线性代数-N维向量空间-第5节-标准正交基
线性代数第五章 正交性
![线性代数第五章 正交性](https://img.taocdn.com/s3/m/80efa739a36925c52cc58bd63186bceb19e8edc4.png)
b = (-1, -1, 2, 2),
中每一个正交.
c = (3, 2, 5, 4),
20
练 习:
设 q1=
1 2
(1,1,1,1)T, q2=
1 2
(1,1,1,
1)T,
用两种方法将它们扩充成 4的一组规范正交基.
作业:
5.1节练习: 1. 2.
5.4节练习: 1. 2.
5.6节练习: 8.
课后练习:
在欧氏空间 4里找出两个单位向量,使它们同时与向量
a = (2, 1, -4, 0),
v2 ||v2||
正 交
基
vn=
xn
xn, v1,
v1 v1
v1
xn, v2,
v2 v2
v2
…
xn, vn1 vn1, vn1
vn1
un
=
vn ||vn||
Span(x1, x2, . . . , xn ) = Span(v1, v2, . . . , vn )
例5
设V = span(x1, x2, x3, x4),求 V的一组规范正交基. 其中x1= (1,−1, 1,−1)T, x2 = (1, 1, 3,−1) T , x3= (2,0, 4,−2)T , x4 = (3, 7, 1, 3)T .
||x|| ||y||
定 理 1 | xTy | ||x|| ||y|| 柯西-施瓦兹不等式 定 理 2 x y xT y = 0 称 x 和 y 正交 .
推广至更一般 向量空间 V
3
内积(P213 5.4 内积空间)
定 义 在向量空间V上定义一种运算,在这种运算下,V 中任意 一对向量 x 和 y,都对应一个实数,记作 x, y,若还满足: 对任意的 x, y, z ∈ V 及 s, t ∈ R,成立 (1) x, x 0 , 取等号当且仅当 x = 0 .
内积空间的标准正交基
![内积空间的标准正交基](https://img.taocdn.com/s3/m/3704abc66429647d27284b73f242336c1eb9300a.png)
线性无关性的证明可以通过构造一个行列式来证明,该行列式的值等于所有线性组合系数的乘积,如 果该行列式的值为零,则说明存在一组不全为零的实数,使得线性组合等于零向量,从而证明了线性 无关性。
03 标准正交基的构造方法
正交化过程
01
选取一组线性无关的向量作为初始基底。
02
通过正交化过程,将这组线性无关的向量转化为正交向量组。
内积空间的标准正交基
目录
• 引言 • 标准正交基的性质 • 标准正交基的构造方法 • 标准正交基的应用 • 标准正交基的例子
01 引言
什么是内积空间
交换律
01
x·y=y·x
分配律
02
z·(x+y)=z·x+z·y
非负性
03
x·y≥0
内积空间的标准正交基的定义
• 标准正交基是指由单位向量组成的向量组,这些单位向量两两正交,即它们的点积为0。对于一个内积空间,如果存在一组 线性无关的向量,它们两两正交并且模长为1,那么这组向量就构成了该内积空间的标准正交基。
VS
描述
这n个基向量是正交的,即它们的内积都为 0。同时,它们的模都为1,即对于每一个 基向量,其各分量平方和都等于1。
THANKS FOR WATCHING
感谢您的观看
正交性
两两正交
标准正交基中的向量两两正交,即对于任意两个不同的向量$e_i$和$e_j$,如果$i neq j$,则$e_i cdot e_j = 0$。
正交化过程
在构造标准正交基时,需要先选择一组线性无关的向量,然后通过正交化过程将 它们转化为正交基。
基的唯一性
唯一性定理
对于同一个内积空间,如果存在两个不同的标准正交基,则 这两个基之间可以通过一个可逆线性变换相互转化。
标准正交基怎么求
![标准正交基怎么求](https://img.taocdn.com/s3/m/537f7a52a66e58fafab069dc5022aaea998f4185.png)
标准正交基怎么求标准正交基是线性代数中的重要概念,它在向量空间的正交性质和标准化表示方面起着关键作用。
那么,接下来我们就来探讨一下标准正交基的求解方法。
首先,我们需要明确标准正交基的定义。
在n维实内积空间中,如果向量组{v1, v2, ..., vn}满足以下两个条件,一是向量组中的向量两两正交,即vi·vj=0(i≠j),二是向量组中的每一个向量的模长为1,即||vi||=1,则称向量组{v1, v2, ..., vn}为标准正交基。
接下来,我们来讨论标准正交基的求解方法。
一般来说,求解标准正交基的方法有Gram-Schmidt正交化方法和矩阵的特征值分解方法。
首先是Gram-Schmidt正交化方法。
对于给定的线性无关向量组{u1, u2, ..., un},我们可以通过以下步骤来求解标准正交基:1. 取第一个向量v1=u1,进行标准化处理,即v1=u1/||u1||。
2. 对于第i个向量ui,我们可以通过以下公式来求解vi:vi=ui-Σ(j=1 to i-1)(ui·vj)·vj。
然后进行标准化处理,即vi=vi/||vi||。
3. 重复以上步骤,直到求得n个标准正交向量{v1, v2, ..., vn}。
其次是矩阵的特征值分解方法。
对于给定的矩阵A,我们可以通过以下步骤来求解标准正交基:1. 首先,求解矩阵A的特征值和对应的特征向量。
2. 将特征向量进行标准化处理,即将每个特征向量除以其模长。
3. 如果A是对称矩阵,那么它的特征向量是两两正交的,我们可以直接将它们作为标准正交基。
需要注意的是,对于一般的矩阵,其特征向量未必是两两正交的,所以在使用特征值分解方法求解标准正交基时,需要进行额外的正交化处理。
综上所述,我们可以通过Gram-Schmidt正交化方法和矩阵的特征值分解方法来求解标准正交基。
在实际应用中,我们可以根据具体情况选择合适的方法来求解标准正交基,以满足我们的需求。
线性代数 向量组的正交性
![线性代数 向量组的正交性](https://img.taocdn.com/s3/m/71d3d27167ec102de2bd89d1.png)
(iii) (kα, β )= k(α,β ) =(α, kβ )
(iv) (α + β ,γ )= (α,γ ) +(β ,γ ) (v) (α,α )= a12 + a22 + + an2 = α 2
2.向量的单位化
1 α = 1 α =1
α
α
1 α为单位向量。 α
二、向量的夹角。 三、向量的正交性:
反例:α1 = (1,0,1),α2 = (0,0,1)
四 向量空间的正交基
若α1 ,α 2 ,
,α
是向量空间
r
V的一个基
,
且α
1
,α
2
,
,α r是两两正交的非零向量 组,则称α1 ,α 2 , ,α r是
向量空间 V的正交基 .
例1 已知三维向量空间中两个向量
⎜⎛ 1 ⎞⎟
α1 = ⎜1⎟,
⎜⎝ 1 ⎠⎟
,
e
是向量空间
r
V (V
⊂
Rn )的一个基 ,如果 e1 , e2 , , er两两正交且都是单位
向量,则称 e1 , e2 , , er是 V的一个规范正交基 .
例如
⎜⎛1 2⎟⎞ ⎜⎛ 1 2 ⎟⎞ ⎜⎛ 0 ⎟⎞ ⎜⎛ 0 ⎟⎞
e1
=
⎜1 ⎜ ⎜⎜⎝
0 0
2⎟⎟,e2 ⎟⎟⎠
=
⎜ ⎜ ⎜⎜⎝
−
即
λi = eiT α = (α, ei ).
六、向量组的正交规范化:
公式:设α1,α2 , ,αm为线性无关向量组,令
β1 =α1
β2 = α2 −((αβ12,,ββ11))β1
β3
=
第五章习题解答
![第五章习题解答](https://img.taocdn.com/s3/m/87826e482e3f5727a5e962bd.png)
习 题 五1. 设V 是数域F 上向量空间,假如V 至少含有一个非零向量α,问V 中的向量是有限多还是无限多?有没有n (n ≥ 2)个向量构成的向量空间? 解 无限多;不存在n (n ≥ 2)个向量构成的向量空间(因为如果F 上一个向量空间V 含有至少两个向量, 那么V 至少含有一个非零向量α , 因此V 中含有α , 2α , 3α , 4α , …,这无穷多个向量互不相等,因此V 中必然含有无穷多个向量).2. 设V 是数域F 上的向量空间,V 中的元素称为向量,这里的向量和平面解析几何中的向量α,空间解析几何中的向量β有什么区别?解 这里的向量比平面中的向量意义广泛得多,它可以是多项式,矩阵等,不单纯指平面中的向量.3. 检验以下集合对所指定的运算是否构成数域F 上的向量空间.(1)集合:全体n 阶实对称矩阵;F :实数域;运算:矩阵的加法和数量乘法;(2)集合:实数域F 上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, 0) k • (a 1, b 1)=(ka 1, 0)(3)集合:实数域上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, b 1+b 2)k •( a 1, b 1)=(0, 0)解 (1) 是; (2) 不是(因为零向量不唯一);(3) 不是(不满足向量空间定义中的(8)).4. 在向量空间中,证明,(1) a (-α)=-a α=(-a ) α ,(2) (a -b )α=a α-b α ,a ,b 是数,α是向量.证明 (1) a a a a =+-=+-))(()(αααα 0= 0ααa a -=-∴)(又 ==+-=+-a a a a a 0))(()(ααα 0ααa a -=-∴)(综上, .)()(αααa a a -=-=-(2) ααααααb a b a b a b a -=-+=-+=-)())(()(.5. 如果当k 1=k 2=…=k r =0时,k 1α1+k 2α2+…+k r αr =0, 那么α1, α2, …, αr 线性无关. 这种说法对吗?为什么?解 这种说法不对. 例如设α1=(2,0, -1), α2=(-1,2,3), α3=(0,4,5), 则0α1+0α2+0α3=0. 但α1, α2, α3线性相关, 因为α1+2α2-α3=0.6. 如果α1, α2, …, αr 线性无关,而αr +1不能由α1, α2, …, αr 线性表示,那么α1, α2,…, αr , αr +1线性无关. 这个命题成立吗?为什么? 解 成立. 反设α1, α2,…, αr , αr +1线性相关,由条件α1, α2, …, αr 线性无关知αr +1一定能由α1, α2, …, αr 线性表示,矛盾.7. 如果α1, α2, …, αr 线性无关,那么其中每一个向量都不是其余向量的线性组合. 这种说法对吗?为什么?解 对. 反设 αi = k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k r αr ,则 k 1α1+k 2α2+…k i -1αi-1+(-1) αi +k i+1αi +1 +…+k r αr =0. 由于-1≠0, 故α1, α2, …, αr 线性相关.8. 如果向量α1, α2, …, αr 线性相关,那么其中每一个向量都可由其余向量线性表示. 这种说法对吗?为什么?解 不对. 设α1=(1,0) , α2=(2,0) , α3=(0,1) , 则α1, α2, α3线性相关, 但α3不能由α1, α2线性表示.9. 设α1= (1, 0, 0), α2= (1, 2, 0), α3=(1, 2, 3)是F 3中的向量,写出α1, α2, α3的一切线性组合. 并证明F 3中的每个向量都可由{α1, α2, α3}线性表示.解 k 1α1+k 2α2+k 3α3 k 1, k 2 , k 3∈F .设k 1α1+k 2α2+k 3α3=0,则有⎪⎩⎪⎨⎧==+=++030220332321k k k k k k , 解得 k 1= k 2 =k 3=0.故α1, α2, α3线性无关.对任意(a,b,c)∈F 3, (a,b,c)=3213)32())322((αααc c b c ba +-+--,所以F 3中的每个向量都可由{α1, α2, α3}线性表示.10. 下列向量组是否线性相关(1) α1= (1, 0, 0), α2= (1, 1, 0), α3=(1, 1, 1);(2) α1=(3, 1, 4), α2=(2, 5, -1), α3=(4, -3, 7).解 (1) 线性无关; (2) 线性无关.11. 证明,设向量α1, α2, α3线性相关,向量α2, α3, α4线性无关,问:(1) α1能否由α2, α3线性表示?说明理由;(2) α4能否由α1, α2, α3线性表示?说明理由.解 (1)因为α2, α3线性无关而α1, α2, α3线性相关,所以α1能由α2, α3线性表示;(2)反设α4能由α1, α2, α3线性表示,但α1能由α2, α3线性表示,故α4能由α2, α3线性表示,这与α2, α3, α4线性无关矛盾,所以α4不能由α1, α2, α3线性表示.12. 设α1= (0, 1, 2), α2= (3, -1, 0), α3=(2, 1, 0),β1= (1, 0, 0), β2= (1, 2, 0), β3=(1, 2, 3)是F 3中的向量. 证明,向量组{α1, α2, α3}与{β1, β2, β3}等价.证明 (β1, β2, β3)=(321,,εεε)A(α1, α2, α3)= (321,,εεε)B其中A=⎪⎪⎪⎭⎫ ⎝⎛300220111, B=⎪⎪⎪⎭⎫ ⎝⎛-002111230.易验证A , B 均可逆, 这样 (β1, β2, β3) = (α1, α2, α3 )(B -1A )(α1, α2, α3) = (β1, β2, β3)(A -1B ) ,故向量组{α1, α2, α3}与{β1, β2, β3}等价.13. 设数域F 上的向量空间V 的向量组{α1, α2, …, αs }线性相关,并且在这个向量组中任意去掉一个向量后就线性无关. 证明,如果∑=s i i ik 1α=0 (k i ∈F ),那么或者k 1=k 2=…=k s =0, 或k 1,k 2,…,k s 全不为零.证明 由条件∑=s i i ik 1α=0 (k i ∈F )知k i αi = - (k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ) (*)(1) 当k i =0时,(*)式左边等于零,故k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs =0. 由于这s -1个向量线性无关,所以k 1=k 2=…=k s =0.(2) 当k i ≠0时, αi = -ik 1(k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ),下证对于任意i j s j ≠∈},,2,1{ 时k j ≠0. 反设k j =0, 则αi 可由s -2个向量线性表示.这与任意s -1个向量线性无关矛盾,所以此时k 1,k 2,…,k s 全不为零.14. 设α1=(1, 1), α2=(2, 2), α3=(0, 1) , α4=(1, 0)都是F 2中的向量. 写出{α1, α2, α3, α4}的所有极大无关组.解 α1, α3 ; α1, α4 ; α2 ,α3 ; α2 ,α4 ; α3 ,α4 .15. 设A 1=⎪⎪⎭⎫ ⎝⎛-2001,A 2=⎪⎪⎭⎫ ⎝⎛-0021, A 3=⎪⎪⎭⎫ ⎝⎛0120,A 4=⎪⎪⎭⎫ ⎝⎛-2142∈M 2×2(F ). 求向量空间M 2×2(F )中向量组{A 1, A 2,A 3, A 4}的秩及其极大无关组. 解 秩{A 1, A 2,A 3, A 4}=3, {A 1, A 2,A 3}是向量组{A 1, A 2, A 3, A 4}的一个极大无关组.16.设由F 4中向量组{α1=(3,1,2,5),α2=(1,1,1,2),α3=(2,0,1,3),α4 =(1,-1,0,1),α5 =(4,2,3,7)}. 求此向量组的一个极大无关组.解 (α1,α2,α3,α4,α5)= (4321,,,εεεε)A , 其中A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-71325301122101141213, 则秩A =2. 又(α1,α2 )= (4321,,,εεεε)B , 其中B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛25121113. 秩B =2, 故{α1,α2}线性无关, 它是向量组{α1,α2,α3,α4,α5}的一个极大无关组.17. 证明,如果向量空间V 的每一个向量都可以唯一表成V 中向量α1, α2, …, αn 的线性组合,那么dim V =n .证明 由条件零向量可唯一的表示成α1, α2, …, αn 的线性组合, 这说明α1, α2, …, αn 线性无关, 故可作为V 的基, 从而dim V =n .18. 设β1, β2,…,βn 是F 上n (>0)维向量空间V 的向量,并且V 中每个向量都可以由β1, β2,…,βn 线性表示. 证明, {β1, β2,…,βn }是V 的基.证明 由条件标准正交基{ e 1, e 2, …,e n }可由β1, β2,…,βn 线性表示, 反过来β1, β2,…,βn 又可由{ e 1, e 2, …,e n }线性表示,所以{ e 1, e 2, …,e n }和{β1, β2,…,βn }等价. 由{ e 1, e 2, …,e n }线性无关知{β1, β2,…,βn }线性无关,又因V 中每个向量都可以由β1, β2,…,βn 线性表示, 由基的定义知{β1, β2,…,βn }是V 的基.19. 复数集C 看作实数域R 上的向量空间(运算: 复数的加法,实数与复数的乘法)时,求C 的一个基和维数.解 基为{1, i }; dim C =2.20. 设V 是实数域R 上全体n 阶对角形矩阵构成的向量空间(运算是矩阵的加法和数与矩阵的乘法). 求V 的一个基和维数.解 基为E ii (i =1,2, …,n ); dim V =n .21. 求§5.1中例9给出的向量空间的维数和一个基.解 任意一个不等于1的正实数都可作为V 的基; dim V =1.22. 在R 3中,求向量α=(1, 2, 3)在基ε1=(1, 0, 0),ε2=(1, 1, 0),ε3=(1, 1, 1)下的坐标.解 (-1,-1,3)T .23. 求R 3中由基{α1, α2, αs }到基{β1, β2, β3 }的过渡矩阵,其中α1=(1, 0, -1), α2=(-1, 1, 0), α3=(1, 2, 3),β1=(0, 1, 1), β2=(1, 0, 1), β3=(1, 1, 1).解 所求过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛-32204230061. 24. 设{α1, α2,…, αn }是向量空间V 的一个基,求由这个基到基{α3, α4, …, αn ,α1, α2}的过渡矩阵.解 所求过渡矩阵为⎪⎪⎭⎫ ⎝⎛-0022n I I . 25. 已知F 3中向量α关于标准基ε1=(1, 0, 0),ε2=(0, 1, 0) ,ε3=(0, 0, 1)的坐标是(1, 2, 3),求α关于基β1=(1, 0, 1), β2=(0, 1, 1), β3=(1, 1, 3)的坐标.解 (1,2,0)T .26. 判断R n 的下列子集哪些是子空间(其中R 是实数域,Z 是整数集).(1) {(a 1, 0, …, 0, a n )| a 1, a n ∈R };(2) {(a 1, a 2, …, a n )|∑==ni i a 10,a 1, a 2, …, a n ∈R };(3) {(a 1, a 2, …, a n )|a i ∈Z , i =1, 2, …, n };解 (1) 是; (2) 是; (3) 不是(数乘不封闭).27. 设V 是一个向量空间,且V ≠{0}. 证明,V 不能表成它的两个真子空间的并集.证明 设W 1与W 2是V 的两个真子空间(1) 若21W W ⊆,则W 1⋃W 2= W 2≠V ;(2) 若21W W ⊇,则W 1⋃W 2= W 1≠V ;(3) 若21W W ⊄且12W W ⊄, 取1W ∈α但2W ∉α,2W ∈β但1W ∉β, 那么1W ∉+βα,否则将有1)(W ∈=-+βαβα,这与1W ∉β矛盾, 同理2W ∉+βα, 所以V 中有向量21W W ∉+βα,即V ≠21W W .28. 设V 是n 维向量空间,证明V 可以表示成n 个一维子空间的直和.证明 设{α1, α2,…, αn }是向量空间V 的一个基, (α1), (α2) ,…, (αn )分别是由α1, α2,…, αn 生成的向量空间, 要证(α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn )(1) 因为{α1, α2,…, αn }是V 的一个基, 所以V 中任一向量α都可由α1, α2,…, αn 线性表示, 此即(α1+α2+…+αn )= (α1)+ (α2)+…+ (αn ).(2) 对任意i ≠j ∈{1,2,…, n },下证 (αi )∩ (αj )={0}. 反设存在0 ≠∈x (αi )∩ (αj ),由∈x (αi )知存在k F ∈使得x =k αi ; 由 x ∈ (αj )知存在F l ∈使得x =l αj , 从而αi =kl αj , 即α1与α2线性相关, 矛盾, 所以 (αi )∩ (αj )={0}. 综上, (α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn ).29. 在R 3中给定两个向量组α1=(2, -1, 1, -1), α2=(1, 0, -1, 1),β1=(-1, 2, -1, 0), β2=(2, 1, -1, 1).求 (α1, α2)+ (β1, β2) 的维数和一个基.解 取R 4的标准正交基{4321,,,εεεε},于是(α1, α2, β1, β2)= (4321,,,εεεε)A ,其中 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1011111112012112 , 秩A = 4. 故α1, α2, β1, β2线性无关, 又因为 (α1, α2)∩ (β1, β2)={0},所以dim (α1, α2) + dim (β1, β2)= 4,{ α1, α2, β1, β2}是它的基.30. 设W 1, W 2都是向量空间V 的子空间,证明下列条件是等价的:(1) W 1⊆W 2;(2) W 1∩W 2=W 1;(3) W 1+W 2=W 2.证明 (i) (1)⇒(2) 因为W 1⊆W 2 , 所以W 1∩W 2=W 1. (ii) (2)⇒(3) W 1+W 2 ={α1+α2 | α1∈W 1, α2∈W 2} 由(2)知对任意α∈W 1, 都有α∈W 2 , 所以W 1+W 2 ={α1+α2 | α1, α2∈W 2}=W 2 .(iii) (3)⇒(1) W 1+W 2 ={α1,+α2 | α1∈W 1, α2∈W 2}=W 2 , 说明对任意α∈W 1, 都有α∈W 2 , 此即W 1⊆W 2 .31. 设V 是实数域R 上n 阶对称矩阵所成的α2向量空间;W 是数域R 上n 阶上三角矩阵所成的向量空间,给出V 到W 的一个同构映射.解 对∈∀A V (A =(a ij )且a ij = a ji )和B ∈W (B =(a ij ),当i>j 时, a ij =0) 定义f : V → WA B 易验证f 是V 到W 的一个同构映射.32. 设V 与W 都是数域F 上的向量空间,f 是V 到W 的一个同构映射,证明{α1, α2, …, αn }是V 的基当且仅当{f (α1), f (α2), …, f (αn )}是W 的基.证明 设{α1, α2, …, αn }是V 的基.(1) 由α1, α2, …, αn 线性无关知f (α1), f (α2), …, f (αn ) 线性无关.(2) 任取∈ηW , 由f 是同构映射知存在∈ξV 使得f (ξ)=η.但ξ=∑=n i i ia 1α, a i ∈F , f (ξ)=f (∑=n i i i a 1α)=)(1∑=n i i i f a α=η. 由η的任意性知{f (α1), f (α2), …, f (αn )}是W 的基.反过来, {f (α1), f (α2), …, f (αn )}是W 的基(1) 由f (α1), f (α2), …, f (αn )线性无关知α1, α2, …, αn 线性无关.(2) 任取∈ξV , 由f 是同构映射知存在∈ηW 使得f (ξ)=η.但η=∑=n i i i f k 1)(α= f (∑=n i i i k 1α), k i ∈F , 从而ξ=∑=ni i i k 1α, k i ∈F .由ξ的任意性知{ α1, α2, …, αn }是V 的基.补 充 题1. 设W 1, W 2是数域F 上向量空间V 的两个子空间. α,β是V 的两个向量,其中α∈W 2,但α∉ W 1,β∉W2. 证明:(1)对于任意k ∈F ,αβk +∉W 2;(2)至多有一个k ∈F ,使得αβk +∈W 1.证明 (1)反设存在k 1∈F 使得αβ1k +∈W 2 , 又α∈W 2 , 因此β=β+ k 1α-k 1α∈W 2 , 这与β∉W 2矛盾. 所以对于∀k ∈F ,αβk +∉W 2 .(2)若有k 1, k 2∈F , k 1≠k 2使得αβ1k +, αβ2k +∈W 1, 那么。
线性代数知识点简单总结
![线性代数知识点简单总结](https://img.taocdn.com/s3/m/4dd43be41b37f111f18583d049649b6649d70944.png)
线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。
- 零向量:所有向量加法的单位元,加任何向量结果不变。
- 单位向量:长度为1的向量。
- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。
- 子空间:向量空间的子集,自身也是一个向量空间。
- 维数:向量空间的基的大小,表示为n维空间。
2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。
- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。
- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。
- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。
- 转置:将矩阵的行变成列,列变成行的操作。
3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。
- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。
- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。
- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。
4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。
- 特征向量:与特征值对应的非零向量x。
- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。
- 对角化:将矩阵表示为特征向量和特征值的组合。
5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。
- 正交:两个向量的内积为零,表示它们在空间中垂直。
- 正交基:一组向量,任意两个向量都正交。
- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。
6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。
5.3 n维向量空间的正交化
![5.3 n维向量空间的正交化](https://img.taocdn.com/s3/m/911afc125f0e7cd184253615.png)
返回
1. 定义 若实矩阵 A 满足 AAT=ATA=I ,则称 A 则称 为正交矩阵 . 2. 性质
(1) A = A , (2) A = A = I =1.
T T 2
正交矩阵的乘积也是正 交矩阵. T T T T 设 A A = AA = I B B = BB = I , 则
β1 = (β1 , β1 )
4 4 1 = (α1 , α1 ) + (α2 , α2 ) + (α3 , α3 ) = 1 , 9 9 9 同样 ,β2 = β3 = 1 .
α2 = X1 = (1, 0, − 1) , ( X2 , α2 ) 1 α3 = X2 − α2 = (0, 1, − 1) − (1, 0, − 1) (α2 , α2 ) 2
1 = (− 1, 2, − 1) . 2
返回
将 X1 , X2 正交化:
例4 将 α1 = (1, 1, 1) , α2 = (1, 2, 1) ,α3 = (0, − 1, 1) 标准正交化. 解 设 β1 = α1 = (1, 1, 1), 4 (α2 , β1 ) β2 = α2 − β1 = (1, 2, 1) − (1, 1, 1) 3 (β1 , β1 )
是 Rn 的标准正交基 .
1 1 1 1 0 0, ,3 = (0, 0) 1 α1 = ,, ,2 = − , α α , 2 2 2 2 3 是 R 的标准正交基 .
返回
α1 , α2 ,L,αs 满足: (1) (αi , α j ) = 0 , (i ≠ j, αi ≠ 0, α j ≠ 0) (2) αi = 1, (i = 1, 2,L, s) ( α Lα 则称α1, 2, , s 为标准 规范)正交向量组.
线性代数第五章128
![线性代数第五章128](https://img.taocdn.com/s3/m/db752d28763231126edb11de.png)
b1 b2 br e1 , e2 , , e r , || b1 || || b2 || || br ||
则e1, e2, · · · , en是向量空间V的一组规范正交基. 由线性无关向量组a1, a2, · · · , ar 构造出正交向量组 b1, b2, · · · , br 的过程称为施密特(Schimidt)正交化过程.
1 0 0 0 0 1 0 0 设 1 0 , 2 0 , 3 1 , 4 0 . 0 0 0 1
又设
1 2 1 2 0 0 0 0 1 2 1 2 , e4 . e1 , e2 , e3 1 2 1 2 0 0 1 2 1 2 0 0 0 ij ( i , j 1, 2, 3, 4). 由于 [e i , e j ] ij 1 i j
2 2 2 [x, x] = x = x1 + x2 + + xn
当|| x ||=1时, 称x为单位向量
3.当|| x || 0, || y || 0 时, n维向量 x 与 y 的夹角: [ x, y] arccos 规定0 . || x || || y || 4.向量 x 与 y 正交定义为: π 当[x, y]=0,也即 θ = .
向量的长度及性质
(1) 非负性: || x || 0, 当且仅当x=0时有|| x || = 0;
(2) 齐次性: || x|| = | | || x ||;
(3) 三角不等式: || x+y || || x || + || y ||.
《线性代数》第五章相似矩阵及二次型精选习题及解答
![《线性代数》第五章相似矩阵及二次型精选习题及解答](https://img.taocdn.com/s3/m/9de93037f111f18583d05a55.png)
故, β 3 = ( −
1 3
1 3
1 3
1) T ⇒ γ 3 =
β3 3 = (− 6 β3
3 6
3 3
3 T ) 2
⎛ 3 2 4⎞ ⎜ ⎟ 例 5.3 计算 3 阶矩阵 A= 2 0 2 的全部特征值和特征向量. ⎜ ⎟ ⎜ 4 2 3⎟ ⎝ ⎠
n n
f ( x) = xT Ax ,其中 A T = A .
6.熟悉矩阵 A 合同(或相合)于 B 的定义,理解合同关系是等价关系. 7.熟练掌握化二次型 xT Ax 为平方和(标准形)或求实对称矩阵 A 的相合标准形的 3 种方法:正交变换法;配方法;和同型初等行、列变换法. 8.了解惯性定理,会求矩阵 A 的正、负惯性指数和符号差,会求二次型的规范形. 9.熟练掌握正定二次型(正定矩阵)的定义和判别方法. 10.熟悉实对称矩阵 A 正定(二次型正定)的各种等价命题(正定的充要条件). 11.理解 A 正定的必要条件: a ii > 0( i = 1, 2, L , n ); det( A ) > 0 . 12. 会利用正交变换化二次型为标准型和极坐标平移方法判别一般二次曲线和曲面的类 型.
故 A 是正交矩阵. 例 5.2 已知向量 α 1 = (1,1, 0, 0 ) , α 2 = (1, 01, 0 ) , α 3 = ( − 1, 0, 0,1) 是线性无关向
T T T
量组,求与之等价的正交单位向量组. 解法一 先正交化,再单位化 (1) 取 β 1 =
α1
(2) 令 β 2 = k β 1 + α 2 ,使得 β2 与 β 1 正交
T −1 ∗
5.3 例题分析
例 5.1 设 a 是 n 阶列向量, E 是 n 阶单位矩阵,证明 A = E −
线性代数第五章
![线性代数第五章](https://img.taocdn.com/s3/m/55281e6786c24028915f804d2b160b4e777f815a.png)
1.内积 2.向量旳范数 3.许瓦兹不等式
x x1 , x2 , , xn T , y y1 , y2 , , yn T
称 xT y x1 y1 x2 y2 xn yn
为向量 x与 y 旳内积,记为 x , y.
2
内积满足下列运算规律:
⑴ x, y y, x
⑵ kx , y kx ,y
15
三.正交矩阵与正交变化
1. 正交矩阵
1.正交矩阵 2.正交变换
定义5.2 假如 n阶方阵 A 满足AT A I
则称 A 为正交矩阵.
定理5.3 假如 A , B均为 n 阶正交矩阵,
那么:⑴ A1 AT
⑵ AT 即 A1 为正交矩阵
⑶
1 2
A A
A A
为
2n
阶正交矩阵
⑷ AB,BA 都是正交矩阵
8
定理5.2 若 1 , 2 , , r为 n 维正交向
量组,且 r n ,则必有非零 n 维向量 x , 使 x 与 1 , 2 , , r 两两正交.
推论:对 rr n个两两正交旳 n 维非零向量,总
能够添上 n r个 n 维非零向量,使 n 个向
量两两正交,从而这 n 个向量就构成了向量空
第五章 特征值 特征向量 二次型
第一讲 正交向量组与正交矩阵 第二讲 方阵旳特征值与特征向量 第三讲 相同矩阵与实对称矩阵旳对角化 第四讲 二次型及其原则形 第五讲 惯性定理和正定二次型 第六讲 习题课
1
第一讲 正交向量组与正交矩阵
一.向量旳内积与许瓦兹
(Schwarz)不等式
1.内积
内积定义:对 n维列向量
19
第二讲 方阵旳特征值和特征向量
1.定义
线性代数 第五章 向量空间
![线性代数 第五章 向量空间](https://img.taocdn.com/s3/m/b4bb49cf524de518964b7d8b.png)
称为n元向量空间。
,an P
向量空间---基和维数
向量空间V中若向量组 1 ,2 , ,k 为极大
向 线性无关组,则称其为向量空间V的一组基
量 维数:基中所含向量的个数,dimV k.
空 Pn 的基和维数:由n个n元向量组成的极大
间
线性无关组。故基不唯一。
1,2, ,n , i 0,0, ,1, ,0T
m2 n 2
mn1n , mn2n ,
m11
M=
m21
mnnn .
mn1
m12 m22
mn2
m1n
m2
n
mnn
1 2
n 1 2
n M
M称为基(I)到基(II)的过渡矩阵。(M可逆?)
向量空间---过渡矩阵
(I ) 1,2, ,n; (II) 1, 2, , n 是 Pn
间
Байду номын сангаас
k31 3 , 1 / 1, 1 ; k32 3 , 2 / 2 , 2 ;
3 3
3 , 2 2 , 2
2
3, 1 1, 1
1.
向量空间---作业
向 P139 6 量 P142 3(1), 3(2) 空 P147 6,7
, , , ;
, 0, 且 , 0 O.
, , 是 Rn 中任意向量,k为任意实数。
向量空间---内积和标准正交基
向量的长度:|| || ,
向
单位向量: || || 1
向 的两组基,向量 在基(I)、(II)的坐标分
线性代数 标准正交基1
![线性代数 标准正交基1](https://img.taocdn.com/s3/m/ab7f826427d3240c8447ef09.png)
T s s −1 T s −1 s −1
α sT β 2
例 求与 α1 = (1, 1, 0, 0), α2 = (1, 0, 1, 0), α 3 = ( −1, 0, 0, 1) α 4 = (1, − 1, − 1, 1)等价的 单位正交的向量组. 单位正交的向量组. 解 令 β 1 = α 1= ( 1, 1, 0,0 ) 1 β = (1, 0, 1, 0 ) − 1 (1, 1, 0, 0 ) = 1 , − 1 , 1, 0 β 2 = α 2− 1 2 2 2 2 1 −2 −1 1 1 β 3 = α 3 − β 1 − 3 β 2 = α 3 + β 1 + β 2 3 2 2
=0,则称 则称α α , β ∈ R n 如果 αTβ=0,则称α与β正交 定义2.20 定义2.20 设 α与β正交
α β =0
T
β =(b ,b2,b3) 1
θ
α =(a1,a2,a3)
在R3中,设 α =(a1,a2,a3)≠ o β = (b ,b2,b3)≠ o 1 的内积为 则α和β的内积为 α T β = a1b1 + a2b2 + a3b3= α β cosθ π α β αT β = 0 θ=
(2)
α j = 1,
j = 1, 2,..., n
则称 α1 ,α 2 ,...,α n 为Rn 的一个标准正交基. 的一个标准正交基. 如 ε 1 = ( 1, 0, ..., 0 ), ε 1 , ε 2 ,..., ε n 为Rn 的标准正交基. 的标准正交基. ε 2 = ( 0, 1, ..., 0 ),
2
o
定义2.21 如果R 中的非零 定义2.21 如果Rn中的非零向量组α1 ,α 2 ,...,α s ( s ≥ 2) 非零向量组 α iT α j = 0 ( i ≠ j; i , j = 1, 2,..., s ) 两两正交, 两两正交, 即 正交向量组. 则称向量组 α1 ,α 2 ,...,α s 为正交向量组. 注意: 正交向量组中, 每个向量 都不是零向量。 都不是零向量。 注意: 正交向量组中, 如果一个正交向量组中, 向量都是单位向量, 如果一个正交向量组中, 向量都是单位向量, 正交向量组中 每个向量都是单位向量 每个 正交单位向量组 单位向量组. 则该向量组称为 正交单位向量组.
线性代数第五章第一节向量的内积长度及正交性课件
![线性代数第五章第一节向量的内积长度及正交性课件](https://img.taocdn.com/s3/m/4b91142426284b73f242336c1eb91a37f0113240.png)
a1 a1
a1T a2 a2T a2
a1T a2T
an an
1 0
0 1
0
0
anT
anT a1 anT a2
anT an
0
0
1
于是
[ai , a j ]
aiT a j
1, 0,
i j (i, j 1, 2,
i j
, n)
从而可得
方阵A 为正交阵的充分必要条件是 A 的列向量都是单位向 量,且两两正交.即 A 的列向量组构成Rn 的规范正交基.
例:已知3
维向量空间R3中两个向量
a1
1
,
a2
2
1
1
正交,试求一个非零向量a3 ,使a1, a2, a3 两两正交.
分析:显然a1⊥a2 .
解:设a3 = (x1, x2, x3)T ,若a1⊥a3 , a2⊥a3 ,则
[a1, a3] = a1T a3 = x1 + x2 + x3 = 0
b1
[b2 , a3 ] [b2 , b2 ]
b2
c32
c31 c3 c2
a1 b1
b2 a2
第一步:正交化——施密特(Schimidt)正交化过程 设 a1, a2, …, ar 是向量空间 V 中的一个基,那么令
b1 a1
b2
a2
c2
a2
[b1 , [b1 ,
a2 b1
] ]
b1
br
ar
[b1 [b1
齐次性: || l x || = | l | ·|| x ||.
三角不等式: || x + y || ≤ || x || + || y ||.
内积及标准正交基
![内积及标准正交基](https://img.taocdn.com/s3/m/79f53c9d3968011ca2009171.png)
2当 x 0, y 0时, arccos(x, y)
xy 称为向量x与y的夹角。
例 求向量 1,2,2,3与 3,1,5,1的夹角.
解
cos
18 2 3 26 2
.
4
三、正交向量组的概念及求法
1 正交的概念
当(x, y) 0时,称向量x与y 正交 .
由定义知,若 x 0,则 x 与任何向量都正交. 2 正交向量组的概念
2 1
22 1 1
2 1
P
2 1
2
0
2 1 2
0
2 0 1
2 0
是正交矩阵.
1
2 2
解 P的每个列向量都是单位向量,且两两正交,
所以P是正交矩阵.
6 求规范正交基的方法
设1 , 2 ,, r是向量空间V的一个基,要求V
的一个规范正交基,就是要找一组两两正交的单
位向量e1 ,e2 ,,er ,使e1 ,e2 ,,er与1 , 2 ,, r等
同理可得2 r 0. 故1,2 ,,r线性无关.
4 向量空间的正交基
若1,2 ,,r是向量空间V的一个基,且1,2 ,
,
是两
r
两正交
的非
零向量组,
则
称
1
,
2
,,
是
r
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
1
正交,试求 3 使1 ,2 ,3构成三维空间的一个正交
证明 A AT E
a11
a21
a12
a22
a1n a11 a2n a12
线性代数标准正交基
![线性代数标准正交基](https://img.taocdn.com/s3/m/a2e04b40a66e58fafab069dc5022aaea998f4127.png)
y
(x, y)
1 1 x , y
x2 y2
x2 y2 x2 y2
x
是与 同方向的单位向量.
o
用非零向量旳长度清除向量, 得到一种与同
方向旳单位向量, 称为把向量单位化。如
( 4,0, 1, 2 )T 21
1
4
21
,
0 , 1 ,
21 21
2 T
21
四、正交向量组 定义2.20 设 , Rn 假如 T=0,则称与正交
则称 1,2 ,...,n 为Rn 旳一种原则正交基. 如 1 (1, 0, ..., 0 )T , 1, 2 ,..., n 为Rn 旳原则正交基.
2 ( 0, 1, ..., 0 )T ,
n ( 0, 0, ..., 1 )T
又如 1 (1, 2, 3 )T
2 ( 0, 1, 2 )T 3 ( 0, 0, 1 )T
QTQ E
1, 2 ,..., n 是单位正交向量组.
1, 2 ,..., n 两两正交,且 1 2 ... n 1
与正交
T 0
一般地, 在 n 维空间Rn 中 1 (1 0 0 ... 0 )T
2 ( 0 1 0 ... 0)T
3 ( 0 0 1 ... 0 )T
i j时,
T i
j
0
i
j
n ( 0 0 0 ... 1 )T
Rn 中旳单位向量组 1,2,…,n 两两正交.
1, 2 ,..., n 称为Rn 中旳 正交单位向量组.
)
k2(
iT
2
)
...
ki
(
iT
i
)
...
ks
(
线性代数第5章课件
![线性代数第5章课件](https://img.taocdn.com/s3/m/0a524217b307e87101f696c3.png)
内积是向量的一种运算,用矩阵的记号表示,当 x与 y 都是列向量时,有
[x,y] = x' y
例 计算[x, y],其中x, y如下 : (1)x = (0,1,5,-2), y = (-2,0,-1,3); (2)x = (-2,1,0,3), y = (3,-6,8,4),
解 (1) [ x, y] = 0 • (-2) 1• 0 5• (-1) (-2) • 3 = -11
第五章
特征值与二次型
第五章主要内容
第一节 向量的内积 第二节 方阵的特征值与特征向量 第三节 相似矩阵 第四节 化二次型为标准型 第五节 正定二次型
第一节 向量的内积
定义1 设有n 维向量
x1
y1
x = x2 , y = y2
....
xn
yn
令 [x,y] = x1 y1+ x2 y2 +…+ xn yn, 则 [x,y] 称为向量x与 y 的 内积
定义2 令 x = [x, x] = x12 x22 xn2
称为 n 维向量 x 的长度(或范数)
x
若向当量xx
=10时,则, 称xxx为是单单位位向量向.量.
向量的长度具有下述性质:
(i)非负性:当x 0时,x 0;当x = 0时,x =0;
(ii)齐次性: x = x ;
(iii)三角不等式 : x y x y ;
上述从线性无关向量组a1 , …,ar 导出 1, 2 ,K , r 的 过程称为施密特正交化过程。它不仅满足1, 2 ,K , r 与a1 , …,ar 等价,还满足:对任何k ( 1≤ k ≤r ) ,向量组 1, 2 ,K , k 与a1 , …,ak 等价。
向量空间中的正交分解和选取正交基
![向量空间中的正交分解和选取正交基](https://img.taocdn.com/s3/m/10a81c2915791711cc7931b765ce0508763275a8.png)
向量空间中的正交分解和选取正交基在数学中,向量空间是一个非常基础的概念,它是一组向量和对这些向量进行加法和数乘运算所形成的集合。
对于一个向量空间,它的性质和性质的推导通常都和基向量有关系。
正交基是一种特殊的基向量,在向量空间中有着重要且应用广泛的意义。
本文将会介绍向量空间中的正交分解和选取正交基的概念与相关应用。
正交分解的概念一个向量空间中的任何向量都可以表示为一些基向量的线性组合。
即任何向量 $\mathbf{v}$ 可以表示为:$$\mathbf{v} = c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots +c_n\mathbf{v_n}$$其中 $c_i$ 是标量,$\mathbf{v_i}$ 是基向量。
如果基向量与自身不同,则它们必须线性无关。
对于具有内积的向量空间,我们可以将这些基向量选取为正交基,即:$$\langle \mathbf{v_i},\mathbf{v_j}\rangle = \begin{cases}1&\text{if }i=j\\ 0& \text{if }i\neq j\end{cases}$$当一个向量空间有正交基时,我们可以通过计算线性系数来求解任意向量 $\mathbf{v}$ 在这组基下的坐标:$$c_i = \frac{\langle \mathbf{v},\mathbf{v_i}\rangle}{\langle\mathbf{v_i},\mathbf{v_i}\rangle}$$利用这个公式,就可以将任意向量在正交基下的表示求出来。
如果我们将上面的公式代入到向量的线性组合公式中,可以得到一个被称为正交分解的式子:$$\mathbf{v} = \sum_{i=1}^n\frac{\langle\mathbf{v},\mathbf{v_i}\rangle}{\langle\mathbf{v_i},\mathbf{v_i}\rangle}\mathbf{v_i}$$正交分解是一种分解向量的方式,它将一个向量分解为其在不同方向上的投影之和。
已知标准正交基求对角矩阵
![已知标准正交基求对角矩阵](https://img.taocdn.com/s3/m/3aac3060ae45b307e87101f69e3143323868f554.png)
已知标准正交基求对角矩阵已知标准正交基求对角矩阵在线性代数中,标准正交基是非常重要的概念。
它可以帮助我们更好地理解向量空间和矩阵的性质,以及如何进行一些特殊矩阵的运算。
其中,求对角矩阵是一个很常见的问题。
本文将针对这一主题展开深入探讨。
1. 标准正交基的定义标准正交基是指一组向量,它们两两之间的内积为0,并且每个向量的模长为1。
如果一个向量空间中存在一组向量,它们满足这两个条件,那么这组向量就是标准正交基。
2. 如何求对角矩阵已知标准正交基,我们可以通过一定的方式来求解对角矩阵。
我们需要明确对角矩阵的定义:对角矩阵是指除了主对角线上的元素外,其余元素均为零的矩阵。
那么,如何根据已知的标准正交基来求对角矩阵呢?3. 对角化定理在线性代数中,有一个重要的定理叫做对角化定理。
它指出,如果一个矩阵能够被相似对角化,那么它一定是可对角化的。
而标准正交基正是对角化定理的关键。
我们可以利用已知的标准正交基来求解对角矩阵。
4. 具体求解方法假设我们已知标准正交基为{v1, v2, ..., vn},我们要求解对角矩阵D。
我们将这组基向量按列排成一个矩阵P,即P=[v1, v2, ..., vn]。
我们计算出P的逆矩阵P^-1。
接下来,我们设矩阵A为以标准正交基为列向量的矩阵,即A=[v1, v2, ..., vn]。
那么,对角矩阵D即为P^-1AP。
5. 个人观点和理解对角矩阵在线性代数中有着重要的应用,它可以简化矩阵的运算,并且能够更清晰地展现矩阵的特征。
而已知标准正交基求对角矩阵则是一个常见而重要的问题。
通过本文的讨论,我对这一问题有了更深入的理解和掌握。
总结和回顾通过本文的学习,我们首先了解了标准正交基的定义。
我们探讨了如何利用已知的标准正交基来求解对角矩阵,包括对角化定理和具体的求解方法。
我分享了个人对这一问题的观点和理解。
通过这样的学习和总结,我对已知标准正交基求对角矩阵有了更全面、深刻和灵活的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
[, ] = i=1aibi = T.
第四章 n维列向量空间
2. 内积的基本性质
(1) 对称性: [, ] = [, ];
§ 4.5 内积与正交矩阵
(2) 线性性: [k11+k22,] = k1[1, ]+k2[2,];
(3) [, ] 0; 且[, ] = 0 = 0 .
(3) 三角不等式(Triangle Inequality):
| +| |||| + ||||.
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
5. 长度为1的向量称为单位向量(unit vector).
对于非零向量, ||||1是一个单位向量.
——单位化/标准化(normalize).
(i,j1,2,
i j
,n),
故Ae1,Ae2,…,Aen也是一个标准正交组.
第四章 n维列向量空间
§4.5 内积与正交矩阵
§4.5 内积与正交矩阵
一. Rn中向量的内积, 长度和夹角
1. 设 =(a1, a2, …, an)T, =(b1, b2, …, bn)T,
则称实数
n
i=1aibi
为向量
与
的内积
(inner/dot/scalar product).
记为[, ], 即
(4) (Cauchy-Schwartz Inequality) |[, ]| [, ] [, ].
考察y = [, ]x2 + 2[, ]x + [, ].
n
=
i=1
(xai
+
bi)2
0
= (2[, ])2 4[, ][, ] 0
[, ]2 [, ][, ].
4 6
2
1 1
5 3
1
1
,
1
1
e2
b2 b2
1 3
1 1
,
b33(b31,b21)b1(b32,b22)b2
4 1 1 1
1
1 3
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
3. 对于n维实向量, 称 [, ] 为 的长度
(length)模(modulus), 记为||||, 即
n
|||| = [, ] = i=1ai2
4. 长度的基本性质
(1) 正定性: |||| 0; 且|||| = 0 = ; (2) 齐次性: ||k|| = |k|·|||| (kR);
(2) A, B为正交阵 AB为正交阵.
例4 设e1,e2,…,en是标准正交组,A为正交矩阵. 试证Ae1,Ae2,…,Aen也是一个标准正交组.
证明 由于e1,e2,…,en是标准正交组,所以
(Aei,Aej)AeiTAej
eiT AT Ae j
eiT
ej
1 0
i j
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
2. 结论
定理2.9. 1, 2, …, s正交线性无关.
命题2.3. 设1, 2, …, s是标准正交向量组, 且 = k11+k22+…+kss, 则ki = [, i], i = 1, 2, …, s.
命题2.4. 设1, 2, …, s线性无关(s2), 则存 在一个正交向量组1, 2, …, s使得 1, 2, …, t与1, 2, …, t等价
…
[s, s1] [s1, s1]
s1
再将1, 2, …, s单位化得:
1
=
1 ||1||
,
2
=
2 ||2||
,
…,
s
=
s ||s||
.
例2 设
1
1
2
,
1
1
2
3
,
1
4
3
Hale Waihona Puke 1
,
0
试用施密特正交化过程把这组向量标准正交化.
解取
b1 1;
1
e1
b1 b1
1 6
2
,
1
b22(2,e1)e1
2 (2,
b1 b1
)
b1 b1
2
( 2 , b1)b1
b1 2
1 1
3
2
5 3
1
2
0
,
0 1 1 1
1
e3
b3 b3
1 2
0
,
1
故
e1 , e2 , e3
即为所求.
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
三. 正交矩阵(orthogonal matrix)
1. 满足QTQ = E (即Q1 = QT)的实方阵Q称
为正交矩阵, 简称为正交阵.
定理2.10. 设Q为n阶实方阵, 则下列条件等价:
(1) Q是正交矩阵;
(2) Q的列向量组构成Rn的一组标准 正交基;
(3) QT是正交矩阵.
推论. (1) Q为正交阵|Q| = 1, Q1也是正交阵;
||||
=
[, ] . [, ]
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
二. 正交向量组和Schmidt正交化方法
1. 概念 正交(mutually orthogonal)向量组
标准正交(orthonormal)向量组
正交基(orthogonal basis)
标准正交基(orthonormal basis)
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
例1. 设, Rn, 且与线性无关, 求常数k
使 +k与正交.
||
||
=
||||cos
=
||||
[, ] ||||||||
=
[, ] ||||
= || || ||||
=
[, ] ||||
6. 设, Rn, 若 0, 0, 则定义, 的 夹角(the angle between and )为 [, ] = arccos ||||·|||| , 0
若[, ] = 0, 即 = /2, 则称与正交
(orthogonal).
(1 t s).
第四章 n维列向量空间
§ 4.5 内积与正交矩阵
3. 方法(Gram-Schmidt orthogonalisation process)
1 = 1,
2 = 2
[2, 1] [1, 1]
1,
………
s = s
[s, [1,
1] 1]
1