植被指数总结

合集下载

植被指数总结资料

植被指数总结资料

1生物量生物量:指某一时刻单位面积内实存生活的有机物质(干重)北京地区森林植被:北京地区森林植被生物量遥感反演及时空动态格局分析_张慧芳呼伦贝尔草地:基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究_陈鹏飞延庆县森林:基于SPOT5的延庆县森林生物量研究_韩冬花芦苇:基于光谱特征信息的芦苇生物量反演研究_陈爱莲根据实地测量的芦苇反射光谱数据,建立该区域芦苇的光谱数据库,提取芦苇光谱维特征参数;并以光谱维特征为依据选取卫星数据,分析卫星数据与实测芦苇光谱特征的相关性,进而应用光谱角角度匹配!光谱特征拟合!二进制编码等三种光谱匹配技术,研究卫星数据光谱与实测芦苇光谱的匹配度,提取影像的芦苇像元,作为大面积自动估算芦苇生物量的基础"水稻:1.微波遥感水稻种植面积提取_生物量反演与稻田甲烷排放模拟_张远2.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林辽东湾翅碱蓬:辽东湾双台子河口湿地翅碱蓬生物量遥感反演研究_吴涛.cajSAVI和MSAVI与LAI的关系取样框内样方所在经度、纬度及高程、样方内水深、植株高度、盖度等。

同步采集植被冠层光谱叶面积指数。

对样方内植株个体先称干重在称量湿重。

现场光谱测定与处理:使用光谱仪为ISI921VF-256便携式地物光谱辐射计采集现场光谱值。

卫星遥感和TM数据和CCD数据。

小麦:冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf 2 叶绿素玉米:1.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究_王磊.pdf2.基于小波分析的玉米叶绿素a与LAI高光谱反演模型研究_宋开山.pdf3.受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型_王平.pdf4.夏玉米叶片全氮_叶绿素及叶面积指数的光谱响应研究_谭昌伟.pdf5.利用遥感红边参数估算夏玉米农学参数的可行性分析_谭昌伟.caj大豆:1.大豆叶绿素含量高光谱反演模型研究_宋开山.pdf2.大豆叶片水平叶绿素含量的高光谱反射率反演模型研究_陈婉婧.pdf(红边位置与植物叶片的相关性在红边参数中相关性最好,红边斜率主要与lai相关) 3.基于多角度成像数据的大豆冠层叶绿素密度反演_张东彦.pdf 4.基于小波分析的大豆叶绿素a含量高光谱反演模型_宋开山.pdf5.小波分析在大豆叶绿素含量高光谱反演中的应用_宋开山.pdf森林:1.基于Hyperion数据的森林叶绿素含量反演_杨曦光.pdf2.基于PROSPECT_SAIL模型的森林冠层叶绿素含量反演_杨曦光.pdf3.基于叶片光谱的森林叶绿素浓度反演研究_焦全军.pdf4.森林叶片叶绿素含量反演的比较与分析_佃袁勇.caj水稻:1.水稻叶片不同光谱形式反演叶绿素含量的对比分析研究_陈君颖.pdf2.水稻叶片叶绿素含量的光谱反演研究_陈君颖.caj3.水稻叶片叶绿素含量与吸收光谱变量的相关性研究_刘子恒.pdf4.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj5.利用高光谱参数预测水稻氮素状况_色素含量和籽粒蛋白含量的研究_孙雪梅.caj6.水稻高光谱特征及其生物理化参数模拟与博士估测模型研究_唐延林.caj小麦:1.基于ACRM模型不同时期冬小麦LAI和叶绿素反演研究_李宗南.caj2.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf3.基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究_孙焱鑫.pdf4.基于SVR算法的小麦冠层叶绿素含量高光谱反演_梁亮 (1).caj5.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj6.基于高光谱数据的小麦叶绿素含量反演_赵祥.caj7.用多角度光谱信息反演冬小麦叶绿素含量垂直分布_赵春江.pdf8.冬小麦花期生理形态指标与卫星遥感光谱特征的相关性分析_李卫国.pdf丁香:丁香叶片叶绿素含量偏振高光谱数学模型反演研究_韩阳.pdf棉花:基于棉花红边参数的叶绿素密度及叶面积指数的估算_黄春燕.pdf苜蓿:基于因子分析的苜蓿叶片叶绿素高光谱反演研究_肖艳芳.pdf法国梧桐:基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究_姚付启.pdf湿地小叶章:湿地小叶章叶绿素含量的高光谱遥感估算模型_李凤秀.pdf行道树:行道树叶绿素变化的高光谱神经网络模型_刘殿伟.pdf落叶松:用高光谱数据反演健康与病害落叶松_省略__和龙两市落叶松冠层采样测量数据_石韧.pdf毛竹林:毛竹林冠层参数动态变化及高光谱遥感反演研究_陆国富.caj阔叶红松林:阔叶红松林3个主要树种垂直结构上的光合光谱研究_方晓雨.caj3叶面积叶面积指数:(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。

几种常见植被指数

几种常见植被指数

常用的植被指数,土壤指数,水体指数有哪些?植被指数与土壤指数一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。

与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。

植被指数整理介绍

植被指数整理介绍

植被指数介绍目录1. 植被指数概述 (3)2. 植被指数的分类 (3)不考虑影响因子 (3)考虑影响因子 (4)消除土壤因子 (4)消除大气因子 (4)消除综合因子 (5)3. 植被指数的应用 (5)生态 (5)林业 (7)农业 (9)环境 (10)海洋 (11)参考文献 (12)1.植被指数概述植被指数是用不同波段的植被-土壤系统的反射率因子以一定形式组合成的参数,它与植被特征参数间的函数联系比单一波段值更稳定、可靠[1]。

从物理意义上看,植被指数是利用绿色植被的反射光谱特征:在红光波段的吸收和在近红外波段的高反射之间的差异,来达到区分绿色植物与其他地物的目的。

由于植被-土壤系统是一个复杂的非朗伯体系,它的反射率因子受到各种因素的影响,因此,对于任何单一波段反射率,都会因任一个因素的变化而导致巨大变化,但当同时应用两个或多个波段时,就可以部分消除某因素带来的影响,还可以应用植被指数的某种形式最大限度地抑制土壤背景信息,突出植被信息。

植被指数涉及的应用领域各异,用途广泛。

它可用来诊断植被一系列生物物理参数:叶面积指数(LAI)、植被覆盖率、生物量等;又可用来分析植被生长过程:净初级生产力(NPP)和蒸腾等,在应用时要根据不同的实际情况选用。

而且植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度的复杂混合反应,所以植被指数的影响因子很多,具体使用时应适时修正。

2.植被指数的分类基于各种应用目的和应用情况,发展了许多不同的植被指数,这些指数都有各自的优缺点和适用条件,针对不同的应用需求,对影响因子的消除程度要求也不同。

按照是否考虑影响因子将植被指数分成两大类。

不考虑影响因子植被指数最早的发展是为了估算和监测植被覆盖,不考虑任何影响因子,简单地将波段进行线性组合或比值,基于经验方法发展了比值植被指数RVI和针对Landsat?MSS特定遥感图像的土壤亮度指数SBI、绿度植被指数GVI、黄度植被指数YVI。

几种常见植被指数

几种常见植被指数

植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

几种常用植被指数介绍

几种常用植被指数介绍

几种常用植被指数介绍植被指数是通过遥感技术获取的植被信息量化指标,包括植被覆盖度、生长状态、植被类型等信息,广泛应用于土地利用、资源管理、环境监测等领域。

在本文中,将介绍几种常用的植被指数,包括归一化植被指数(NDVI)、广域植被指数(EVI)、归一化差值水体指数(NDWI)、颜色指数(CI)、土地覆盖指数(LCI)等。

1. 归一化植被指数(NDVI)归一化植被指数(Normalized Difference Vegetation Index,NDVI)是最早被广泛应用的植被指数,由罗浮(Rouse)等人于1974年提出。

它以红光波段和近红外波段的反射率之差的比值来度量植被状况,公式为:NDVI = (NIR - RED) / (NIR + RED)其中,NIR为近红外波段的反射率,RED为红光波段的反射率。

NDVI取值范围为-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。

广域植被指数(Enhanced Vegetation Index,EVI)是对NDVI的一种改进,由胡侃(Huete)等人于1994年提出。

EVI在NDVI的基础上增加了大气校正、背景亮度校正等,公式为:其中,NIR、RED和BLUE分别为近红外波段、红光波段和蓝光波段的反射率。

EVI相比NDVI具有更好的大气校正能力和对土壤、雪等因素的较好抵抗能力,能够更准确地反映植被状况。

其中,Green为绿光波段的反射率。

NDWI值越低代表水体覆盖度越高,可以用于监测水体的位置和面积变化,以及水资源的管理和保护。

4. 颜色指数(CI)颜色指数(Color Index,CI)是一种基于色彩特征的植被指数,由Stiles于1954年提出。

它使用波段之间的差值来计算颜色特征,公式为:其中,GREEN、RED和BLUE分别为绿光波段、红光波段和蓝光波段的反射率。

CI能够反映植被的颜色特征,可以用于识别植被类型、估算植被生物量等。

土地覆盖指数(Land Cover Index,LCI)是一种基于土地覆盖类型的指数,由Gao和Ji于2008年提出。

常用的植被指数

常用的植被指数

常用的植被指数植被指数(Vegetation Index)是指用来反映植被生长状态和活力的一种指标,常用于遥感数据的处理和分析中。

下面将介绍常用的植被指数,并解释其作用和适用情况。

1. 归一化植被指数(Normalized Difference Vegetation Index,NDVI)NDVI 是最早也是最常用的植被指数,其计算公式为 (NIR – Red) / (NIR + Red),其中 NIR 表示近红外波段信号,Red 表示红色波段信号。

NDVI 的值范围为 -1 到 1,通常植被覆盖度高的地方 NDVI 值会更高。

NDVI 可以用来监测植被的生长周期和健康状况,评估土地的退化程度以及判断干旱和洪涝等自然灾害的影响。

2. 归一化水体指数(Normalized Difference Water Index,NDWI)NDWI 是用来区分水体和非水体的指数,其计算公式为 (Green –NIR) / (Green + NIR),其中 Green 表示绿色波段信号。

NDWI 的值范围为 -1 到 1,如果某像素的 NDWI 值高于某个阈值,就被认为是水体;反之,就被认为是非水体。

NDWI 可以用来监测湖泊、河流、水库等水体的分布和变化情况。

3. 红边指数(Red Edge Index,REI)REI 是用来检测植被叶绿素含量和水分含量的指数,其计算公式为 (NIR – Red Edge) / (NIR + Red Edge),其中 Red Edge 表示红边波段信号。

REI 的值范围为 -1 到 1,通常植被叶绿素含量高或水分含量高的地方 REI 值会更高。

REI 可以用来区分植被类型、监测植被健康状况以及评估土地干旱程度等。

4. 植被指数差分(Vegetation Index Difference,VID)VID 是用来监测植被健康状况和生长变化的指数,其计算公式为VID = (VI1 – VI2) / (VI1 + VI2),其中 VI1 和 VI2 分别表示两个不同时期的植被指数。

植被指数综述

植被指数综述

植被指数综述植被指数(Vegetation Index)是用于定量描述和监测植被生长状态的一种指标。

它是通过光谱特性来反映植被状况的指标,可以帮助我们对植被生态系统进行评估和分析,从而更好地了解植被的生长变化以及植被覆盖的情况。

在遥感学中,植被指数的计算是基于不同波段的反射率或辐射度量值。

常用的植被指数有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、差值植被指数(Difference Vegetation Index, DVI)以及简化植被指数(Simple Ratio, SR)等。

归一化植被指数(NDVI)是最常用的一种指数,它可以通过计算红光波段和近红外波段的反射率之差与反射率之和的比值来得到。

NDVI的取值范围为-1到1,数值越高表示植被覆盖越密集,数值越低则表示植被覆盖越稀疏。

植被指数的应用非常广泛。

它可以用于监测农田的植被生长情况,判断作物的生长状况,有助于农业生产的管理和决策。

此外,植被指数还能用于监测森林覆盖率和森林生态系统的恢复情况,对于保护生态环境和生物多样性的研究也有着重要作用。

除了以上的应用之外,植被指数还可以用于监测荒漠化、城市植被覆盖和湿地生态系统等方面。

在这些场景下,植被指数的变化可以提供重要的参考信息,帮助人们了解和评估不同地区的植被状况,以及对环境的影响。

总的来说,植被指数是一种重要的植被监测指标,它通过遥感技术与地理信息系统相结合,为我们提供了更全面、准确的植被信息。

在不同的应用领域中,植被指数具有广泛的应用前景,有助于我们更好地保护和管理地球上的植被资源,实现可持续发展的目标。

本文简要介绍了植被指数的概念和应用,并列举了一些常用的植被指数。

通过对植被指数的深入了解,我们可以更好地理解植被生长状态,为植被资源的保护和管理提供科学依据。

希望本文对读者对植被指数有所了解和启发,促进植被科学研究的发展和应用的推广。

植被指数

植被指数

植被指数(Vegetable Index)植被指数是不同遥感光谱波段间的线性或非线性组合,被认为能作为反映绿色植被的相对丰度和活性的辐射量值(无量纲)的标志,是绿色植被的叶面积指数(LAI)、盖度、叶绿素含量、绿色生物量以及被吸收的光合有效辐射(APAR)的综合体现。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响几种常用的植被指数及其应用(一)比值植被指数(RVI)公式:RVI=ρNIR/ρRED(近红外波段反射率/红光波段反射率)特征:植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;值的范围是0-30+,一般绿色植被区的范围是2-8。

RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

应用:①利用比值植被指数研究城市建设用地扩张速率,预测或规划城市未来今年的发展前景。

不同用地的地表温度由高到低排序是城镇用地、工矿与交通用地、农村宅基地、林地、旱地,说明建设用地的地表温度较高,其比值植被指数较非建设用地小。

RVI的平均值M和标准差D可以作为定量指标来提取建设用地:RVI ≤M-D/2为建设用地;RVI>M-D/2为非建设用地。

②可用于实时、快速、无损监测作物氮素状况,这对于精确氮肥管理有重要意义。

利用高光谱比值指数RSI(990,720)来估算小麦叶片氮积累量为便携式小麦氮素监测仪的研制开发及遥感信息的快速提取提供了适用可行的波段选择与技术依据。

NPP数据的总结

NPP数据的总结

NPP数据的总结一、引言近年来,随着科技的不断发展,NPP(Normalized Difference Vegetation Index,归一化植被指数)数据在环境监测、农业生产、生态研究等领域中得到了广泛应用。

本文旨在对NPP数据进行总结和分析,以便更好地理解和利用这一数据。

二、背景介绍NPP是通过遥感技术获取的、反映植被生长状况的指标。

它可以通过计算植被可见光波段和近红外波段的反射率之差来获得。

NPP数据主要用于评估植被的生长状况、监测植被覆盖度和植被净初级生产力等。

三、数据来源本次总结所使用的NPP数据来源于卫星遥感技术获取的数据集,包括Landsat、MODIS等卫星数据。

这些数据集覆盖了全球范围,具有较高的时空分辨率,可以提供较为准确的NPP信息。

四、数据处理1. 数据获取:通过访问相应的数据平台,下载所需的NPP数据集。

2. 数据预处理:对原始数据进行预处理,包括去除云、阴影等干扰因素,提取感兴趣区域的数据等。

3. 数据校正:根据地面观测数据进行校正,以提高数据的准确性和可靠性。

4. 数据整合:将不同时间段的数据进行整合,形成时间序列数据,方便后续的分析和比较。

五、数据分析1. 植被生长趋势分析:通过对NPP数据进行时间序列分析,可以了解植被生长的趋势和周期性变化。

可以绘制NPP与时间的折线图,观察其变化规律。

2. 空间分布分析:将NPP数据与地理信息系统(GIS)相结合,可以绘制植被生长的空间分布图,并进行热力图分析,以揭示植被生长的空间差异性。

3. 影响因素分析:结合气象数据、土壤数据等相关数据,可以探究影响植被生长的因素,如温度、降水量、土壤养分等。

六、数据应用1. 环境监测:NPP数据可以用于监测植被覆盖度的变化,评估生态环境的质量和稳定性,为环境保护和生态恢复提供科学依据。

2. 农业生产:通过分析NPP数据,可以评估农作物的生长状况和产量水平,为农业生产提供精准的管理决策支持。

几种常见植被指数

几种常见植被指数

几种常见植被指数标准化管理部编码-[99968T-6889628-J68568-1689N]植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显着降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

植被光谱特征与植被指数综述

植被光谱特征与植被指数综述

植被光谱特征与植被指数综述植被光谱特征与植被指数是现代遥感技术中常用的分析工具,能够提供植被物候变化、生理状况、生态系统功能等多种信息。

下面是关于植被光谱特征与植被指数的综述:一、植被光谱特征植被的光谱特征指的是植物叶片反射和吸收光线的特征,通常使用遥感技术获取。

植被的光谱特征可以分为两类:光谱反射率和吸收率。

光谱反射率指植被表面反射的光线占入射光线的比例,而吸收率则指植被吸收光线的能力。

光谱反射率植被表面的光谱反射率通常被描述为“红边反射”,即在近红外(NIR)波段和绿色波段之间的波段范围内的反射率。

典型的红边反射区域在680-750 nm之间,这是由于植物叶绿素的吸收谱和植被的叶片结构所导致的。

另外,绿色波段和近红外波段的反射率也可以提供有关植被的信息。

吸收率植物叶片中的叶绿素和类胡萝卜素是两种主要的色素,它们对特定波长的光线具有吸收作用。

在可见光谱范围内,叶绿素对蓝色和红色光线的吸收最大,而类胡萝卜素对蓝色光线的吸收最大。

此外,植物叶片的纤维素、半纤维素和蛋白质等化学成分也会影响植物叶片的吸收率。

二、植被指数植被指数是一种基于植被反射谱线的标准化指标,用于评估植被生长状况、叶绿素含量、光合作用速率等。

植被指数通常使用多光谱遥感数据计算,其中常见的植被指数包括:归一化植被指数(Normalized Difference Vegetation Index,NDVI)NDVI是植被遥感研究中最常用的指数之一,它可以通过计算近红外波段(NIR)和红色波段(RED)的反射率之差来获得,公式为:(NIR - RED) / (NIR + RED)。

该指数对植被覆盖度、生长状况和叶绿素含量有较好的敏感性。

归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)NDWI主要用于估计水分含量,计算公式为:(NIR - SWIR) / (NIR + SWIR),其中SWIR是短波红外波段。

几种常用植被指数介绍

几种常用植被指数介绍

对几种常用植被指数的认识植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;~4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

植被指数

植被指数

参考文献
LWCI
[
ft
]

Hunt等,1987
中红外指数 土壤调整植被指数 (SAVI)和修正的 SAVI指数(MSAVI) 大气阻抗植被指数 (ARVI) 土壤和大气阻抗植被 指数(SARVI) 增强型植被指数 (EVI)
MidIR =
MidIR TM 5 MidIR TM 7
Musick和Pelletier,1988 Huete,1988 Huete和Liu,1994 Running等,1994 Qi等,1995 Kaufman和Tanre,1992 Huete和Liu,1994
K-T K-T变换(缨帽变换) Landsat MSS 亮度 绿度 黄度 其他
Kauth Thomas,1976 Kauth和Thomas,1976 Kauth等,1979
B=0.332MSS1+0.603MSS2+0.675MSS3+0.262MSS4 G=-0.283MSS1-0.660MSS2+0.577MSS3+0.388MSS4 Y=-0.899MSS1+0.428MSS2+0.076MSS3-0.041MSS4 N=-0.016MSS1+0.131MSS2-0.452MSS3+0.882MSS4
第二节 植被指数
植被指数(植被变换) 植被指数(植被变换)
• 自20世纪60年代以来,科学家已经利用遥感数据提取和模拟 了各种生物物理变量。 • 植被指数:无量纲的辐射测度来反映绿色植被的相对丰度及 其活动,其中包括叶面指数(LAI)、绿色覆盖百分比、叶绿 色含量、绿色生物量等。植被指数应该:
1、对植物生物物理参数尽可能敏感,最好呈线性响应,这使其可以在 大范围的植被条件下使用,并且方便对指数验证和定标; 2、归一化模拟外部效应如太阳角、观测角和大气,以便能够进行空间 和时间上的比较; 3、归一化内部效应如冠层背景变化,包括地形(坡度和坡向)、土壤 的差别,以及衰老或木质化(不进行光合作用的冠层组份)植被的差 异; 4、能和一些特定的可测度的生物物理参数,例如生物量LAI或者APAR 进行耦合,作为验证和质量控制部分;

植被指数提取与分析

植被指数提取与分析

植被指数提取与分析植被指数是一种衡量植被生长状态和健康状况的指标,常用的有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、差异植被指数(Difference Vegetation Index, DVI)等。

根据植被指数可以对植被覆盖度、生长状态以及疾病等进行监测和分析。

植被指数通常是通过遥感技术获取的,可以使用卫星或无人机获取的遥感图像来计算得到。

提取植被指数的方法有多种,常用的方法是利用可见光和近红外波段的反射率计算得到。

以NDVI为例,计算公式为:NDVI=(NIR-RED)/(NIR+RED),其中NIR代表近红外波段的反射率,RED代表红光波段的反射率。

通过计算得到的NDVI值范围在-1到1之间,数值越高表明植被覆盖越好,即植被生长旺盛,数值越低则表示植被覆盖较差。

分析植被指数可以帮助我们了解植被的分布情况和生长趋势,提供科学依据和数据支持。

首先,可以通过植被指数研究和评估植被覆盖度,对大面积的植被状况有一个整体的了解。

例如,通过对大范围区域的植被指数的分析,可以了解到该区域的植被状况,是否存在退化、退化的程度以及逐年的变化趋势等情况。

其次,植被指数可以用来监测植物生长状态的变化。

通过连续的遥感图像和植被指数的计算,可以对植物的生长情况进行定量分析。

例如,可以通过比较不同时间段的NDVI值,了解植物的季节性生长变化,以及对气候等环境因素的响应情况。

同时,还可以对植物的健康状况进行评估,例如发现植物疾病、虫害的影响,以及区分不同植物种类等。

此外,植被指数的提取和分析还可以用来监测和评估生态环境的变化。

例如,对于林业和农业管理来说,植被指数可以用来评估土地利用和管理的效果,通过分析植被指数可以了解到不同地区的植被覆盖度和生长状态的差异,为土地资源的合理利用和管理提供科学依据。

总之,通过提取和分析植被指数可以帮助我们了解植被的分布、生长状态和健康状况,为生态环境的保护和可持续发展提供科学依据。

几种常见植被指数(DOC)

几种常见植被指数(DOC)

常用的植被指数,土壤指数,水体指数有哪些?植被指数与土壤指数一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。

与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯利用DN值计算,可以解释成仅仅只就是DN值计算;0时候,分母为0 ,计算不免会出现问题。
NDVI得物理依据就是地物反射率得差异变化。所以用反射率来计算就是比较客观准确得,而『现实生活』中,大多得人,根本不会考虑用地表反射率来计算NDVI,直接用DN来代替地表反射率,这样得替代就是不就是可以,从定量得角度来讲,肯定就是不够严密得,大气得影响毕竟客观存在。
4、NDVI能反映出植物冠层得背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;
三、DVIEVI——差值环境植被指数:DVI=NIR-R,或两个波段反射率得计算。
1、对土壤背景得变化极为敏感;
四、SAVITSAVIMSAVI——调整土壤亮度得植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率得计算。
1、NDVI得应用:检测植被生长状态、植被覆盖度与消除部分辐射误差等;
2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR与R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;
3、NDVI得局限性表现在,用非线性拉伸得方式增强了NIR与R得反射率得对比度。对于同一幅图象,分别求RVI与NDVI时会发现,RVI值增加得速度高于NDVI增加速度,即NDVI对高植被区具有较低得灵敏度;
1、目得就是解释背景得光学特征变化并修正NDVI对土壤背景得敏感。与NDVI相比,增加了根据实际情况确定得土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景得影响为零,即植被覆盖度非常高,土壤背景得影响为零,这种情况只有在被树冠浓密得高大树木覆盖得地方才会出现。
植被指数总结
植被指数
概念:利用卫星不同波段探测数据组合而成得,能反映植物生长状况得指数。
植物叶面在可见光红光波段有很强得吸收特性,在近红外波段有很强得反射特性,这就是植被遥感监测得物理基础,通过这两个波段测值得不同组合可得到不同得植被指数。差值植被指数又称农业植被指数,为二通道反射率之差,它对土壤背景变化敏感,能较好地识别植被与水体。该指数陌生物量得增加而迅速增大。比值植被指数又称为绿度,为二通道反射率之比,能较好地反映植被覆盖度与生长状况得差异,特别适用于植被生长旺盛、具有高覆盖度得植被监测。归一化植被指数为两个通道反射率之差除以它们得与。在植被处于中、低覆盖度时,该指数随覆盖度得增加而迅速增大,当达到一定覆盖度后增长缓慢,所以适用于植被早、中期生长阶段得动态监测。蓝光、红光与近红外通道得组合可大大消除大气中气溶胶对植被指数得干扰,所组成得抗大气植被指数可大大提高植被长势监测与作物估产精度。
植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异得指标,各个植被指数在一定条件下能用来定量说明植被得生长状况。在学习与使用植被指数时必须由一些基本得认识:
1、健康得绿色植被在NIR与R得反射差异比较大,原因在于R对于绿色植物来说就是强吸收得,NIR则就是高反射高透射得;
2、建立植被指数得目得就是有效地综合各有关得光谱信号,增强植被信息,减少非植被信息
2、SAVI仅在土壤线参数a=1,b=0(即非常理想得状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。
小结:上述几种VI均受土壤背景得影响大。植被非完全覆盖时,土壤背景影响较大
五、GVI——绿度植被指数,k-t变换后表示绿度得分量。
1、通过k-t变换使植被与土壤得光谱特性分离。植被生长过程得光谱图形呈所谓得"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤得含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征得光谱变化沿土壤亮度线方向产生。
3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;
4、RVI受大气条件影响,大气效应大大降低对植被检测得灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率得计算。
遥感技术可以监测植被得变化,主要研究植被得替代指标、 NDVI,又称标化植被指数,就是目前应用最为广泛得指标,就是近红外波段与红色波段得差异经二者之与校正后得结果、公式为:NDVI=(NIR-RED)/(NIR+RED),该指数值介于-1与1之间: 0代表该区域基本没有植被生长;负值代表非植被覆盖得区域;取值0~1之间,数字越大代表植被得覆盖面积越大,植被得量越多。云、水体与冰雪在红色及近红外波段均有较大反射,其NDVI值为负值;土壤与岩石在这两个波段得反射率基本相同,因此其NDVI值接近0、 对于Landsat TM传感器来说,其红外及可见红光波段分别为CH4与CH3波段、 为了对不同像素显示配色,按公式(NDVI-NDVI极小值)/(NDVI极大值-NDVI极小值)×255将NDVI扩展为0~255、
计算NDVI必须用反射率。
DN值有多种类型,TM、NOAA得原始数据就就是DN值,不能用来直接计算NDVI,必须通过辐射定标计算成反射率,才能用来计算NDVI。但一般我们需要先进行大气校正,大气校正又包含多个方面,例如水汽、臭氧与气溶胶,世界上提供得NDVI数据集一般只做了其中部分得校正。对于山区,还需要做地形校正。
2、kt变换后得到得第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同得含义。如,MSS得第三个分量表示黄度,没有确定得意义;TM得第三个分量表示湿度。
3、植被指数有明显得地域性与时效性,受植被本身、环境、大气等条件得影响
一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率得比值。
1、绿色健康植被覆盖地区得RVI远大于1,而无植被覆盖得地面(裸土、人工建筑、水体、植被枯死或严重虫害)得RVI在1附近。植被得RVI通常大于2;
2、RVI就是绿色植物得灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测与估算植物生物量;
相关文档
最新文档