
《2024年裂缝性特低渗透油藏物理模拟实验方法及其应用》范文
《裂缝性特低滲透油藏物理模拟实验方法及其应用》篇一裂缝性特低渗透油藏物理模拟实验方法及其应用一、引言在油气资源勘探与开发领域,裂缝性特低渗透油藏因其特殊的储层结构而成为重要的开采对象。
本文针对这一特殊油藏,提出了物理模拟实验方法,通过精确的物理模型来模拟和解释地下油气储层的实际情况,以期为油气开发提供有效的技术支撑。
二、实验原理与目的物理模拟实验是利用物理模型来模拟地下油藏的储层特征和流体流动规律的一种方法。
对于裂缝性特低渗透油藏,其储层中裂缝发育,渗透率低,流体流动复杂,因此需要采用物理模拟实验来研究其流动规律和开发策略。
本实验的目的是通过建立物理模型,研究裂缝性特低渗透油藏的流体流动特性,为油田开发提供理论依据和技术支持。
三、实验方法与步骤1. 实验材料与设备- 砂箱:用于构建物理模型。
- 沙子:用于模拟地下岩石结构。
- 岩芯或石粉:用于配制砂箱中岩石结构的介质。
- 测量设备:包括压力计、流量计等。
- 实验用油:用于模拟原油。
2. 实验步骤- 构建物理模型:根据地质资料和实际需求,在砂箱中构建裂缝性特低渗透油藏的物理模型。
- 填充介质:将沙子、岩芯或石粉按照一定比例混合后填充到砂箱中,以模拟地下岩石结构。
- 注入流体:通过注入管向模型中注入实验用油,模拟原油在地下的流动过程。
- 数据采集:在实验过程中,使用压力计、流量计等设备采集数据。
- 分析数据:根据采集的数据分析流体在物理模型中的流动规律和储层特性。
四、实验结果分析通过对实验数据的分析,可以得出以下结论:1. 裂缝性特低渗透油藏中流体的流动受裂缝发育程度的影响较大,裂缝发育程度越高,流体流动性越好。
2. 在一定压力下,低渗透油藏的采收率与注水速率、注水压力等因素密切相关。
合理的注水策略可以显著提高采收率。
3. 通过物理模拟实验可以较好地预测实际油田的开发效果,为油田开发提供理论依据和技术支持。
五、应用实例以某油田为例,通过物理模拟实验研究了其裂缝性特低渗透油藏的流体流动特性。
离散裂缝性油藏数值模拟方法
对离 散裂 缝
网络模 型方 法进行 初步研究 , 了准确地进 行裂缝性 油藏 数值模拟 , 者提 出改 进的离 散裂缝 网络模型 和 为 笔
1 离散 裂缝 网络模 型
离 散 裂 缝 网 络 ( i rt F atr t r , 称 D s ee rcueNewok 简 c D N) 型 对 裂 缝 进 行 显 式 处 理 见 图 1 F 模 叫 .采 用 复 合 网 格 的离 散 化 方 法 , 对 基 岩 采 用 三 角 形 单 元 进 行 离 即 散 , 裂 缝 采 用 线 单 元 进 行 离 散 ; 对 整 个 区 域 进 行 积 对 在
2 数 学 模 型
在二维 平 面 内采 用离 散裂 缝 网络模 型进 行 油水 两相 流 数值 模 拟.假设 条 件 : 岩 中 的流 体 和岩 石微 基 可压缩 ; 虑毛 细管力 的作 用 ; 考 油井 以定 产量 生产 ; 藏为封 闭外 边界 . 油
2 1 基 岩 系 统 . 根 据 质 量 守 恒 定 律 、 西 定 律 等 得 到 基 岩 系 统 的 数 学 模 型 为 达
・
( 。 p ) q 一 q* 一 ≯ V 。+ 。 o v
,
() 1
・
(V q一 一 鲁, ) q 声 p+
双重 介质模 型对流体 的窜流及 重力 项等 问题进 行研 究 , 们 不 断进行 更 加 深入 的 研究L ] 人 5 .由 于 双 重 介
质模 型本身假 设条件 的限制 , 以对裂 缝发育 非均质性 强 、 难 连续 性较 差 的油 藏 , 虽互 不 连接 但控 制 油藏 或 中流 体 流动方 向和规 模 的大 裂缝 进行 模 拟.利用 离 散 的裂缝 网 络系 统分 别模 拟 基 质岩块 系 统 和裂缝 系 统, 能更 准确地描 述裂缝性 油藏 的非均质性 .D rh wi I eSE、 r ~F r 等 es o t B、 e Kai z mi adM
油藏工程数值模拟设计方案
油藏工程数值模拟设计方案引言数值模拟是油藏工程的重要工具,它可以帮助工程师分析油藏中的流体行为和岩石性质,预测油藏的产量和储量,优化开发方案,评估油藏的经济性。
因此,设计一个合适的油藏工程数值模拟方案是非常重要的。
本文将介绍一个典型的油藏工程数值模拟设计方案,包括建立模型、选取数值方法、进行参数敏感性分析和历史匹配等内容,以期为油藏工程数值模拟提供一些指导。
1. 建立模型在进行油藏工程数值模拟前,首先需要建立一个合适的油藏模型。
这个模型一般基于油藏的地质信息和已有的采收数据,通过数值方法来模拟油藏内的地层结构、流体流动和物理化学过程。
在建立模型时,需要考虑以下因素:1.1 地质特征。
油藏地质特征包括油藏的岩性、孔隙度、渗透率、地层厚度、天然裂缝等。
这些特征会对油藏的流体运移和储集产生重要影响。
1.2 流体性质。
油藏中的流体主要包括原油、天然气和水。
这些流体的密度、粘度、渗透系数等性质将决定油藏中的流体行为。
1.3 边界条件。
油藏模型需要考虑油藏的边界条件,包括地表流体产量、注水或注气条件等。
建立模型一般使用商业软件,如Eclipse、CMG、Petrel等。
在建立模型时,需要根据地质数据进行相应的地质建模,创建地层模型、流体模型和边界模型,以及预测模型的参数。
在建立模型的同时,需要根据已有的实验数据对模型的参数进行校正和调整,以保证模型的准确性。
2. 选取数值方法选取合适的数值方法是保证模拟结果准确性的关键。
一般常用的数值方法包括有限差分法、有限元法和有限体积法等。
在进行数值模拟时,需要考虑以下因素:2.1 离散网格。
在进行数值模拟时,需要将地层空间离散为网格,这些网格用来计算流体的运移和岩石的变形等。
通常情况下,需要考虑网格大小、网格形状、网格数量等因素。
2.2 数值格式。
不同的数值格式会对模拟结果产生较大的影响。
对于模拟流体流动,一般采用隐式或半隐式计算格式;对于岩石变形,一般采用有限元格式。
油藏数值模拟方法.pdf
第一章油藏数值模拟方法分析1.1油藏数值模拟1.1.1油藏数值模拟简述油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。
其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。
其基础理论是基于达西渗流定律。
油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。
基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。
其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。
充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。
这组流动方程组由运动方程、状态方程和连续方程所组成。
油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。
具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。
油藏数值模拟技术从50 年代的提出到90 年代间历经40 年的发展,日益成熟。
现在进入另外一个发展周期。
近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。
在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。
油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。
图1 油藏数值模拟流程图1.1.2油藏数值模拟的类型油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。
(完整word版)油藏数值模拟方法
第一章油藏数值模拟方法分析1.1油藏数值模拟1.1。
1油藏数值模拟简述油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。
其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。
其基础理论是基于达西渗流定律。
油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。
基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合.其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。
充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。
这组流动方程组由运动方程、状态方程和连续方程所组成。
油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程.具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题.油藏数值模拟技术从 50 年代的提出到 90 年代间历经 40 年的发展,日益成熟.现在进入另外一个发展周期。
近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。
在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。
油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。
图1 油藏数值模拟流程图1。
1.2油藏数值模拟的类型油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。
裂缝性砂砾岩油藏数值模拟
地层 微 电阻率 扫描 成像 ( 以下 简 称 F MI )测 井 研 究 的结 果 是 区域 内裂缝 延 伸 方 向为平 行 于 主 断层
及 区域最 大 主应力 方 向 ,在 断层 附近约 1 0 0 m 范 围 内受 断层影 响 ,裂缝 延伸 方 向发 生转 变 ,垂 直 于断层
上升 较快 ;C 5井离 边水 近 ,导 致其 含水 上升 ;E 8井靠 近断层 ,裂缝 发 育 ,含 水上 升较 快 。
[ 收稿日期]2 0 1 2 — 0 4 — 1 3 [ 作者简介]季 迎春 ( 1 9 7 8 ~ ) ,男 ,2 0 0 5 年中国石油大学 ( 华东)毕业 ,硕士 ,工程 岩稠 油油藏 开 发过程 中 , 由于基 质渗 透率 小 ,地下 原油黏 度大 ,原 油流动 性 差 ,裂 缝不 发育 区域 油井 产能低 ,因此天 然裂缝 是其 开发 过程 中需考 虑 的重要 因素 。因 为一方 面裂缝 的 存在 改善 了砂砾 岩油 藏 的渗流条 件 ;另一 方 面边底 水沿开 启裂 缝水 窜 ,又会造 成油 井过早 水淹 ] 。 实 际储层 中 的天然裂 缝分 布极 为复杂 ,需 确定 裂缝 的发 育特征 、渗 流能力 和边底 水对 油藏 整体 开发 效果 的影 响_ 2 ] 。油藏数 值模 拟通 过历 史拟 合合理 地调 整模 型 中一些不 确定 的油 藏静态 、动 态参 数 ,达到 两 者 的匹配统 一 。通过油 藏数 值模 拟历 史拟合 ,发 现 和修正 不合理 的油 藏描述 数据 ,使 油藏模 型 更加 完 善 ,更加 接近 油藏 地下实 际情 况 。油藏数 值模 拟是 验证 地质研 究成 果 的有效方 法之 一[ 。 ] 。
藏 开 发 效 果 。在 地 质 研 究 定 性 描 述 的基 础 上 ,建 立 双 重 介 质 模 型 ,通 过 调 整 裂 缝 和 基 质 的 属 性 参 数 , 研 究裂 缝 介 质 的渗 透 翠 大 小 和 裂 缝 延 伸 方 向 的 分 布 规 律 。 结 果 表 明 ,在 该 类 油 藏 中 裂 缝 渗 透 率 可 达 基 质 渗 透率 的 3 0 0倍 左 右 ;裂 缝 发 育 方 向受 断 层 影 响 , 在 断 层 附近 1 0 0 m 左 右 发 生转 变 ,根 据 研 究 结果 指 导 油 田
裂缝性油藏渗吸模型参数确定方法及应用
尺 原油 采收率 , 数 ; 一 小
尺 一 原油 最终 采收 率 , 小数 。 Aoosy 型 对 于 垂 直 放 置 的底 部 注 水 的岩 rnfk 模
芯和 小 直 径 的 短 岩 芯 样 品 有 很 好 的适 应 性。 由毛管力主导的渗吸排油作用是一种重要的开采机 B b dgi aaal等人 在研 究过程 中发现 A oosy模 型具 rnf k 理_ J 1 。这是 因 为注水 开发 裂缝 油 藏 的基 质 岩块 被 有 一定 的局 限性 , 提出 了一种 扩展 的模 型 包 围在 充满 水 的裂 缝 中 , 质 岩块 中 的微 孔 隙在 毛 基 管 力作用 下把 裂缝 中的水 吸人到 基 质 中 , 同时 , 基质 岩块 中的油 被 吸入 的水 排 驱到 裂缝 里 , 通 过 裂缝 再
间的 函量 ,0t 一 1 。
由 式 知lI 上可 ,n n( 【
) l的 直 关 】n 呈 线 与t
其 中 , 一 经 验 常数 , 量纲 ; A 无
} 收稿 日期 : 0 5—1 3 20 2— 0
系, 通过油藏实际生产数据采用最小二乘法线性 回
文 章 编 号 : 0 0— 64 2 0 ) 1 0 8 8 10 2 3 (0 7 0 — 0 5— 7
裂缝 性 油 藏 渗吸 模 型参 数 确 定 方 法 及 应 用
刘 浪 郭 肖 , 彩 , 张
( . 油气藏地质及开发工程” 1“ 国家重点实验室 ・ 西南石油 大学 , 四川 成都 6 0 0 ; .中国石油西南油气 田分公 司勘探开发研究院) 15 0 2
维普资讯
第2 9卷 第 1 期 20 0 7年 2月
西 南 石 油 大 学 学 报
Ju a fS uh s e oe m iest o r lo otwetP t lu Unv ri n r y
低渗透裂缝性油田井网优化数值模拟研究——以两井油田为例
2 三维 非 均 质地 质 模 型
考 虑到 数值 模拟 时 间的 限制 , 根据 两井 油 田平 均 储 集 层参数 和 流体 参数 , 建立 了两井 油 田裂缝概 念 地 质模 型 , 用 SMB S I 模 软件 , 拟 预测 两 井 油 利 I E TI数 模 田不 同井 网形式 和井排距 配 置 开发效 果 , 过 开发 技 通
摘
要 : 渗 透 油 田开 发 与裂 缝 密 切相 关 。 低 固此 井网 韶署 是 否 合理 是 低渗 透 油 粤开 虚 成 败 的 关键 利 用 数值 模 拟 手 橙
对 吉 林 两 井超 怔 渗透 汩 田让 l 试 验 童裂 缝 性 超低 渗 透 油 藏 的 菱形 井 同和 矩 形 井 眄进 行 了 井 网模 式 和 #排 距 优 化 l 究 。 一研 究成 果 为 我 国超低 渗 透 油 田呆用 奇 理 的 网进牙 有 鼓 开 发提 供 了惜 鐾 这 关键 词 : 侉 遥 油 气蘸 ; 缝 ; 网; 值模 拭 摄 裂 井 教 中 国分 类 号 : E 1 T 39 文献标识码: A
术 指 标 对 井 网 形 式 、 排 距 进 行 优 化 研 究 利 用 优 化 井
约 10m, 0 扶余 油层顶 面埋 藏 深度 1 0 ~ 0 两 井 01 0 2 9
油 田扶余油藏 含油面积 18k 1 m ,地质储 量43 0 1 4, 9  ̄ 0t 平 均有效 厚度9 平 均丰度3 . l tk 属于低 丰 m, 2 7 x< /m , 2 Y 度 油藏 。 两井 油 田为三角 洲分流平 原和前缘相沉 积 油 层 孔 隙度一 般 为3 1% , 均 1 ./ 渗 透 率 一般 为 %一 4 平 0  ̄ 6o
间 距 主 要 为 2 - 0t , 度 一 般 小 于 10c 主 要 在 8 4 i 高 n 2 m,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
裂缝性油藏数值模拟方法姚军(中国石油大学山东东营 257061)摘要:目前对天然裂缝性油藏的数值模拟可以大致分为连续性模型和离散性模型两大类;连续性模型又可以分为双重介质模型和单介质模型,双重介质模型主要是以Barrenblatt 和Warren-Root在20世纪60年代提出的双重孔隙/双重渗透模型为基础,在这类模型中认为油藏中每一点都存在有基岩和裂缝两种介质,基岩被相互平行排列的裂缝分割称为单个的岩块,每种介质存在独立的水动力场,通过两种介质间的窜流的将其联系起来;而对于单介质模型,则是通过一定的方法将裂缝的渗透率和基岩的渗透率进行综合的考虑,得出整个油田的有效渗透率,该有效渗透率考虑了裂缝的密度、方位等的影响,然后将该有效渗透率输入到普通的单一介质模拟器中来对裂缝性油藏进行模拟;由于双重介质模型不能够对不连续且控制着流体流动的大裂缝进行准确的模拟等原因,离散性模型在近段时间逐渐发展起来,而其又可以分为离散裂缝网络模型和离散管网模型;在离散裂缝网络模型中,对地质上描述出来的每个裂缝都进行了离散的显式的表示,同时根据局部裂缝的形状决定基岩的几何形状,由于地质上描述的裂缝数目一般较多,相应的在数值模拟中需要的离散点数目也就十分巨大,对模拟造成了一定的困难,所以目前很多的专家和学者又对该方法进行了进一步的改进,有许多简化的方法存在;离散管网模型则是先对所要模拟的区域进行了网格的划分,进而采用管子连接两个网格块,相应的两个网格块之间的传导率也采用管子的传导率来代替,这种方法的特点是数学上比较简单,灵活性较强,同时由于管子只对其连接的两个网格有影响,所以改变管子的传导率只会影响一个方向的传导性,而不会像常规的模拟器那样要同时影响两边的传导性,但是该方法目前研究较少。
0 前言随着世界碳酸盐岩油气田的大规模开发,系统深入研究这类油气田的渗流模式及其在开发中的应用已成为重要课题。
地质学家通过岩芯分析,确认碳酸盐岩(灰岩、白云岩)具有明显可见的裂缝、孔洞,含有密集的树枝状构造的粗裂缝以及连接的孔洞和孔隙。
这类特殊的储集层结构不仅造成了井的高产、不稳定、跃变等开采特征,而且也造成各异的油气井压力降或压力恢复曲线特征。
碳酸盐岩油藏在孔隙结构和渗流机理上同砂岩油藏相比都存在很大的差别,由于天然裂缝的发育十分的不规则,裂缝的密度、长度、方位等参数都会因沉积过程以及沉积后应力的变化而变得非均质性极强,裂缝的发育程度和连接性也因此而各异,同时由于基岩的存在并向裂缝和/或井筒供液,造成了相同位置基岩和裂缝压力和饱和度也存在着很大的差异,相应也就导致了渗吸、渗流、重力驱替以及再渗透等的发生,使得两种介质之间的窜流机理异常的复杂;所以目前对于天然裂缝性油藏进行模拟存在的最大的问题就是如何以最小的费用真实的对裂缝进行描述和对介质间窜流的正确理解和准确的模拟。
1 连续性模型数值模拟1.1 双重介质模型对于天然裂缝性油藏的数值模拟问题,1976年Kazemi开发了一套可以用于对天然裂缝性油藏进行单相或两相流动进行模拟的三维数值模拟器;该模型是从Warren-Root的单相模型扩展到两相的,模拟器中考虑了因此而引起的流体的相对渗透率、重力作用、渗吸作用以及油藏性质的变化;可以对均匀分布的或者不均匀分布的甚至是没有裂缝的情况进行模拟,并可以进行裂缝性油藏中油水驱替过程的模拟和非稳态测试的计算。
在该模型中,Kazemi将裂缝作为连续介质,而将基岩作为被裂缝切割的不连续的岩块,同时裂缝也就成为了基岩的边界;流动方程是通过有限差分的方法进行差分的,一个典型的差分网格可以包括一个或者几个基岩岩块,在这种情况下,所有在该差分网格中的基岩岩块都具有相同的压力和饱和度;对单个基岩岩块内的重力分异作用没有进行考虑,但对一个计算网格到另一个计算网格的整体的重力分异进行了计算;为了对非均质性进行考虑,对局部的孔隙度和渗透率进行重新的定义,可以对局部裂缝或非裂缝的情况进行模拟,在对非裂缝部分进行处理的过程中,Kazemi给出的方法是这样的,即先把非裂缝区域的各种基岩介质的性质都设置为零,然后再将裂缝的性质设置为基岩的性质。
Kazemi 的天然裂缝性油藏数值模拟的研究打开了这方面的先河,随后有很多的专家对这方面的问题进行了研究。
几乎在和Kazemi 同一时期,Rossen 提出了一个方法对裂缝性油藏进行模拟,不像其他的常规模拟其只对裂缝进行模拟,在Rossen 的方法中,将基岩岩块作为了一种源或汇来进行处理,该源或汇项是基岩岩块和流体性质的函数,同时像Kazemi 方法中一样,其将裂缝中的压力和饱和度作为了基岩的边界条件,这些源/汇项方程或者通过历史拟合模拟、或者通过单独的实验室实验或者通过单基岩岩块的模拟得出。
该方法在裂缝性油藏模拟中的应用相对于目前存在的模拟方法存在着很多的优点,首先第一点是在对裂缝进行模的压力和饱和度的计算过程中,源/汇项都是采用半隐式进行处理的,这就避免了在随后的裂缝-基岩求解的过程中所固有的不稳定的问题,同时也将基岩和裂缝之间的动态联系的更加紧密了;为了对一个大的模拟网格中流体的接触面的运动进行模拟和对油气和油水接触面的后退进行处理,文章中给出了一些有针对性的方法。
在Rossen 的方法中,其将出入基岩中的流体的交换的处理和常规模拟器中对注入和生产的处理类似;流体向裂缝的流动由“源”来代表,而由裂缝向基岩的流动的流动则用“汇”来代表。
同时在该方法中,基岩被分为了两类,一类是具有低孔隙度和高含水饱和度的称之为“湿岩块”,这类基岩为油藏提供压力支持,但只能和裂缝交换水;第二类是高孔隙度和具有较高含油率的基岩,称之为“有效基岩”,其可以通过重力驱动、毛细管压力效应和流体膨胀的作用等和裂缝之间进行原油的窜流;每一个计算网格都包括一个“湿岩块”和一个“有效岩块”,可以代表流入和流出这些基岩的“源”和“汇”。
“源”或“汇”项的符号和大小取决于基岩岩块的类型、基岩中流体的饱和度和周围裂缝中流体的环境。
例如对于“有效基岩”处于裂缝中为原油的环境下,其窜流量可以用简单的物质平衡方程进行计算:1111++++-=n on m n om n m n o n om n o B PV S PV B S Q (1)由于未知数是1+n o P ,所以可以采用半隐式的方法对上式进行处理:()n o n o o om n om n om P P P Q Q Q -∂∂+=++11 (2) (1)式表示的是基岩中排出的油量,(2)式近似表示了进入裂缝中的油量,二者并不相等,为了保持物质平衡,可采用下式进行校正:()()n o n o o n om n o n o o n om nom n om P P P Q P P P Q Q Q -∂∂+-∂∂-=++-+1111(3) 当“有效岩块”处于水或天然气的环境下,不但存在着流体的膨胀,同时还存在着渗吸和重力驱替等作用,所以在各种不同的情况下要分别进行考虑;同时在对水和天然气环境的处理过程中采用了采收率曲线,该曲线将基岩岩块在一定的压力水平下水或天然气的饱和度和无因次时间关联了起来,该采收率曲线可以通过实验室实验或者数值模拟的方法获得。
随后在1983年,Thomas 等人建立了一个可以用于对裂缝性油藏进行三维、油气水三相的流动进行模拟的模型,采用了双重介质系统,即流体的流动主要发生在裂缝中,同时在局部存在着基岩和裂缝之间流体的交换,基岩和裂缝之间的流体交换函数是由Warren-Root 方法延伸所得到的,但考虑了毛细管压力、重力和粘滞力的影响。
裂缝的流动方程和基岩/裂缝之间的流动方程都对压力、水饱和度、气饱和度和饱和压力进行了隐式的求解,考虑了毛管力和相对渗透率的滞后效应。
但是其仍然对每一个计算网格中基岩岩块都认为是相同的来处理;但在考虑基岩和裂缝的窜流时,从流体的饱和度的角度对相对渗透率参数进行了修正。
同样是在1983年,A.M.Saidi 认识到了基岩和裂缝之间拟稳态窜流函数的局限性,开发了一个三维三相模拟器,可以对全部或部分发育裂缝的油藏进行研究;当裂缝性油藏中的压力以较大的速度下降或者是由较大的区块所组成时,相对于不稳态方程,拟稳态的计算将会导致较大的误差;同时,当重力驱替和渗吸过程等这些裂缝性油藏中最重要的机理仅用一个“集成参数”来代替时,在对基岩和裂缝之间的窜流量的计算中会出现更大的误差。
由于以上的原因,Saidi 在对裂缝性油藏进行数值模拟的过程中,对基岩网格进行了再次的划分,同时基岩和裂缝之间的窜流也采用了不稳态压力和扩散方程进行了计算;在这种计算方法中,重力驱替也得到了准确的描述。
由于基岩和裂缝之间的窜流函数取决于其相对于裂缝中油气界面和油水界面的位置,所以对每一种可能的情况都进行了推导。
在众多的因素中,基岩的几何形态是对裂缝性油藏的采收率进行评估的一个主要的因素,因此对一个给定油藏其中的基岩岩块尺寸的规模进行估计是十分重要的,或者最少应该知道随着深度的不同基岩的平均尺寸。
在确定了基岩周围流体性质之后,Saidi对基岩和裂缝的压力进行了分别的计算,进而对于基岩处于不同的液体环境中时的窜流量、毛管压力、相对渗透率以及相对渗透率导数等的计算都进行了不同的处理,从而得到了基岩在不同边界条件(裂缝中的压力和流体分布)的窜流量。
以上这些模型都是基于双重介质的天然裂缝性油藏数值模拟模型,大致上可以分为两大类:1、对裂缝系统进行网格划分,通常为一组基岩岩块对应于每一个裂缝网格,用窜流函数来表示由于重力驱替或者其他过程所引起的基岩和裂缝之间的窜流;2、其他方面和上面类似,只是采用拟稳态的概念来描述基岩和裂缝之间的窜流。
1.2 有效渗透率方法关于连续性介质对天然裂缝性油藏的模拟,Michael F.Lough,Seong H.Lee 和Jairam Kamath等人提出了一个计算有效渗透率的新方法,该有效渗透率可以用于常规的数值模拟器;其基础在于其结合了离散裂缝网络所代表的裂缝的真实性和连续性模型所能够提供的对计算的复杂性;最终提出来了一个基于边界元方法的高效的数值计算代码;该代码允许裂缝系统非常的复杂并且连接性较差的情况,同时还包括了基岩中流体流动的贡献;对于流体在基岩中的流动,裂缝系统将其处理为一个面源分布;采用了周期性边界条件来计算单个网格的有限渗透率。
有效渗透率的计算可以简单的用一下几个式子进行表示:-=(4)∇P其中:⎰⎰∇=∇G G dv pdv P⎰⎰=G G dv dv v V文中首先用一个简单的模型对其方法进行了检验,然后将其应用到了一个实际的油藏中,如下几图很好的说明了该方的应用;图1中上图是一个假设的裂缝网络,下图则是采用上述方法计算出来的每个网格的有效渗透率,从图中可以看出,有效渗透率很好的表示了裂缝的密度、方位等的影响;图2~5则是对一个真实油藏的有效渗透率的计算、流动的数值模拟以及模拟结果和裂缝方位等的对比,同样可以看出其有着很好的符合性。