北大版高等数学第一章 函数及极限答案 第一章总练习题

合集下载

高等数学 第1章 函数与极限 练习册 解答(10月19修改)

高等数学 第1章 函数与极限  练习册 解答(10月19修改)

时,就有
2. 极 限 l i m f (x ) A的 定 义 是 : 对 于 0 , 存 在 X 0 , 当 x
f x A .
时,就有
3. 对 于 任 意 的 正 数 , 存 在 正 数 =
,当
时 5x 2 12 , 因 此
lim (5x 2) 12.
x2
解答:
1、当 0 x x0 时; 2、 x X 时;
1.设
xn
n n
1 ,则当 1
n
大于 正整 数
N
时, | xn 1| 104 , 对于任意正数 ,
当 n 大于正整数 N
时,
|
xn
1|
,所以
lim
n
xn
1.
2. 对于任意正数 , 存在正整数 N
cos n
, 当 n N 时,
2 0 , 所以
n
cos n lim 2 0 . n n
3. 设 xn 为任一数列, 又设对于任意正数 , 存在正整数 N1, N2 , 当 n N1 时,
第 1 章 函数与极限
V.同步练习
第 1 章 函数、极限与连续
1.1 函数及其性质
一、填空题
1.已知 f x ax2 bx 5 且 f x 1 f x 8x 3 , 则 a
;b

2. y cos 2x 1 的周期为

3.
函数
f
(x)
sin
1 x
,
x
0;
的定义域为
; 值域为
.
解. 设圆锥的半径与高分别为r, h , 则 2 r R 2 , 即 r R 2 , 从而
2
h
R2 r2

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

高等数学第一章课后习题答案

高等数学第一章课后习题答案

高等数学(本)第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤[]ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x班级 姓名 学号3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()x e x g =,求()[]x g f 和()[]x f g ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明: .0lim =∞→n n n y x{}结论成立。

最新(新课标)北师大版高中数学选修1-1《函数的极值》课后考点练习及解析.docx

最新(新课标)北师大版高中数学选修1-1《函数的极值》课后考点练习及解析.docx

(新课标)2017-2018学年北师大版高中数学选修1-1第4章 1.2 函数的极值一、选择题(每小题5分,共20分) 1.下列结论中,正确的是( ) A .导数为零的点一定是极值点B .如果在x 0附近的左侧f ′(x)>0,右侧f ′(x)<0,那么,f(x 0)是极大值C .如果在x 0附近的左侧f ′(x)>0,右侧f ′(x)<0,那么,f(x 0)是极小值D .如果在x 0附近的左侧f ′(x)<0,右侧f ′(x)>0,那么,f(x 0)是极大值解析: 导数为零的点不一定是极值点,“左正右负”有极大值,“左负右正”有极小值.故A ,C ,D 项错.答案: B2.函数y =sin ⎝ ⎛⎭⎪⎫x +π2+π在区间[-π,π]上取极大值时x 的值为( )A.π2 B .0C .-πD .π解析: y =sin ⎝ ⎛⎭⎪⎫x +π2+π=cosx +π,y ′=-sinx ,令y ′>0,则-π<x<0,因此在区间[-π,π]上,当x ∈[-π,0]时,函数为增函数,当x ∈[0,π]时,函数为减函数,根据极值定义,当x =0时函数在区间[-π,π]取得极大值.答案: B3.下面对于函数y =x 3-3x 2-9x(-2<x<2)的判断正确的是( ) A .极大值为5,极小值为-27 B .极大值为5,极小值为-11 C .极大值为5,无极小值D .极小值为-27,无极大值解析: y ′=3x 2-6x -9=3(x 2-2x -3),令y ′=0,可得x =3或x =-1.当-2<x<-1时,y ′>0;当-1<x<2时,y ′<0,故当x =-1时y 取得极大值. 答案: C4.若函数f(x)=x ·2x 在x 0处有极小值,则x 0等于( ) A.1ln2 B .-1ln2C .-ln2D .ln2解析: ∵y =x ·2x ,∴y ′=2x +x ·2x ·ln2=2x ·(1+x ·ln2).令y ′=0可得:x =-1ln2.当x ∈⎝ ⎛⎭⎪⎫-∞,-1ln2时,y ′<0,当x ∈⎝ ⎛⎭⎪⎫-1ln2,+∞时,y ′>0.∴x =-1ln2为极小值点.故选B.答案: B二、填空题(每小题5分,共10分)5.函数y =2x 3-15x 2+36x -24的极大值为__________,极小值为________. 解析: y ′=6x 2-30x +36,即y ′=6(x -2)(x -3), 令y ′=0得x =2或x =3.经判断有极大值为f(2)=4,极小值f(3)=3. 答案: 4 36.函数f(x)=x 3-3a 2x +a(a>0)的极大值为正数,极小值为负数,则a 的取值范围是________.解析: f ′(x)=3x 2-3a 2=3(x +a)(x -a), 由f ′(x)<0,得-a<x<a ,∴f(x)在(-∞,-a)内递增,在(-a ,a)内递减,在(a ,+∞)内递增, 极大值为f(-a)=2a 3+a =a(2a 2+1)>0,极小值为f(a)=a(1-2a 2)<0,由此解得a>22.答案: ⎝ ⎛⎭⎪⎪⎫22,+∞三、解答题(每小题10分,共20分) 7.求函数f(x)=x 2e -x 的极值. 解析: 函数的定义域为R ,f ′(x)=2xe -x +x 2·⎝ ⎛⎭⎪⎫1e x ′=2xe -x -x 2e -x=x(2-x)e -x , 令f ′(x)=0, 得x =0或x =2,当x 变化时,f ′(x),f(x)的变化情况如下表:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x) -0 +0 -f(x)4e -2由上表可以看出,当x =0时,函数有极小值,且f(0)=0. 当x =2时,函数有极大值,且f(2)=4e -2.8.已知函数y =ax 3+bx 2,当x =1时函数有极大值3. (1)求a ,b 的值; (2)求函数y 的极小值.解析: (1)y ′=3ax 2+2bx ,当x =1时, y ′=3a +2b =0,又y =a +b =3,即⎩⎪⎨⎪⎧ 3a +2b =0,a +b =3,解得⎩⎪⎨⎪⎧a =-6,b =9.(2)y =-6x 3+9x 2,y ′=-18x 2+18x , 令y ′=0,得x =0或x =1.∴当x =0时,函数y 取得极小值0.尖子生题库☆☆☆9.(10分)已知函数f(x)=x 3+ax 2+bx +a 2在x =1处取极值10,求f(2)的值. 解析: f ′(x)=3x 2+2ax +b.由题意,得⎩⎪⎨⎪⎧ f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b +1=10,2a +b +3=0.解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f(x)、f ′(x)的变化情况列表如下:x⎝⎛⎭⎪⎫-∞,-113-113⎝ ⎛⎭⎪⎫-113,1 1 (1,+∞)f ′(x) +0 -0 +f(x)极大值极小值显然函数f(x)在x =1处取极小值,符合题意,此时f(2)=18. 当a =-3,b =3时,f ′(x)=3x 2-6x +3=3(x -1)2≥0, ∴f(x)在x =1处没有极值,不合题意.综上可知f(2)=18.。

北大高数(上)第1章习题

北大高数(上)第1章习题

习题1-11. 下列函数是否相等,为什么? 函数 函数的概念 函数相同的条件222(1)()();(2)sin (31),sin (31);1(3)(),() 1.1f xg x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.因为两函数的定义域相同,都是实数集R ;x =知两函数的对应法则也相同;所以两函数相等.(2)相等.因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.(3)不相等.因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 求下列函数的定义域 函数 函数的概念 定义域和值域的概念211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须40x x -≥⎧⎨≠⎩ 即 4x x ≤⎧⎨≠⎩ 所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤ 即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数). 也即ππππ66k x k -+≤≤+ (k 为整数).3. 设1()1x f x x -=+,求1(0),(),().f f x f x-函数函数的概念 函数的基本运算解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++ 4. 设1,10()1,02x f x x x -≤<⎧=⎨+≤≤⎩,求(1)f x -.函数函数的概念 函数的基本运算解: 1,1101,01(1).(1)1,012,13x x f x x x x x -≤-<≤<⎧⎧-==⎨⎨-+≤-≤≤≤⎩⎩5. 设()2,()ln x f x g x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 函数函数的概念 复合函数的概念解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====6. 求下列函数的反函数及其定义域:函数 反函数、复合函数 反函数的定义2531(1); (2)ln(2)1;1(3)3; (4)1cos ,[0,π].x xy y x xy y x x +-==+++==+∈ 解: (1)由11x y x -=+解得11yx y-=+, 所以函数11x y x -=+的反函数为1(1)1xy x x-=≠-+. (2)由ln(2)1y x =++得1e 2y x -=-,所以,函数ln(2)1y x =++的反函数为1e 2()x y x -=-∈ R .(3)由253x y +=解得31(log 5)2x y =- 所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> .(4)由31cos y x =+得cos x =又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为(02)y x =≤≤.7. 判断下列函数在定义域内的有界性及单调性:函数 函数的特性 有界性、单调性2(1); (2)ln 1xy y x x x==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+, 故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x =+有上界.又因为函数21xy x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x =+有界. 又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x=+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.8. 已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.函数 函数的概念 定义域、值域的概念图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h hS S h h h h ϕϕϕϕϕ=++==+=+---=+=+ 由00,cot 0S h BC h hϕ>=->得定义域为0tan 40)S .9. 下列函数是由哪些基本初等函数复合而成的?函数 基本初等函数 基本初等函数5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.习题1-21. 写出下列数列的通项公式,并观察其变化趋势:极限 数列极限的概念与性质 数列极限的定义1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →. 1(2)cos π2n n x n -=,当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1. 2. 对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有n x a ε-<:极限数列极限的概念与性质 数列极限的定义1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε==== 解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin 2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<. 当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数.(2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<. 当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数. 3. 根据数列极限的定义,证明:极限 数列极限的概念与性质 数列极限的定义21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<-,只要n >,取n =,则当n>N 时,1ε<,从而1n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.4. 若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立.极限 函数极限的概念与性质 函数极限的定义证:lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<.而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞=但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.5. 利用收敛准则证明下列数列有极限,并求其极限值:极限数列极限的概念与性质数列极限的定义1111(1)1,2,; (2)1,1,1,2,.1nn n nx x x n x x n x ++=====+=+证: (1)122x =<,不妨设2k x <,则12k x +=<=.故对所有正整数n 有2n x <,即数列{}n x 有上界.又1n n n x x x +-==0>,又由2n x <从而10n n x x +->即1n n x x +>,即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限. 设lim n n x a →∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=.(2) 因为110x =>,且111nn nx x x +=++, 所以02n x <<, 即数列有界又 111111111(1)(1)n n n n n n nn n n x x x x x x x xx x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭ 由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号, 从而可推得1n n x x +-与21x x -同号, 而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在. 设lim n n x a →∞=, 则11a a a=++, 解得1122a a +==(不合题意,舍去). 所以1lim 2n n x →∞=习题1-31. 选择题 (1)设1,1()0,1x f x x ≠⎧=⎨=⎩,则0lim ()x f x →=(D )A.不存在B.∞C.0D.1(2)设()f x x =,则1lim ()x f x →=(B ) A.1- B.1 C.0 D.不存在(3)0(0)f x +与0(0)f x -都存在是函数()f x 在点0x x =处有极限的一个(A )A.必要条件B.充分条件C.充要条件D.无关条件(4)函数()f x 在点0x x =处有定义,是当0x x →时()f x 有极限的(D )A.必要条件B.充分条件C.充分必要条件D.无关条件 (5)设1()1x f x x -=-,则1lim ()x f x →=(D ) A.0 B.1- C.1 D.不存在 2.证明01lim arctanx x→不存在. 0000011lim arctan ,lim arctan ,2211lim arctan lim arctan ,1limarctan x x x x x x x x xx ππ+-+-→→→→→==-∴≠∴不存在。

北大版高等数学第一章 函数及极限答案 习题1.3-推荐下载

北大版高等数学第一章 函数及极限答案 习题1.3-推荐下载

习题1.31.(1,2,),lim 1,0,,2|-1|,:n n n n nx n x N n n N x εε→∞===>+>< 设证明即对于任意求出正整数使得当时有 并填下表220,1,|-1||1|,2,2222,,|-1|.2.lim ,lim ||||.0,,,||,||||||||,lim ||||.3.{},(1),n n n n n n n n n n n n n x n n n N n N x a l a l N n N a l a l a l a l a l N εεεεεεεεε→∞→∞→∞∀><=-=<>-++⎡⎤=-><⎢⎥⎣⎦==∀>∃>-<-≤-<=不妨设要使只需取则当时就有设证明使得当时此时故设有极限证明存在一个自然数证证1||||1;(2){},,||(12,).(1)1,,,||1,|||||||||| 1.(2)max{||1,||,,||},||(12,).-313(1)lim 23nn n n n n n N n n n N a l a M a M n N n N a l a a l l a l l l M l a a a M n N n n εε→∞<<+≤==∃>-<=-+≤-+<+=+≤=+=- 是一个有界数列即存在一个常数使得对于使得当时此时令则 4.用说法证明下列各极限式:证23/23/2; (2)0;2!(3)lim 0(||1); (4)lim0;111(5)lim 1;1223(1)11(6)lim 0.(1)(2)31311(1),2322(23)nn nn n n nn n q qn n n n nn n n n εεε→∞→∞→∞→∞==<=⎛⎫+++= ⎪-⎝⎭⎛⎫++= ⎪+⎝⎭+∀-=<-- A A A 不妨设要使只需证>0,<1,3113,2113133133,,,lim.22322321(2),,,n n n N n N n n n εεεεεεε→∞>+++⎡⎤=+>-<=⎢⎥--⎣⎦∀<>取当时故>0,ε0.10.010.0010.0001N1819819981999832222333331,.1(3)||(0).41||(1)(1)(2)(1)1266242424,,max{4,}.(1)(2)!111(4),,.11(5)1223nnnn N n Nq n nn n q n n n n n n n n N n n n n n N n n εεαααααααεααεαεαεεε⎡⎤=>⎢⎥⎣⎦=>>+==---++++++⎡⎤<<<>=⎢⎥--⎣⎦⎡⎤≤<>=⎢⎥⎣⎦+++ A A取当时3/23/23/22211(1)1111111111,,.1223(1)1111(6),,.(1)(2)(1)5.lim 0,{},,||(1,2,),lim n n nn n n nn N n n n n n N n n n a b M b M n εεεεεε→∞⎛⎫- ⎪-⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-+-++--=<>= ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦⎝⎭⎝⎭⎡⎤++≤<<>=⎢⎥++⎣⎦=<=A 设是有界数列即存在常数使得证明2222220.0,,||,||||||,lim 0.6. 1.0,11,1.(1)24444,1,,.(1)(1)(1)127.:(1)l nn n n n n n n n n nnn a b N a a b a b M MM a b nn n n N n n n n n n εεεεεεεεεεεεεεε→∞→∞=∀>∃<=≤===∀>-<<+⎡⎤=<<<>=⎢⎥-+-⎣⎦++A 正整数使得故证明要使而只需求下列各极限的值证 证32232244432220.310013/100/1(2)lim lim .4241/2/4(210)(210/)(3)lim lim 16.11/11(4)lim 1lim 1.n n n n n n nn n n n n n n n n n n n n n n n e n n →∞→∞→∞→∞→∞---→∞→∞==+-+-==-+-+++==++⎡⎤⎛⎫⎛⎫+=+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21111(5)lim 1lim 11111111.11lim 1lim 1111111(6)lim 1lim 1,(,1),,,1101nn n n n n n n n n nn n n n n n e n n q N n N qn n e n n -→∞→∞-→∞→∞→∞→∞⎛⎫-= ⎪⎝⎭⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭==⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫-=-∈∃>-<⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫<-⎢ ⎪⎝⎭⎢⎣⎦取当时2211,lim 0,lim 10,lim 10.1111(7)lim 1lim 1lim 1 1.nnn n n nn n n nnnn n n q q n n e n n n e →∞→∞→∞→∞→∞→∞⎡⎤⎛⎫⎛⎫<=-=-=⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫-=+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A 即12221212218.1111(1),,12(1)11112 2.12(1)1111(2),,21212121111111111121222222221n n n n n n n n n n n n nn n n x x x x n n x x n n n x x x x x +++-=+++=+>+<+++=-<-=+++=+>++++-⎛⎫=+++=++++= ⎪⎝⎭ A A 利用单调有界序列有极限证明下列序列极限的存在性:单调增加有上界,故有极限.111 1.12111111(3).0,1222122,0,111(4)11.0,2!!(1)!111111213 3.2231n n n n n n n n n n n n n x x x x n n n n n n n x x x x x x x n n x n n n x +++<-=+++-=-=-<++++++<>=++++-=>+⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭单调增加有上界,故有极限.单调减少有下界,故有极限.单调增加有上界,故11lim 11.2!!n e n →∞⎛⎫++++ ⎪⎝⎭ 有极限.9.证明=211(1)1(1)(1)1112!!(1)(1)1!111111112111112!!!1111111.lim 1lim 112!!2!!nknnn n n n n n n k n n n n k n n n n n n n k n n k n n n n n e n n n →∞→∞---+⎛⎫+=+++++ ⎪⎝⎭--++--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫<++++=+≤++++ ⎪⎝⎭ A A 证1.,11111112111,2!!1111,2!!1111lim 11lim 11.2!!2!!10.:||||,1,2,,nk n n n k n k k n n k n n n e k e k n x k x n →∞→∞+⎛⎫ ⎪⎝⎭>-⎛⎫⎛⎫⎛⎫⎛⎫+>+-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫→∞≥++++ ⎪⎝⎭⎛⎫⎛⎫≥++++=++++ ⎪ ⎪⎝⎭⎝⎭≤= 对于固定的正整数,由上式,当时令得设满足下列条件其中是小于211111.lim 0.||||||||0(),lim 0.n n n n n n n n x x k x k x k x n x →∞-+-→∞=≤≤≤→→∞= 的正数证明由得证。

高等数学第一章函数例题及答案

高等数学第一章函数例题及答案

高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。

二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。

连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。

左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。

极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。

高数第一章+习题详细解答

高数第一章+习题详细解答

习 题 1-11.求下列函数的自然定义域:(1)211y x =-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+; 当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞.解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x -=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =;解:因为1()lg(lg(lg(()f x x x x f x --=-==-=-,所以lg(y x =是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则 ()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =; 周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使2212)nε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim||||n n x a →∞=. 同理可证0a <时, lim||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =,显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|xx --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+.(4) 由于0|-=<,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-. 解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m ()x f x A →∞=.证明: 由于li m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以 013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞, πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦ = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx=111lim2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim 11x xx x →+=++. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim 12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限. 解:因为11211111limlim(1)0,1x x x x x e x e x ----→→-=+=- 11211111lim lim(1),1x x x x x e x e x ++--→→-=+=+∞- 所以12111lim1x x x e x -→--不存在。

(完整word版)第一章求极限练习题答案

(完整word版)第一章求极限练习题答案

(完整word版)第⼀章求极限练习题答案1.求下列极限:(1) 2221lim (1)n n n n →∞++- 解:原式=2221lim 21n n n n n →∞++-+=22112lim 211n n n n n→∞++-+=2 (2) 20lim(1)x x x →+解:原式=12lim[(1)]x x x →+=2e(3) 32lim3x x →- 解:原式=3x →=x →=14(4) 1lim (1)x x x e →∞-解:原式=1(1)lim1xx e x→∞-=1(5) 0x ≠当时,求lim cos cos cos 242n n x x x→∞L .解:原式=cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞L =1cos sin22lim 2sin 2n n nx x x →∞-=sin lim 2sin 2n nn x x →∞ =sin 2lim()sin 2n n n x x x x →∞g =sin x x(6) 21sinlim x x 解:原式=21limx x g=limx=limx=(7)22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n=+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121n n n n n n n n n →∞+++=++++++L(8) n →∞解:原式=2n n →∞→∞==1.3 函数的极限作业1. 根据函数极限的定义,验证下列极限: (1) 3 1lim0x x→∞= 解: 0ε?>,要使3311|0|||x x ε-=<,即||x >只要取X =,则当||x X >时,恒有 31|0|x ε-<, 所以31lim 0x x →∞=.(2) 42x →= 解: 0ε?>,要使|4||2|2x ε-=<<,则当0|4|x δ<-<时,恒有|2|ε<,所以42x →=. 2. 求下列数列极限:(1) 22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n =+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121lim()122n n n n n n n n n →∞+++=++++++L(2) n →∞解:原式=2n n →∞→∞==3.求下列函数极限:(1) 225lim 3x x x →+- 解:原式=-9(2) 224lim 2x x x →-- 解:原式=2 lim(2)x x →+=4(3) 21lim1x x →-解:原式=14x x →→==-(4) x →∞ 解:原式=0x =(5) 2(21)(32)lim (21)x x x x →∞--+ 解:原式=226723lim4412x x x x x →∞-+=++ (6) 2121lim()11x x x →--- 解:原式=211(1)11lim lim 112x x x x x →→---==--+ 4. 设23 2 0() 1 01 1 x>11x x f x x x x ?+≤=+<≤-? ,分别讨论()f x 在0x →,1x →和2x →时的极限是否存在.解:0lim ()2x f x -→=,0lim ()1x f x +lim ()x f x →不存在. 1lim ()2x f x -→=,1lim ()x f x +→趋向⽆穷⼤,故1lim ()x f x →不存在. 2lim ()1x f x -→=,2lim ()1x f x +→=,故2lim ()1x f x →=.1.43.求下列函数极限:(1) 225lim 3x x x →+-=-9(3) 224lim 2x x x →--=2lim(2)x x →+=4 1x →14x x →→==-(7) 000h h h →→→===(9) x →∞=0x =(11) 2(21)(32)lim (21)x x x x →∞--+=226723lim 4412x x x x x →∞-+=++(13) limlim0x x == (15) 2121lim()11x x x →---=211(1)11lim lim 112x x x x x →→---==--+ 2. 设10100()01112x x x f x x x x -?==<极限,并说明这两点的极限是否存在. 解:001lim ()lim11x x f x x --→→-==-,00lim ()lim 0x x f x x ++→→==,00lim ()lim ()x x f x f x -+→→≠ 故lim ()x f x →不存在.11lim ()lim 1x x f x x --→→==,11lim ()lim11x x f x ++→→== 11lim ()lim ()x x f x f x -+→→= 1lim ()1x f x →=. 1.51.求下列极限:(1) 0sin 3sin 3lim lim 333x x x xx x→→=?=00tan 333(3)limlim sin 444x x x x x x →→==222200022sin 222(5)lim 2sin 224()2x x x x x x x xx→→→?===? 注:在0(0,)U δ,2sin 02x ≥.222000222(5)lim 2sin24x x x x x x x →→→===(7) 02cos lim sin 2x x x →解: 原式=2021sin cos lim sin cos )2x x x x=2002sin sin lim sin 2x x x x x x →→+g =2021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+=4 注意: 代数和中的⼀部分不能⽤⽆穷⼩替换. 错原式=0x →220212lim 1cos )4x x x x x →+ (8) 01sin cos lim1sin cos x x xx xββ→+-+-解: 原式=2022sin cos 2sin 222lim 2sin cos 2sin 222x x x x x x x βββ→++=0sin (cos sin ) 222lim sin (cos sin )222x x x x x x x βββ→++=00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++g =02lim 12x x x β→g =1β注意: 代数和的⼀部分不能⽤⽆穷⼩替换.错 01sin cos lim 1sin cos x x x x x ββ→+-+-=202112lim 12x x x x x βββ→+=+ 33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim()lim[(1)]22x x x x x e x x +---→∞→∞--=+=++330(13)lim(13)lim[(13)]x x x x x x e →→+=+=4. 当0x →时,下列函数中哪些是x 的⾼阶⽆穷⼩,哪些是x 的同阶⽆穷⼩,哪些是x的低阶⽆穷⼩?32(1)1000x x +322001000lim lim (1000)0x x x x x x x→→+=+=解:因为 321000()x x o x +=所以3(2)2sin x 32002sin sin lim lim 2sin 0x x x x x x x→→=?=解:因为 3sin ()x o x =所以(3) ln(1)x +解: 100ln(1)limlim ln(1)1x x x x x x→→+=+=因为ln(1)~x x +所以 (4) 1cos x -解: 2002sin sin1cos 22limlim lim(sin )022x x x x xxx xxx →→→-===g 因为,1cos ()x o x -=所以(5) sin x x + 解: 因为 0sin limx x x x →+=0sin lim(1)x xx→+=2,故sin x x +是x 的同阶⽆穷⼩.(6): 因为0x →=1312033sin 11lim[())cos x x xx x →g g =∞,故是x的低阶⽆穷⼩.或:因为0x →=0x →0x →x 的低阶⽆穷⼩. 思考题:1.11331lim (39)lim 9(1)3x x xx xx x x x →+∞→+∞+=+g g =1331lim 9[(1)]3x xx x x →+∞+g =90e =9 2.0arccot limx x x →=∞,因为当0x →时,arccot 2 x π→.习题2.2 1.求下列函数的导数:2(1)cos y x x =+解:'sin 2y x x =-+=2cos (sin )()'222x x x -g g =2cos (sin )22x x -gcos sin 22x x -g(7)sin 3y x =解:'3cos3y x =2(9)sin(1)y x x =++解:2'(21)cos(1)y x x x =+++3(11)ln y x =解:1139'(ln )'(3ln )'222y x x x x x=+=+=(6) 6(21)y x =+解:5'6(21)2y x =+g =512(21)x + (10) ln(ln )y x =解:1'(ln )'ln y x x ==11ln x x g(11)ln ln(sin )y x =解:1'(sin )'sin y x x =+1cos sin x x +g2.在下列⽅程中,求隐函数的导数: (1)cos()y x y =+解:'sin()(1')y x y y =-+?+(2)222333x y a +=解:113322x y y --+=3. 求反函数的导数:(1)ln y x x =+解:1111dx dy dy dx x==+(2) arcsin x y e =解:sin ln x y =,故1cos ln dx y dyy=?=4. 求下列函数的导数(1) 2sin y x x =解:'y =22sin cos x x x x + 3(3)ln y x x=23221'3ln 3ln y x x x x x x x=+=+解: (5) 1ln 1ln xy x-=+解:21ln 1ln '(1ln )x xx x y x +---=+211ln y x=-++ 22212'0(1ln )(1ln )y x x x x =-=-++ (7) 21cosy x x=解1'2cos y x x =+2x 1(sinx -12cos x x +2x 1(sin)x -(9)ln(y x ='y x =+==解:(10)12(0)xxy x e a =->解:112'2xxy xe x e =+g g(ln (x x a a a --(11) arccos ln x y x = -arccos ln(1ln xy x x=--解:1'y x=-+2arccos 1x x x =-+2arccos x x =- ln (13)x y x =2ln ln (ln )x x x y e e ?==解: ln ln 11'2ln 2ln x x y x x x x x-=??=? (14) cos (sin )xy x =解:ln cos lnsin y x x =Q ,对该式两边求导数得11'sin ln sin cos cos sin y x x x x y x=-+cos '(sin )(sin ln sin cos tan )x y x x x x x ∴=-+ (15) y x =11ln ln ln(1)ln(1)22y x x x =+--+Q ,对该式两边求导数得1111'2(1)2(1)y yxx x =---+arcsin lnx y x =-解:'[ln(1(ln )'y x =++(11x +(2)x -1x +1x4. 求反函数的导数:(1)ln y x x =+解:1111dx dy dydx x==+arcsin x y e =解:sin ln x y =,故=?=求下列参数⽅程的导数'y : 211(1)(1)x t t y t ?=?+?=+242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-?+-+===+-+解:(2)3233131at x t at y t ?=??+??=?+? 解:322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dydy at t t dt dx a x at t dxa t dt t +-?-+===+-?-+(3)2ln(1)arctan x t y t t ?=+?=-? 解:222111221dy dyt dt tdx t dx t dt t-+===+2.若()F x 在点a 连续,且()0F x ≠。

高等代数北大编 第1章习题参考答案

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等数学课后习题答案--第一章 函数与极限

高等数学课后习题答案--第一章  函数与极限

第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a ax a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}nx 有界, 又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。

从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n 5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。

函数与极限练习题

函数与极限练习题

函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ]4、定义在(∞+∞-,)上的常函数是周期函数。

[ ]5、任一周期函数必有最小正周期。

[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ] 8、f(x)=1+x+2x 是初等函数。

[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。

《高等数学一》第一章-函数--课后习题(含答案解析)

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。

.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

北大版高等数学第一章函数及极限答案习题1.2(范文)

北大版高等数学第一章函数及极限答案习题1.2(范文)

北大版高等数学第一章函数及极限答案习题1.2(范文)第一篇:北大版高等数学第一章函数及极限答案习题1.2(范文)习题 1.2 1.求下列函数的定义域:(1)y=ln(x2-4);(2)y=ln1+x5x-x211-x;(3)y=ln4;(4)y=2x2+5x-3.解(1)x2-4>0,|x|2>4,|x|>2,D=(-∞,-2)⋃(2,+∞).(2)1+x1-x>0.⎧⎨1-x>0或⎧1-x<0⎩1+x>0⎨⎩1+x<0.-1<x<1,D=(-1,1).(3)5x-x24>1,x2-5x-4<0.x2 -5x+4=0,(x-1)(x-4)=0,x1=1,x2=4.D=(1,4).(4)2x2+5x-3>0.(2x-1)(x+3 )=0,x1=-3,x2=1/2.D=(-∞,-3)⋃(1/2,+∞).2.求下列函数的值域f(X),其中X为题中指定的定义域.(1)f(x)=x2+1,X=(0,3).f(X)=(1,10).(2)f(x)=ln(1+sinx),X=(-π/2,π],f(X) =(-∞,ln2].(3)f(x)=3+2x-x2,X=[-1,3],3+2x-x2=0,x2-2x-3=0,(x+1)(x-3 )=0,x1=-1,x2=3,f(X)=[0,f(1)]=[0,4].(4)f(x)=sinx+cosx,X=(-∞,+∞).f(x)= 2(sinxcos(π/4)+cosxsin(π/3))=2sin(x+π/4),f(X)=[-2,2].3.求函数值:设f(x)=lnx2(1)ln10,求f(-1),f(-0.001),f(100);(2)设f(x)=arcsinx1+x2,求f(0),f(1),f(-1);(3)设f(x)=⎧⎨ln(1-x),-∞<x≤0,⎩-x, 0<x<+∞,求f(-3),f(0),f(5).⎧cosx,0≤x<1,(4)设f(x)=⎪⎨1/2, x=1,求f(0),f(1),f(3/2),f(2).⎪⎩2x, 1<x≤3解(1)f(x)=logx2,f(-1)=log1=0,f(-0.001)=log(10-6)=-6,f(100)=log104 =4.(2)f(0)=0,f(1)=arcsin(1/2)=π/6,f(-1)=arcsin(-1/2)=-π/6.(3)f(-3)=l n4,f(0)=0,f(5)=-5.(4)f(0)=cos0=1,f(1)=1/2,f(3/2)=22,f(2)=4.4.设函数f(x)=2+x2-x,x≠±2,求f(-x),f(x+1),f(x)+1,f⎛1⎫1⎝x⎪⎭,f(x).解f(-x)=2-x2+x+13+x2+x,x≠±2;f(x+1)=2-x-1=1-x,x≠1,x≠-3,2+x4⎛1⎫2-1/x2x-1+1=,x≠±2;f ⎪==,x≠0,x≠±1/2,2-x2-x⎝x⎭2+1/x2x+11 2+x=,x≠±2.f(x)2-xf(x+∆x)-f(x)5.设f(x)=x3,求,其中∆x为一个不等于零的量.∆xf(x+∆x)-f(x)(x+∆x)3-x3x3+3x2∆x+3x∆x2+∆x3-x3解===3x2+3∆x+∆x2.∆x∆x∆x6.设f(x)=lnx,x>0,g(x)=x2,-∞<x<+∞,试求f(f(x)),g(g(x)),f(g(x)),g(f(x)).f(x)+1=解f(f(x))=f(lnx)=lnlnx,x>1;g(g(x))=g(x2)=x4,-∞<x<+∞;f(g(x))=f(x2)=lnx 2,x≠0;g(f(x))=g(lnx)=ln2x,x>0.⎧0, x≥0,⎧x, x≥0;7.设f(x)=⎨g(x)=⎨求f(g(x)),g(f(x)).-x,x<0;1-x,x<0,⎩⎩解∀x,g(x)≥0,f(g(x))=0.⎧g(0), x≥0,⎧0, x≥0,g(f(x))=⎨=⎨g(-x),x<0.⎩⎩-x,x<0.8.作下列函数的略图:(1)y=[x],其中[x]为不超过x的最大整数;(2)y=[x]+x;1(3)y=sinhx=(ex-e-x)(-∞<x<+∞);21(4)y=coshx=(ex+e -x)(-∞<x<+∞);2⎧x2, 0≤x<0,(5)y=⎨⎩x-1,-1≤x<0.(1)(2)(3)(4)(5)⎧x29.设f(x)=⎨,x≥0,求下列函数并且作它们的图形⎩x, x<0,:(1)y=f(x2);(2)y=|f(x)|;(3)y=f(-x);(4)y=f(|x|).解(1)y=x4,-∞<x<+∞.(2)y=|f(x)|=⎧⎨x2,x≥0,⎩-x, x<0.(3)y=f(-x)=⎧⎨x2,-x≥0,⎧x2,x≤0,⎩-x, -x<0=⎨⎩-x, x>0.(4)y=f(|x|)=x2,-∞<x<+∞.3求下列函数的反函数:(1)y=x2-2x(0<x<+∞);(2)y=sinhx(-∞<x<+∞);(3)y=coshx(0<x<+∞).解(1)x2-2x=y,x2-2yx-4=0,x=y+y2+4,y=x+x2+4(-∞<x<+∞).ex-e-x(2)=y ,z=ex,z2-2yz-1=0,ex=z=y+y22+1,x=ln(y+y2+1),y=ln(x+x2+1),(-∞<x< +∞).(3)ex+e-x2=y,z=ex,z2-2yz+1=0,ex=z=y+y2-1,x=ln(y+y2-1),y=ln (x+x2-1),(x≥1).证明cosh2x-sinh2x=1.⎛ex+e-x⎫2⎛ex-e-x⎫2(e2x证coshx-sinhx=+e-2x+2)-(e2x+e-2x22-2)⎝2⎪⎭-⎝2⎪⎭=4=1.下列函数在指定区间内是否是有界函数?(1)y=ex2,x∈(-∞,+∞);否(2)y=ex2x∈(0,1010);是(3)y=lnx,x∈(0,1);否(4)y=lnx,x∈(r,1),其中r>0.是2(5)y=e-x2+sinx+cos(2x),x∈(-∞,+∞);是|y|≤12-1+1=2.4 10.11.12.(6)y=x2sinx,x∈(-∞,+∞);否.(7)y=x2cosx,x∈(-1010,1010).是13.证明函数y=1+x-x在(1,+∞)内是有界函数.证y=1+x-x=(1+x-x)(1+x+x)1+x+x=11+x+x<12+1(x>1).13.研究函数y=x6+x4+x21+x6在(-∞,+∞)内是否有界.|x|≤1时,x6+x4+x2x6+x4+x23x6解1+x6≤3,|x|>1时,1+x6≤x6=3,|y|=y≤3,x∈(-∞,+∞).5第二篇:北大版高等数学第一章函数及极限答案习题1.4 习题1.41.直接用ε-δ说法证明下列各极限等式:(1)limx→ax=a(a>0);(2)limx=a;(3)lime=e;(4)limcosx=cosa.x→ax→ax→a22xa证(1)∀ε>0,要使||x-a|x-a|=|x-a|x-a<ε,由于|x-a|x+a<|x-a|ax-,a|<ε,故lim只需<ε,|x-a|<aε.取δ=aε,则当|x-a|<δ时,|x=a.ax→a(2)∀ε>0,不妨设|x-a|<1.要使|x2-a2|=|x+a||x-a|<ε,由于|x+a|≤|x-a|+|2a|<1+|2a|,只需(1+|2a|)|x-a|<ε,|x-a|<ε当1+|2a|.取δ=min{ε1+|2a|,1},则|x-a|<δ时,|x2-a2|<ε,故limx2=a2.x→a(3)∀ε>0,设x>a.要使|ex-ea|=ea(ex-a-1)<ε,即0<(ex-a-1)<εea,1<ex-a<1+εea,0<x-a<ln⎛ε⎫=min{ε1+,1},则当0<x-a<δ时,|ex-eaa⎪,取δ|<⎝e+|2a|ε,⎭1故limex=ea.类似证limex=ea.故limex=ea.x→a+x→a-x→a(4)∀ε>0,要使|cosx-cosa|=2sinx+aa2sinx-a2=2sinx+a2sinx-2≤|x-a|,取δ=ε,则当|x-a|<δ时,|cosx-cosa|<ε,故limcosx=cosa.x→a2.设limf(x)=l,证明存在a的一个空心邻域(a-δ,a)⋃(a,a+δ),使得函数u=f(x)在x→a该邻域内使有界函数.证对于ε=1,存在δ>0,使得当0<|x-a|<δ时,|f(x)-l|<1,从而|f(x)|=|f(x)-l+l|≤|f(x)-l|+|l|<1+|l|=M.3.求下列极限:2(1)lim(1+x)2-1=lim2x+x=lim(1+x1.x→02xx→02xx→02)=22sin2⎛x⎛⎫(2)lim1-cosx⎝2⎪⎭=1 sin⎛x ⎫⎫⎪⎪1x→0x2=limx→0x22lim ⎝2⎭⎪=γ12 =1.x→0 x ⎪22⎝2⎪⎭(3)limx+a-axx=lim=1(a>0).x→0x→0x(x+a+a)2a(4) limx2-x-2x→12x2-2x-3=-2-3.x2(5)lim-x-2-2x→02x2-2x-3=-3.1 201030(6)lim(2x-3)(2x+2)x→∞(2x+1)30=2230=1.(7)lim1+x-1-x=lim2x=1.x→0xx→0x(1+x+1-x)(8)lim⎛13⎫x2-x+1-3x2-x-2x→-1 -⎝x+1x3+1⎪=lim⎭x→-1(x+1)(x2-x+1)=limx→-1(x+1)(x2-x+1)=lim(x+ 1)(x-2)(x-2)=-3x→-1(x+1)(x2-x+1)=limx→-1(x2-x+1)3=-1.(9)lim1 +2x-3=lim(1+2x-3)(x+2)(1+2x+3)x→4x-2x→4(x-2)(x+2)(1+2x+3)=li m(2x-8)(x+2)=2γ4x→4(x-4)(1+2x+3)6=43.n(n-1)2nlimxn-1n(10)-1ny+2y+Λ+yx-1=lim(1+y)x→1y→0y=lim=n.y→0y(11)limx2+1-x2-1)=lim2=0.x→∞(x→∞x2+1+x2-1mm-1(12)lima0x+a1x+Λ+amamx →0bnn-10x+b+Λ+b(bn≠0)=1xnb.n-1⎧a0/b0,m=n(13)lima0xm+a1 xm+Λ+amx→∞bnbn-1+Λ+b(aγb⎪00≠0)=⎨0, n>m0x+1xn⎪⎩∞, m>n.x4+81+8/x4(14)limx+11+1/x2=1.x→∞2=limx→∞31+3x-3(15)li m1-2xx→0x+x2(3221+3x-333=lim1-2x)(1+3x+1+3xγ31-2x+31-2x )x→0x+x2)(321+3x+31+3xγ31-2x+32(1-2x)=lim5xx→0x(1+x)(321+ 3x+321+3xγ31-2x+31-2x)=lim522=5x→0(1+x)(31+3x+31+3xγ31-2x+31-2x)3.(16)a>0,li mx-a+x-a=lim⎛x-a1⎫x→a+0x2-a2x→a+0 ⎝x2-a2+x+a⎪⎪⎭=lim⎛(x-a) (x+a)+1⎫x→a+0 ⎝x+ax-a(x+a)x+a⎪⎪⎭2=lim⎛(x-a)+1⎫x→a+0 ⎝x+ax-a(x+a)x+a⎪⎭=lim⎛x-a+1⎫1.x→a+0 ⎝x+a(x+a)x+a⎪⎪=⎭2ax4.利用limsinx=1及lim⎛1x→xx→∞1+⎫⎝x⎪=e求下列极限:⎭(1)limsinαxsinαxαx→0tanβx=limx→0sinβxlimcosβx=x→0β.sin( 2x2)sin(2x2(2)lim)2x2x→3x=lim1γ0=0x→02x2γlimx→03x=(3)limta n3x-sin2x=limtan3xsin2x21x→0sin5xx→0sin5x-limx→0sin5x=35 -5=5.(4)limx=limxx→0+1-cosxx→0+2sinx=2.2cosx+aa(5)limsinx-s ina2sinx-2=cosa.x→ax-a=limx→ax-a2-k⎛k⎫-xx(-k)⎡x(6)limlimk=⎢⎛k⎫k⎤=e-k.∞1+x→⎝x⎪⎭x→∞1+⎫k=⎛⎝x⎪⎭⎢limx→∞1+⎪⎥⎣⎝x⎭⎥⎦-5(7)lim(1 -5y)1/y=⎡1/(5y)⎤-5y→0⎢⎣lim(1-5y)⎥=e.y→0⎦x+100x10(8)lim⎛1+10= lim⎛1+1=e.x→∞⎫⎝x⎪⎭x→∞⎫⎡⎛1⎫⎤⎝x⎪⎭⎢lim⎣x→∞1+⎝x⎪⎭⎥⎦5.给出limf(x)=+∞及limf(x)=-∞的严格定义.x→ax→-∞limf(x)=+∞:对于任意给定的A>0,存在δ>0,使得当0<|x-a|<δ时f(x)>A.x→alimf(x)=-∞:对于任意给定的A>0,存在∆>0,使得当x<-∆时f(x)<-A.x→-∞3第三篇:北大版高等数学第一章函数及极限答案习题1.6 习题1.61.证明:任一奇数次实系数多项式至少有一实根.证设P(x)是一奇数次实系数多项式,不妨设首项系数是正数,则limP(x)=+∞,x→+∞limP(x)=-∞,存在A,B,A<B,P(A)<0,P(B)>0,P在[A,B]连续,根据连续函数x→-∞的中间值定理,存在x0∈(A,B),使得P(x0)=0.2.设0<ε<1,证明对于任意一个y0∈R,方程y0=x-εsinx有解,且解是唯一的.证令f(x)=x-εsinx,f(-|y0|-1)=-|y0|-1+ε<-|y0|≤y0,f(|y0|+1)≥|y0|+1-ε>|y0|≥y0,f在[-|y0|-1,|y0|+1]连续,由中间值定理,存在x0∈[-|y0|-1,|y0|+1],f(x0)=y0.设x2>x1,f(x2)-f(x1)=x2-x1-ε(sinx2-sinx1)≥x2-x1-ε|x2-x1|>0,故解唯一.3.设f(x)在(a,b)连续,又设x1,x2∈(a,b),m1>0,m2>0,证明存在ξ∈(a,b)使得f(ξ)=m1f(x1)+m2f(x2)m1+m2.证如果f(x1)=f(x2),取ξ=x1即可.设f(x1)<f(x2),则f(x1)=m1f(x1)+m2f(x1)m1+m2≤m1f(x1)+m2f(x2)m1+m2≤m1f(x2)+m2f(x2)m1+m2=f(x2),在[x1,x2]上利用连续函数的中间值定理即可.4.设y=f(x)在[0,1]上连续且0≤f(x)≤1,∀x∈[0,1].证明在存在一点t∈[0,1]使得f(t)=t.证g(t)=f(t)-t,g(0)=f(0)≥0,g(1)=f(1)-1≤0.如果有一个等号成立,取t为0或1.如果等号都不成立,则由连续函数的中间值定理,存在t∈(0,1),使得g(t)=0,即f(t)=t.5.设y=f(x)在[0,2]上连续,且f(0)=f(2).证明在[0,2]存在两点x1与x2,使得|x1-x2|=1,且f(x1)=f(x2).证令g(x)=f(x+1)-f(x),x∈[0,1].g(0)=f(1)-f(0),g(1)=f(2)-f(1)=f(0)-f(1)=-g(0 ).如果g(0)=0,则f(1)=f(0),取x1=0,x2=1.如果g(0)≠0,则g(0),g(1)异号,由连续函数的中间值定理,存在ξ∈(0,1)使得g(ξ)=f(ξ+1)-f(ξ)=0,取x1=ξ,x2=ξ+1.第四篇:北大版高等数学第一章函数及极限答案习题1.3习题1.31.设xn=nn+2(n=1,2,Λ),证明limxn=1,即对于任意ε>0,求出正整数N,使得n→∞当n>N时有 |xn-1|<ε,并填下表:n-1|=2n+2<ε,只需n>2-2,取证∀ε>0,不妨设ε<1,要使|xn-1|=|N=n+2ε⎡2⎤-2,则当n>N时,就有|xn-1|<ε.⎢ε⎥⎣⎦n→∞n→∞2.设liman=l,证明lim|an|=|l|.证∀ε>0,∃N,使得当n>N时,|an-l|<ε,此时||an|-|l||≤|an-l|<ε,故lim|an|=|l|.n→∞3.设{an}有极限l,证明(1)存在一个自然数N,n<N|an|<|l|+1;(2){an}是一个有界数列,即存在一个常数M,使得|an|≤M(n=12,Λ).证(1)对于ε=1,∃N,使得当n>N时,|an-l|<1,此时|an|=|an-l+l|≤|an-l|+|l|<|l|+1.(2)令M=max{|l|+1,|a1|,Λ,|aN|},则|an|≤M(n=12,Λ).4.用ε-N说法证明下列各极限式:(1)limn→∞3n+12n-3=;(2)limn→∞n+1=0;(3)limnq=0(|q|<1);(4)limn→∞n→∞2nn!nn=0;⎛1⎫11(5)lim ++Λ+⎪=1;n→∞1γ22γ3(n-1)γn⎝⎭⎛⎫11(6)lim +Λ+=0.3/ 23/2⎪n→∞(n+1)(2n)⎝⎭证(1)∀ε>0,不妨设ε<1,要使3n+12n-3-32=112(2n-3)<ε,只需n>112ε+3,取N=3n+133n+13⎡11⎤+3,当n>N时,-<ε,故lim=.⎢2ε⎥n→∞2n-32n-322⎣⎦(2)∀ε>0,要使<ε,由于≤只需<ε,n>ε3,⎡1取N=⎢ε3⎣(3)|q|=|nq|=n⎤,当n>N时⎥⎦1<ε.1+αn(α>0).n>4=1+nα+<124nαnn(n-1)(1+α)6nnα+n(n-1)(n-2)α+Λ+α⎤}.⎥⎦3n<(n-1)(n-2)αn!nn<ε,n>⎡1⎢ε⎣⎤.⎥⎦εα,N=max{4,⎡24⎢εα3⎣(4)≤1n<ε,n>ε,N=⎛1⎫11(5) ++Λ+⎪-1(n-1)γn⎭⎝1γ22γ3⎛⎛11⎫⎛11⎫⎛11⎫⎫11⎡1=-⎪+-⎪+Λ+-⎪⎪-1=<ε,n>,N=⎢nε⎣ε⎝(n-1)n⎭⎭⎝⎝12⎭⎝23⎭⎤.⎥⎦1(n+1)n→∞3/2+Λ+1(2n)3/2≤n(n+1)3/2<<ε,n>ε,N=⎡1⎢ε2⎣⎤.⎥⎦5.设liman=0,{bn}是有界数列,即存在常数M,使得|bn|<M(n=1,2,Λ),证明limanbn=0.n→∞证∀ε>0,∃正整数 N,使得|an|<故limanbn=0.n→∞εM,|anbn|=|an||bn|≤εMγM=ε,6.证明limn→∞=1.证∀ε>0,要使1|n(1+ε)n1<ε,只需n(1+ε)n<1.4nε1+nε+nn(n-1)<ε(n-1)ε<4nε,只需<1,n>ε,N=⎡4⎢ε2⎣⎤.⎥⎦7.求下列各极限的值:(1)limn→∞=limn→∞=0.22(2)limn→∞n+3n-1004n-n+2(2n+10)n+n =limn→∞1+3/n-100/n4-1/n+2/n=.(3)limn→∞=limn→∞(2+10/n)1+1/nn=16.-21⎫⎛(4)lim 1+⎪n→∞n⎭⎝-2n⎡1⎫⎤⎛=⎢lim 1+⎪⎥n→∞n⎭⎥⎝⎢⎣⎦=e.-21⎫1⎛(5)lim 1-⎪=limn-1n→∞n→∞n⎭⎝1⎫⎛1⎫⎛1+1+⎪⎪n-1⎭⎝n-1⎭⎝=1⎫⎛lim 1+⎪n→∞n-1⎭⎝1⎫⎛(6)lim 1-⎪n→∞n⎭⎝nnnn-1=1⎫⎛lim 1+⎪n→∞n-1⎭⎝nn1e.⎡⎛1⎫⎤11⎫⎛=lim⎢1-⎪⎥,取q∈(,1),∃N,当n>N时, 1-⎪<qn→∞n⎭⎥en⎭⎝⎢⎣⎝⎦⎡⎛1⎫⎤1⎫⎛1-=0,即lim1-⎢⎥⎪⎪n→∞nn⎝⎭⎝⎭⎢⎥⎣⎦nnnnn⎡⎛1⎫⎤nn0<⎢1-⎪⎥<q,limq=0,limn→∞n→∞n⎭⎥⎢⎣⎝⎦nnn=0.1⎫1⎫1⎫1⎛⎛⎛(7)lim 1-2⎪=lim 1+⎪lim 1-⎪=e=1.n→∞n→∞n⎭n⎭n→∞⎝n⎭e⎝⎝8.利用单调有界序列有极限证明下列序列极限的存在性:(1)xn=xn<1+(2)xn=11+11γ212+1+Λ+1n,xn+1=xn+=2-12+1n1(n+1)>xn,+Λ+1(n-1)n11n<2.xn单调增加有上界,故有极限.,xn+1=xn+n+1+2+1+Λ++1>xn,1-n1111⎛111⎫1<1.xn=+2+Λ+n=1++2+Λ+n-1⎪=2222⎝222⎭21-12xn单调增加有上界,故有极限.(3)xn=1n+1+1n+2+Λ+1n+n.xn+1-xn=12n+2-1n+1=-12n+2<0,xn+1<xn,xn>0,xn单调减少有下界,故有极限.(4)xn=1+1+12!+Λ+1n!.xn+1-xn=1(n+1)!>0,1⎫⎛11⎫1⎫1⎛⎛1xn≤2+1-⎪+-⎪+Λ+-⎪=3-<3.2⎭⎝23⎭n⎝⎝n-1n⎭xn单调增加有上界,故有极限.11⎫⎛9.证明e=lim 1+1++Λ+⎪.n→∞2!n!⎭⎝1⎫1n(n-1)1n(n-1)Λ(n-k+1)1⎛证 1+⎪=1+n+2+Λ++knn2!nk!n⎝⎭Λ+n(n-1)Λ(n-n+1)1n!nnn=2+1⎛1⎫1⎛1⎫⎛k-1⎫1⎛1⎫⎛n-1⎫1-+1-Λ1-+1-Λ1-⎪⎪⎪⎪⎪2!⎝n⎭k!⎝n⎭⎝n⎭n!⎝n⎭⎝n⎭1n1⎫11⎫⎛⎛<1+1++Λ+.e=lim 1+⎪≤lim 1+1++Λ+⎪.n→∞n→∞2!n!n⎭2!n !⎭⎝⎝对于固定的正整数k,由上式,当n>k 时,1⎫1⎛1⎫1⎛1⎫⎛k-1⎫⎛1+>2+1-+1-Λ1-⎪⎪⎪⎪,n⎭2!⎝n⎭k!⎝n⎭⎝n⎭⎝11⎫⎛令n→∞得e≥1+1++Λ+⎪,2!k!⎝⎭11⎫11⎫⎛⎛e≥lim 1+1++Λ+=lim1+1++Λ+⎪n→∞⎪.k→∞2!k!2!n!⎝⎭⎝⎭10.设满足下列条件:|xn+1|≤k|xn|,n=1,2,Λ,其中是小于1的正数.证明limxn=0.n→∞nn-1证由|xn+1|≤k|xn|≤k|xn-1|≤Λk|x1|→0(n→∞),得limxn=0.n→∞第五篇:北大版高等数学第一章函数及极限答案习题1.5 习题1.5 1.试用ε-δ说法证明(1)1+x在x=0连续(2)sin5x在任意一点x=a连续.证(1)∀ε>0,要使|x<ε,|x|<221+x-21+0|=2x22<ε.由于22x22≤x,只需221+x+11+x+11+0|<ε,故1+x在x=0连续.5(x-a)2|<ε.ε,取δ=ε,则当|x|<δ时有|1+x-5x+5a2||sin(2)(1)∀ε>0,要使|sin5x-sin5a|=2|cos由于2|cos取δ=5x+5a2||sin5(x-a)2|≤5|x-a|,只需5|x-a|<ε,|x-a|<ε5,ε5,则当|x-a|<δ时有|sin5x-sin5a|<ε,故sin5x在任意一点x=a连续.2.设y=f(x)在x0处连续且f(x0)>0,证明存在δ>0使得当|x-x0|<δ时f(x)>0.证由于f(x)在x0处连续,对于ε=f(x0)/2,存在存在δ>0使得当|x-x0|<δ时f(x)-f(x0)|<f(x0)/2, 于是f(x)>f(x0)-f(x0)/2=f(x0)/2>0.3.设f(x)在(a,b)上连续,证明|f(x)|在(a,b)上也连续,并且问其逆命题是否成立?证任取x0∈(a,b),f在x0连续.任给ε>0,存在δ>0使得当|x-x0|<δ时|f(x)-f(x0)|<ε,此时||f(x)|-|f(x0)||≤|f(x)-f(x0)|<ε,故|f|在x0连续.其逆命题⎧1,x是有理数不真,例如f(x)=⎨处处不连续,但是|f(x)|≡1处处连续.⎩-1,x是无理数4.适当地选取a,使下列函数处处连续: 2⎧⎧ln(1+x), x≥1,⎪1+x,x<0,(1)f(x)=⎨(2)f(x)=⎨⎩aarccosπx,x<1.⎪⎩a+x x≥0;解(1)limf(x)=limx→0-x→0-x→1+x→1+1+x2=1=f(0),limf(x)=f(0)=a=1.x →0+x→1-x→1-(2)limf(x)=limln(1+x)=ln2=f(1),limf(x)=limaarccosπx=-a=f(1)=ln2,a=-ln2.5.利用初等函数的连续性及定理3求下列极限:(1)limcosx→+∞1+x-x=22x=coslimx→+∞1+x-xx=cos0=1.(2)limxx →2x.sin2xsin3x2sin2x(3)limex→0sin3x=elimx→0=e3.=arctanlimx →∞(4)limarctanx→∞x+8x+124x+8x+124=arctan1=π4.1(5)limx→∞( x+1-3|x|x+1+22x-2)|x|=⎤⎥=2x-2⎦x→x02lim⎡(x→∞⎣x+1-22x-2)|x|⎤⎦=⎡lim⎢x→∞⎣x→x0⎡⎤3lim⎢⎥=22x→∞⎣1+1/x+1-2/x⎦g(x)32.6.设limf(x)=a>0,limg(x)=b,证明lim)f(x)x→x0lim[(lnf(x))g(x)]=a.=a.bb证lim)f(x)x→x0g(x)=lim)ex→x0(lnf(x))g(x)=ex→x0=eblna7.指出下列函数的间断点及其类型,若是可去间断点,请修改函数在该点的函数值,使之称为连续函数:(1)f(x)=cosπ(x-[x]),间断点n∈Z,第一类间断点.(2)f(x)=sgn(sinx),间断点nπ,n∈Z,第一类间断点.⎧x,x≠1,(3)f(x)=⎨间断点x=1,第一类间断点.⎩1/2,x=1.⎧x+1,0≤x≤1⎪(4)f(x)=⎨间断点x=1,第二类间断点.π,1<x≤2,⎪sinx-1⎩⎧1,0≤x≤1,⎪2-x⎪(5)f(x)=⎨x,1<x≤2,间断点x=2,第一类间断点.⎪1⎪,2<x≤3.⎩1-x228.设y=f(x)在R上是连续函数,而y=g(x)在R上有定义,但在一点x0处间断.问函数h(x)=f(x)+g(x)及ϕ(x)=f(x)g(x)在x0点是否一定间断?解h(x)=f(x)+g(x)在x0点一定间断.因为如果它在x0点连续,g(x)=(f(x)+g(x))-f(x)将在x0点连续,矛盾.而ϕ(x)=f(x)g(x)在x0点未必间断.例如f(x)≡0,g(x)=D(x).。

高等数学第一章函数极限练习题

高等数学第一章函数极限练习题
(1 x ) 1 lim x 0 x
- 17 -
习题课(一)
例7
第 一 章 函 数 极 限 连 续

x2 1 ax b] 0. 求常数 a, b, 使得 lim[ x x 1 x2 1 0 lim[ ax b] x x 1 (1 a ) x 2 (b a ) x 1 b lim x x 1 1 a 0, a b 0
第 一 章 函 数 极 限 连 续
x
3 2 1 ) e 3 原式 lim [(1 x 1 x x 1 lim [sin x 1 sin x 1]
x 1 3 x 3 ) ] (
sin x 1 sin x 1 x 1 x 1 x 1 x 1 2 cos sin 2 2 x 1 x 1 | cos | 1 2 1 x 1 x 1 lim sin 0 lim sin x x x 1 x 1 2 所以 原式 0
f A f f f
-6-
2
函数的趋向过程
习题课(一)
定义的四个主要部分
(1) 对任意给定的 , (2) 总存在 ,
第 一 章 函 数 极 限 连 续
(3) 使当 时,
(4) 恒有不等式 成立,
(1),(4)用来刻划函数的趋向过程 (2),(3)用来刻划自变量的趋向过程 (3)起着控制(4)的作用 例5 叙述下列极限的定义 (1) lim xn
1 lim f ( x ) x 0 2
- 20 -
(3)
设 f ( x)
x 1
x 1 e x
习题课(一)
, 考察 lim f ( x ), lim f ( x )

北大版高等数学课后习题答案_完整版

北大版高等数学课后习题答案_完整版

3. 解下列不等式 : (1) | x | | x 1| 3.\;(2) | x 2 3 | 2. 解 (1)若x 0, 则 x 1 x 3, 2 x 2, x 1, (1, 0); 若0 x 1, 则x 1 x 3,1 3, (0,1); 若x 1, 则x x 1 3, x 3 / 2, (1,3 / 2). X (1, 0) (0,1) (1,3 / 2). (2) 2 x 2 3 2,1 x 2 5,1 | x |2 5,1 | x | 5, x (1, 5) ( 5, 1). 4. 设a, b为任意实数,(1)证明 | a b || a | | b |;(2)设 | a b | 1, 证明 | a || b | 1. 证(1) | a || a b (b) || a b | | b || a b | | b |,| a b || a | | b | . (2) | a || b (a b) || b | | a b || b | 1. 5. 解下列不等式 : (1) | x 6 | 0.1;(2) | x a | l. 解(1)x 6 0.1或x 6 0.1.x 5.9或x 6.1. X (, 6.1) (5.9, ). (2)若l 0, X (a l , ) (, a l ); 若l 0, x a; 若l 0, X (, ). 6. 若a 1, 证明0 n a 1 a 1 , 其中n为自然数. n
x4
1 2x 3 ( 1 2 x 3)( x 2)( 1 2 x 3) lim x 4 x 2 ( x 2)( x 2)( 1 2 x 3)
lim
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章总练习题221.:581 2.3|58|1422.|58|6,586586,.3552(2)33,52333,015.5(3)|1||2|1(1)(2),2144,.22|2|,.2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2.解222312312,4,(2).32,41(2), 4.313.1.22,4(1)44,0.1,0.4.:1232(1)2.222221211,.22123222n n y x y y y x y y x x x x x x x x x x n n n n ->=--≤⎧⎪=⎨->⎪⎩<+≥-<++<++>≥-≠+++++=-+==++的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则解证1231111121211222112312222222124(1)(1)3222,22221..1(1)(2)123(1).(1)1(11)1(1)1,(1)(1)n n n n n n n n n n n n n n n n n n n n n x nx x x nxx x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===--即等式对于也成立故等式对于任意正整数皆成立当时证1,1212.1(1)123(1)(1)(1)n n n nnn n x nx x x nxn x n x x +--++++++++=++-等式成立设等式对于成立,则122122112211221221(1)(1)(1)(1)1(1)(12)(1)(1)1(1)(2)(1)(1)1(1)(2)(1)(1)1(2)(1),(1)1n n n n n n n n n n n n n n n n n n n x nx x n x x n x nx x x n x x n x nx x x x n x n x nx x x x n x n x n x x n ++++++++++-+++-+=--+++-++=--+++-++=--+++-++=--+++=-+即等式对于成立.,.|2|||25.()(1)(4),(1),(2),(2);(2)();(3)0()(4)224211222422(1)(4)1,(1)2,(2)2,(2)0.41224/,2(2)()x x f x xf f f f f x x f x x f f f f x x f x +--=---→→----------==--==-====----≤-=由归纳原理等式对于所有正整数都成立设求的值将表成分段函数当时是否有极限:当时是否有极限?解00022222222;2,20;0,0.(3).lim ()2,lim ()0lim ().(4).lim ()lim (4/)2,lim ()lim 22lim (),lim () 2.6.()[14],()14(1)(0),x x x x x x x x x x x f x f x f x f x x f x f x f x f x x f x x f →-→+→-→--→--→-+→-+→--→-⎧⎪-<≤⎨⎪>⎩==≠=-======--无因为有设即是不超过的最大整数.求003,;2(2)()0?(3)()?391(1)(0)[14]14,1467.[12]12.244(2).lim ()lim[14]14(0).(3).()12,()x y x x f f f x x f x x f f f f x y f f x f x →→+⎛⎫⎪⎝⎭==⎛⎫⎡⎤⎡⎤=-=-=-=-+=-=-=- ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦=-=-==-的值在处是否连续在连续因为不连续因为解111111.7.,0,,:(1)(1);(2)(1).n n n n n n a b a b n b a b a n b n a b a b a++++=-≤<--<++<--设两常数满足对一切自然数证明1111111()()(1),(1).118.1,2,3,,1,1.:{},{}..111,1,7,111n n n n n n n n n n n n nn n n n n n n b a b a b b a a b b b b n b b a b a b a n a b an a b n n a b a b a b n nn ++--+++--+++=<+++=+--->+-⎛⎫⎛⎫==+=+ ⎪ ⎪⎝⎭⎝⎭<+=++⎛+ ⎝类似有对令证明序列单调上升而序列单调下降,并且令则由题中的不等式证证=11111111111(1)1,111111111(1)11(1)1111111,11111.1111(1)11n n nn n nn nn nn n n n n n n n n n n n n n n n n n n n n n +++++++⎫⎛⎫-+⎪ ⎪+⎛⎫⎭⎝⎭<++ ⎪⎝⎭-+⎛⎫⎛⎫⎛⎫+-+<++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+-+<+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎛⎫⎝⎭++< ⎪+⎝⎭111111121111111111(1)1111(1)11111111111111111.1111111.111n n nn n nn n n n n n n n n n n n n n n n n n nn n n n n +++++++⎛⎫-+⎪ ⎪+⎝⎭-+⎛⎫⎛⎫⎛⎫++<+-+ ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+<+-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++<+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫++>+ ⎪++⎝⎭⇔我们证明22111211111(1)11..(1)(1)1111,1,1,11.nn n n n n n n n n n n e e e n n n n ++++>+++++⇔>++⎛⎫⎛⎫⎛⎫⎛⎫→∞+→+→+<<+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭最后不等式显然成立当时故9.求极限22222222221111lim 1111234111111112341324351111().2233442210.()lim (00, ()lim n n n n n n n n n n n n nxf x a nx ax nxf x nx a →∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭++==→→∞=≠+===+作函数)的图形.解解0;1/,0.x x ⎧⎨≠⎩1111.?,()[,]|()|,[,].,(),[,],max{||,||}1,|()|,[,].,|()|,[,],(),[,].12.f x a b M f x M x a b M N f x N x a b M M N f x M x a b M f x M x a b M f x M x a b <∀∈≤≤∀∈=+<∀∈<∀∈-<<∀∈1在关于有界函数的定义下证明函数在区间上为有界函数的充要条件为存在一个正的常数使得设存在常数使得M 取则有反之若存在一个正的常数使得则证12121212:()()[,],()()()()[,].,,|()|,|()|,[,].|()()||()||()|,|()()||()||()|,[,].113.:()cos 0y f x y g x a b f x g x f x g x a b M M f x M g x M x a b f x g x f x g x M M f x g x f x g x M M x a b f x x x xπ==+<<∀∈+≤+<+=<∀∈==证明若函数及在上均为有界函数则及也都是上的有界函数存在证明在的任一证,0().11(,),00,,,(),1()(,)0,()(21/2)cos(21/2)0,21/20().n x f x M n n M f n M n nf x f x n n n x f x δδδδδδπ→->><>=>-=→=++=→∞+→n 邻域内都是无界的但当时不是无穷大量任取一个邻域和取正整数满足和则故在无界.但是x 故当时不是无穷大量证11111000114.lim (1)ln (0).1ln 1,ln ln(1),.lim lim 10.ln(1)ln(1)lim lim ln(1)ln lim(1)ln 1,ln (1)ln ().ln(1)15.()()nn nn n n n n y y y y y n nn n x x x xx y x y n y x n y y y y e y y xn x x n y f x g x →∞→∞→∞→→→-=>-==+==-=++=+=+==-=→→∞+证明令则注意到我们有设及在实轴上有证00002022222220000.:()(),,()lim ()lim ()().1cos 116.lim.22sin 1cos 2sin 1sin 12lim lim lim lim 1422n n n n n x x x y y f x g x x x x f x f x g x g x x x x x y y x x y y →∞→∞→→→→→→===-=⎛⎫-==== ⎪⎝⎭定义且连续证明若与在有理数集合处处相等,则它们在整个实轴上处处相等.任取一个无理数取有理数序列证明证证0011000000001.2ln(1)17.:(1)lim 1;(2)lim .ln(1)(1)lim lim ln(1)ln lim(1)ln 1.(1)11(2)lim lim lim lim ln(1)ln(1)lim1.1x a xa y x y y y y y x a a a x x aa ax x x y y a a y e e e y x y y y e ye e e e e y e e e y x x x y ye e +→→→→→+→→→→→=+-==+=+=+==---====++==证明证0111018.()lim ()0,()lim ()()0.|()|,0||.0,0,0|||()|/.min{,},0||,|()()||()||()|,li x ax ay f x a f x y g x a f x g x g x M x a x a f x M x a f x g x f x g x M Mδεδδεδδδδεε→→====<<-<>><-<<=<-<=<=设在点附近有定义且有极限又设在点附近有定义,且是有界函数.证明设对于任意存在使得当时令则时故证m ()()0.x af xg x →=19.()(,),,()()|()|() () ()(),()(,).y f x c g x f x f x c g x c f x cc f x c g x g x =-∞+∞≤⎧⎪=>⎨⎪-<-⎩-∞+∞设在中连续又设为正的常数定义如下 当当当试画出的略图并证明在上连续0000000000000|()|,0,||lim ()lim ()()().(),0,||()lim ()lim ().(),().0,,0,x x x x x x x x f x c x x g x f x f x g x f x c x x f x c g x c c g x f x c g x c c δδδδεεδ→→→→<>-<===>>-<>=====><>一若则存在当时|f(x)|<c,g(x)=f(x),若则存在当时,g(x)=c,若则对于任意不妨设存在使证()0000121212|||()|.||.(),()(),|()()||()|,(),(),|()-()|0.()()min{(),}max{(),}().max{(),()}(|()()|()())/2.min x x f x c x x f x c g x f x g x g x f x c f x c g x c g x g x g x f x c f x c f x f x f x f x f x f x f x δεδεε-<-<-<≤=-=-<>==<=+--=-++得当时设若则若 则二利用证121212123123123111123{(),()}(|()()|(()())/2.120.()[,],[()()()],3,,[,].[,],().()()(),(),.()min{(),(),()},f x f x f x f x f x f x f x a b f x f x f x x x x a b c a b f c f x f x f x f x c x f x f x f x f x f ηηη=--++=++∈∈======设在上连续又设其中证明存在一点使得若则取即可否则设证31231313000000()min{(),(),()},()(),[,],,[,],().21.()(),()g(),,.0()g()()g()x f x f x f x f x f x f x x c a b f c y f x x g x x x kf x l x x k l l kf x l x x kf x l x x ηη=<<∈==+=+≠+在连续根据连续函数的中间值定理存在一点使得设 在点连续而在点附近有定义但在不连续问是否在连续其中为常数如果在连续;如果在解,l 0,000000||()[[()lg()]()]/.22.Dirichlet ..,()1;,()0;lim (),()11(1)lim 0;(2)lim (arctan )sin 12n n n n x x x x x g x kf x x kf x l x x x x D x x x D x D x D x x x x x →→∞→+∞=+-''→→→→+⎛⎫= ⎪+⎝⎭不连续,因否则将在连续证明函数处处不连续任意取取有理数列则取无理数列则故不存在在不连续.23.求下列极限:证222001/112132100;2tan 5tan 5/5(3)lim lim 5.ln(1)sin [[ln(1)]/]sin /1lim(1).24.()[0,),0().0,(),(),,().{x x y x y n n x x x x x x x x x x x y e y f x f x x a a f a a f a a f a π→→→→+=====++++=+==+∞≤≤≥===设函数在内连续且满足设是一任意数并假定一般地试证明11},lim .lim ,(),().(),{}()0(1,2,),{}n n n n n n n n n n n n a a l a l f x x f l l a f a a a a f a n a →∞→∞++====≤=≥=单调递减且极限存在若则是方程的根即单调递减.又单调递减有下界,证111lim ,lim lim ()(lim )().25.()(,),:(0)1,(1),()()().()((,)).()()().()()n n n n n n n n n x n n a l a l a f a f a f l y E x E E e E x y E x E y E x e x E x x E x E x E nx E x +→∞→∞→∞→∞======-∞+∞==+==∀∈-∞+∞++==故有极限.设则设函数在内有定义且处处连续并且满足下列条件证明用数学归纳法易得于是证11.,()(11)(1).1(0)(())()()(),().().1111,(1)()()()(),().11()()().,n n n n n n nn mmm n n n E n E E e E E n n E n E n e E n E n e E n e n E E n E n E e E E e n n n n m E E m E e e r E n n n -=++====+-=-=--======⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭设是正整数则于对于任意整数对于任意整数即对于所有有理数lim ().,,(),()lim ()lim ().nn n r x x x x n n n r e x x E x E x E x e e e e →∞→∞→∞=→====n 对于无理数取有理数列x 由的连续性的连续性。

相关文档
最新文档