数学分析简明教程答案10

合集下载

数学分析简明教程第二版第二篇课后答案

数学分析简明教程第二版第二篇课后答案

第二章 函数§1 函数概念1.证明下列不等式: (1) y x y x -≥-;(2) n n x x x x x x +++≤+++ 2121;(3) )(2121n n x x x x x x x x +++-≥++++ . 证明(1)由 y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到 x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立. 假设当k n =时,不等式成立,即 k k x x x x x x +++≤+++ 2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x有数学归纳法原理,原不等式成立.(3)n n n x x x x x x x x x x x x +++-≥++++=++++ 212121)( )(21n x x x x +++-≥ . 2.求证bb aa ba b a +++≤+++111.证明 由不等式 b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111.3.求证22),max(ba b a b a -++=; 22),min(ba b a b a --+=. 证明 若b a ≥,则由于b a b a -=-,故有22),max(b a b a a b a -++==,22),min(b a b a b b a --+==, 若b a <,则由于)(b a b a --=-,故亦有22),max(b a b a b b a -++==,22),min(ba b a a b a --+==, 因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π. 5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.8.判别下列函数的奇偶性:(1)12)(24-+=x x x f ; (2)x x x f sin )(+=; (3)22)(x e x x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x x x f 是偶函数. (2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()()(222)(2x f e x e x x f x x ==-=----,即22)(x e x x f -=是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin 22cos )(x x x f +=; (3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12. (3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(xxx f +=在),(∞+-∞有界. 证明 实际上,),(∞+-∞∈∀x ,都有21112111)(2222=++⋅≤+=+=xx x x x x x f , 由定义,21)(xxx f +=在),(∞+-∞有界. 11.用肯定语气叙述函数无界,并证明21)(x x f =在)1,0(无界. 解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.0>∀M ,要使M x x f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M x x f MM >+==11)(2,所以21)(x x f =在)1,0(无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数; (2) )(x f 不是单调上升函数; (3) )(x f 无零点; (4) )(x f 无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;(4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.§2 复合函数与反函数1.设xxx f +-=11)(,求证x x f f =))((. 证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有()()()()x xx x x xx x x x x x f x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域: (1) +∞<<⎪⎭⎫⎝⎛+=x x x y 1,121; (2) ()+∞<<∞--=-x e e y x x,21; (3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x 4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x xx x x y 成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y y x ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y .(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数. 证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x < 有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()x f 为增函数,而()x g 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数. 4.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g , 求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f ()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n次.解 2222221111)(1)())((xx x xx xx f x f x f f +=+++=+=,归纳法假设21))((kx xx f f f k +=次, 则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+ 次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=次.6.设x x x f --+=11)(,试求))((x f f f n次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ,归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k kk k x x x x x f f f 次,则当1+=k n 时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(kk k k k k k x x x x x f f f f x f f f 次次 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n n n n x x x x x f f f 7.设x x f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f . 解 x x f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此x xx x f f x f f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此 xx x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;(1)题图 (2)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;(3)题图 (4)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;(6)定义域),(∞+-∞=D ,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.2.若已知函数)(x f y =的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转180后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转 180后得到的;)(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转 180后得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数])()()()([21x g x f x g x f y -±+=的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.解 由于)}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++,)}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.4. 作出下列函数的图形:(1) x x y sin =;(2) xy 1sin=. 解 图形如下.(1)题图 (2)题图5.符号函数⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.解x sgn )2sgn(x)2sgn(-x6.作出下列函数的图形: (1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y .解(1)(2)数学分析续论A 卷复习资料一. 计算题1. 求函数3311(,)f x y x y y x=+在点(0,0)处的二次极限与二重极限. 解: 333311(,)sinf x y x y x y y x ==,因此二重极限为0. 因为33011x x y y x →+与33011y x y y x→+均不存在,故二次极限均不存在。

数学分析简明教程答案(尹小玲 邓东皋)第一二章

数学分析简明教程答案(尹小玲 邓东皋)第一二章

5.在半径为r得瑟球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并求此函数 的定义域。
h2 解:设其高为h, 那么圆柱的底面半径为R r ; 于是圆柱体积 4 2 V R h
2
hr 2

4
h3
由于圆柱为球的内接圆柱,故有h (0, 2r ).
-2-
6.某公交车路线全长为20 Km, 票价规定如下:乘坐5 Km以下(包含5 Km)者收费1元;超过 5 Km但在15 Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的 函数,并作出函数的图像。 解:设y为票价,x为路程,则有 1 y ( x) 2 2.5 它的函数图像如下: x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t ), 且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0, 求f (t )(0 t 20), 并作出函数的图形。 解:由题意可知所求函数为: 2t f (t ) 40 2t 其函数图像为:
2 2 2 2
(2). x1 x2 xn x1 x2 xn ; 证明:使用数学归纳法; i.对于x, y , 总有 x y xy, 于是有 x 2 x y y x 2 2 xy y 2 ; 整理后可得 x y x y ,即当n 2时所证成立。 ii.假设当n k时所证不等式也成立,即 x1 x2 xk x1 x2 xk . iii.当n k 1时,取y x1 x2 xk , 于是有: x1 x2 xk xk 1 y xk 1 y xk 1 x1 x2 xk xk 1 x1 x2 xk xk 1 即当n k 1时所证不等式也成立。 那么由数学归纳法可知题证成立。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案

数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。

解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。

数学分析简明教程答案数分10_数项级数(-[1].-)

数学分析简明教程答案数分10_数项级数(-[1].-)

n1
n2
把它们代入勒让德方程可得
整理后可得
n(n 1)anxn2 n(n 1)anxn 2 nanxn l(l 1) anxn 0,
n2
n2
n1
n0
2a1 0 an (n
2)(n 1) l(l (n 1)n
1)
an 2 ,n
2,3, 4,.
那么由以上递推公式可得方程的解为
y(
x)
lim
n
U
n
lim
n
Vn
u
v;

un vn un vn .
n1
n1
n1
D
4.设级数 un各项是正的, 把级数的项经过组合而得到的新级数Un, 即
n1
n1
U n1 ukn 1 ukn 2 ukn1 ,n 0,1, 2,,
其中k0 0, k0 k1 k2 k n k n1 .
n
2r cos xSn r k12 cos x sin kx
k 1
n
rk1 sin(k 1)x sin(k 1)x k 1
Sn r sin x r n1 sin(n 1)x r 2 Sn r n sin nx
1 r2 Sn r sin x r n1 sin(n 1)x r n2 sin nx,
(2)
n1
1 2n
1 3n
;
由于级数
n1
1 2n
,
n1
1 3n
都收敛故原级数收敛。
(3) n1 cos 2n1;
lim cos
n
2n1
1 0, 故原级数发散。
(4)
1
; 收敛。
n1 (3n 2)(3n 1)

数学分析十讲习题册课后习题答案

数学分析十讲习题册课后习题答案

习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim11nx x x →=--1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x a f x f a x a x ax ae→----='()()f a a fa e=习 题 1-21.求下列极限 (1)lim sin x →+∞;解:原式lim [(1)(1)]02x x x ξξ→+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3) lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦. 解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+-1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn n →∞++解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++==, 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值分析简明教程第二版课后习题答案高等教育出版社

数值分析简明教程第二版课后习题答案高等教育出版社

算法1、 (,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分误差1.(,题8)已知e=…,试问其近似值7.21=x ,71.22=x ,x 2=,718.23=x 各有几位有效数字并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)
n n n

un vn un vn .
n 1 n 1 n 1



D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1


U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1

1 4n 2 1

1 1 1 2 n 1 2n 1 2n 1

1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1

n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1

lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.

数值分析简明教程(第二版)课后习题答案

数值分析简明教程(第二版)课后习题答案

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程解答(尹小玲 邓东皋)第一二章

数学分析简明教程解答(尹小玲 邓东皋)第一二章
容易证得 a b a b ab ,那么f ( a b ) f ( a b ab );即
ab
a b ab
1 a b 1 a b ab
由于
a b 2 ab
a (1 b ) b (1 a )
a
b
,因此
1 a b ab
(1 b )(1 a ) 1 a 1 b
a b a b ab a b 2 ab a b . 1 a b 1 a b ab 1 a b ab 1 a 1 b
函数,并作出函数的图像。
解:设y为票价,x为路程,则有
它的函数图像如下:
1 y(x) 2
2.5
x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t),且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0,求f (t)(0 t 20),并作出函数的图形。 解:由题意可知所求函数为:
2
22
ii.当a b时 a b a b a b a b b min(a,b);
22
22
当a b时 a b a b a b b a a min(a,b).
2
2
22
于是有 max(a,b) a b a b ,min(a,b) a b a b 成立。
解:设其高为h, 那么圆柱的底面半径为R r2 h2 ;于是圆柱体积 4
V R2h
hr2 h3 4
由于圆柱为球的内接圆柱,故有h (0, 2r).
-2-
6.某公交车路线全长为20Km, 票价规定如下:乘坐5Km以下(包含5Km)者收费1元;超过
5Km但在15Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数学分析简明教程答案数分10_数项级数(-[1].-)

数学分析简明教程答案数分10_数项级数(-[1].-)

A第十章 数项级数§1级数问题的提出20122012211231.'''0;0,1,2,,.,'23''2n n i n n n n xy y xy y a a x a x a x a i n y a a x a x a x y a a x a x na x y -++==++++===++++=++++=证明:若微分方程有多项式解 则必有证明:若微分方程的一个解那么22321232310122211203126(1);''26(1).'''(4)(9)()0n n n n n n n n n n n a a x n n a x xy a x a x n n a x xy a x a x a x a x xy y xy a a a x a a x n a a x a x --+--+++-=+++-=++++++=++++++++=于是可得因此可知12200 2.00,1,2,,n n ni a n a a n a a i n -=⎧⎪+=>⎨⎪=⎩== 那么由多项式相等可知有递推可知有成立。

B0102012122.,,,,,(1)''2'(1)0.,(1);(1)n n n n n n n n n n n n n n n a a a a x x y xy l l y a x na xn n a x n n a x∞=∞=∞∞--==--++=--∑∑∑∑试确定系数使满足勒让德方程解:将级数两次逐项求导可得把它们代入勒让德方程可得 2221120(1)2(1)0,20.(2)(1)(1),2,3,4,(1)(1) ()12!nnn n n n n n n n nn n n a x na x l l a x a n n l l a a n n n l l y x a ∞∞∞∞-====-+--+-==⎧⎪---+⎨==⎪-⎩+=-∑∑∑∑整理后可得那么由以上递推公式可得方程的解为243510112010(2)(1)(3)4!(1)(2)(1)(3)(2)(4) 3!5! ()().,,,l l l l x x l l l l l l a x x x a y x a y x a a a a -++⎡⎤+-⎢⎥⎣⎦-+--++⎡⎤+-+-⎢⎥⎣⎦=+其中为任意常数由112(),()y x y x 的任意性可以知道都是勒让德方程的特解,并且容易验证它们是线性无关的。

10数学分析简明教程答案(尹小玲邓东皋)

10数学分析简明教程答案(尹小玲邓东皋)

第十章数项级数§1 级数问题的提出1.证明:若微分方程xy y xy 0有多项式解y a0 a1x a2x2 anxn,则必有ai 0(i 1,2, ,n).证明由多项式解y a0 a1x a2x anx得2ny a1 2a2x 3a3x2 nanxn 1, y 2a2 6a3x 12a4x2 n(n 1)anxn 2.从而 xy 2a2x 6a3x 12a4x n(n 1)anx且 xy a0x a1x a2x an 2x将上述结果代入微分方程xy y xy 0,得23n 123n 1,an 1xn anxn 1.a1 (a0 4a2)x (a1 9a3)x2 (a2 16a4)x3(an 2 n2an)xn 1 an 1xn anxn 1 0.比较系数得递推公式如下:a1 0,a0 4a2 0, a1 9a3 0,a n2a 0,n n 2an 1 0,an 0.由此解得a0 a1 a2 an 0,因而ai 0(i 0,1,2, ,n).2.试确定系数a0,a1, ,an, ,使an 0nxn满足勒让德方程(1 x2)y 2xy l(l 1)y 0.解设yan 0nx,则y nanxnn 1n 1,yn(n 1)an 2nxn 2,故(1 x)y (1 x) n(n 1)anx22n 2n 2n(n 1)anxn 2n 1n 2n(n 1)anxn,n 22xy 2x nanxn 12nanxn,n 1l(l 1)y l(l 1) anx l(l 1)anxn.nn 0n 0将上述结果代入勒让德方程(1 x)y 2xy l(l 1)y 0,得20 (1 x2)y 2xy l(l 1)yn(n 1)anxn 2n 2n(n 1)anx 2nanx l(l 1)anxnnnn 2n 1n 0nnn(n 2)(n 1)an 2x n(n 1)anx 2nanx l(l 1)anxn.n 0n 2n 1n 0比较系数,得递推公式如下:l(l 1)a0 2a2 0, (l 1)(l 2)a 6a 0,13(l 2)(l 3)a2 12a4 0,(l (n 1))(l n)a (n 1)na 0,n 1n 1(l n)(l n 1)an (n 2)(n 1)an 2 0,.由此解得l(l 1) a a0, 22a (l 2)(l 3)a (l 2)l(l 1)(l 3)a,2044 34 3 2 k(l 2k 2)(l 2k 4) l(l 1)(l 3) (l 2k 1)a ( 1)a0, 2k (2k)!a (l 1)(l 2)a,33 2 (l 3)(l 4)(l 3)(l 1)(l 2)(l 4) a5 a3 a1,5 45 4 3 2k(l 2k 1)(l 2k 3) (l 1)(l 2)(l 4) (l 2k) a ( 1)a1,2k 1(2k 1)!从而可以得到(l 2k 2)(l 2k 4) l(l 1) (l 2k 1)2k y a0 a0 ( 1)kx(2k)! k 1(l 2k 1)(l 2k 3) (l 1)(l 2) (l 2k)2k 1a1x a1 ( 1)kx .(2k 1)! k 1其中a0,a1取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和:(1); (5n 4)(5n 1)n 1(2)4nn 12;( 1)n 1(3); n 12n 1(4)2n 1; n2n 1(5)rn 1nsinnx,r 1;(6)rn 1ncosnx,r 1.11 11,故(5n 4)(5n 1)5 5n 45n 1解(1)由于Sn1111 66 11(5n 4)(5n 1)1 11111 1 5 66115n 45n 1 1 1 1 1 (n ), 5 5n 1 5 所以级数的和S1. 511 11,故2 2n 12n 1(2)由于4n2 1Sn1 11111 1 1 11 1 (n ).2 3352n 12n 1 2 2n 1 2所以级数的和S. 2n 1( 1)n 1 1(3) n 12 n 12n 112.1 31 22n 1 2n 1 2n1,因此欲求原级数的和,只需计算级数(4) nnn2222n 1n 1n 1 n 12n2n2462n即可.对级数,设其部分和,则 S nnn23n222222n 1n 112462n 22nSn 2 3 4 n 1, n222222故1122222nSn Sn Sn 1 2 3 4 n n 1 2222222111 11 2 2 3 4 n222 22nn 1 21 21221 n 1 12 2n. n 1121 22n 1 2n1从而limSn 2,即limSn 4,因此原级数 n 1 4 1 3. nn n 22n 1n 12 n(5)由于级数的部分和Snnrk 1sinkx,故n2rcosxSn 2rk 1nk 1sinkxcosx rk 1 sin(k 1)x sin(k 1)xk 1nrk 1n 1k 1sin(k 1)x rk 1sin(k 1)xk 12rsinkx rkk 2rk 0n 1ksinkx(Sn rn 1sin(n 1)x rsinx) r2(Sn rnsinnx),从中解得rsinx rn 2sinnx rn 1sin(n 1)xSn .1 r2 2rcosx又由于当n 时,rn 2sinnx rn 2 0,rn 1sin(n 1)x rn 1 0,故limSnnrsinx, 21 r 2rcosx因此rnsinnxn 1rsinx.1 r2 2rcosx(6)级数的部分和Snnrk 1nkcoskx,从而n2rcosxSn 2rk 1nk 1coskxcosx rk 1 cos(k 1)x cos(k 1)x k 1nrk 1n 1k 1cos(k 1)x rk 1cos(k 1)xk 12rcoskx rkk 2rk 0n 1kcoskx(Sn rn 1cos(n 1)x rcosx) r2(Sn 1 rncosnx),从中解得rcosx rn 2cosnx rn 1cos(n 1)x r2rcosx r2. limSn lim 22n n 1 r 2rcosx1 r 2rcosxrcosx r2 因此 rcosnx . 21 r 2rcosxn 1n2.讨论下列级数的敛散性:(1)n; 2n 1n 1(2)2n 1 n 1n13n;;(3)cos2n 1(4); (3n 2)(3n 1)n 1(5)n 1n(n 1)(n n 1).解(1)由于通项n10(n ),故原级数发散. 2n 12nn11 1 1(2)由于 n , n 均收敛,故原级数收敛.n 12n 1 2 n 13n 1 3(3)由于通项cos(4)由于2n 1cos0 1 0(n ),故原级数发散.11 11,(3n 2)(3n 1)3 3n 23n 1从而部分和Sn111 1 44 7(3n 2)(3n 1)1 11111 1 3 4473n 23n 11 1 1 1 (n ), 3 3n 1 3 因而原级数收敛.(5)由于n(n 1)(n n 1)n 1 n11从而n 时,,nn 1nn 1Sn12121n1n 11n 11,故原级数收敛.3.证明定理10.2.定理10.2 若级数u, vnn 1n 1n收敛,则级数(un 1nvn)也收敛,且n 1nnvn) un vn.n 1n 1证明设Snuk 1nkvk,则由已知条件知,存在有限数s,s ,使得 ,Sn k 1nnlim vk s , limSn lim uk s,limSnnnk 1nnk 1设级数(un 1nvn)的部分和数列为 n,则nns s (n ), n (uk vk) uk vk Sn Snk 1k 1k 1所以(un 1nvn)也收敛,且 (un vn) un vn.n 1n 1n 14.设级数un 1n各项是正的,把级数的项经过组合而得到新级数Un 1n,即Un 1 ukn 1 ukn 2 ukn 1,n 0,1,2, ,其中k0 0,k0 k1 k2 kn kn 1 ,若nnn 1n收敛,证明原来的级数也收敛.证明设Snuk 1k, n Uk,则k 1n Uk U1 U2 Unk 1n(u1 u2 uk1) (uk1 1 uk1 2 uk2) (ukn 1 1 ukn 1 2 ukn) Skn.由于Un 1n收敛,故{ n}有界,即{Skn}有界,即存在M 0,使得 n N,都有Skn M. 又由于un 1n是正项级数,故Sn Skn M,而且{Sn}单调上升,由单调有界原理可知,原级数un 1收敛.§3 正项级数1.判别下列级数的收敛性:(1)n 11n n2;(2); 2n 1(2n 1)2n 1(3)n n; n 12n 1(4)sinn 12n;(5)(a 1); n1 an 1(6)nn 1nn(7);n 1 2n 1(8)ln(n 1)n 1n;2 ( 1)n(9); n2n 1(10)2nsinn 13n;(11)nn(3 ( 1))sin n 1 5n;(12)sin2; n!n 11 n1 cos ; n n 1 n(14)1; cos nn 11 1 ln 1 ; nn n 1 (15)(16)ln(1 n); 2nn 111; sinarcsin nnn 1 (17)(18)narctan2n 1n;(19) 1 ; nn 1 2 1(20) 1 2 1 .n 1 n解(1)n 11n n2.由于limn1,而发散,所以级数发21n 1n 1nn nn散.(2).对任意正整数n,都成立关系式 2n 1(2n 1)2n 1112, 2n 12n 12n(2n 1)222而级数2收敛,由比较判别法知,原级数收敛. 2nn 12n nn nn n1(3).由于lim发散. 0,所以级数 n 2n 12n 12n 12n 1n 1 (4)sin2n 1nsin.由于limn1 n ,而收敛,故收敛. sin nn12n 12n 1n2nn11 1 1 1(5).由于,故,而a 1 收敛,由比较判 nnna1 aa n 1 a n 11 a别法知,级数收敛. nn 11 a111nn(6).由于lim,而发散,故发散. lim 1n n 1nnn 1nnn 1n 1nnn11 1 1 n 0 1,故级数(7) lim .由于lim n n 2n 12n 12n 12n 1 n 1 n 1 nnn收敛.(8)ln(n 1)n 1n11.由于lim 故原级数收敛. lim 0 1,n ln(n 1) n ln(n 1)n2 ( 1)n(9). n2n 12 ( 1)n1( 1)n( 1)n1n 1 n,而 n 1和 n均收敛,故方法1因为 n2n 1n 12n 12n 12n 122 ( 1)n收敛. n2n 12 ( 1)n2 ( 1)n33n对一切n都成立,而 n收敛,故方法2 由于收敛. n 222n2n 1n 1(10)2n 1nsin3n2nsin.由于limnn limnn2nsin2 32 n ,而收敛,故 1n 1 3 2n n3n原级数收敛.(11)(3 ( 1))sinnn5n.由于3 ( 1) 4,因此,若nn4 sinn 15n收敛,则原级数收敛.考虑级数4n 1nsin5n4nsin,由于limnn4 lim ,且收 nn 15 n 1 4 4n n5 5n4nsinn敛,故4nsin5n收敛,因而原级数收敛.n1sin21sin2(12).由于,而收敛,因而原级数收敛. n!n!n!n 1n!n 11 1n1 cos 2sin211 1n lim ,而发散,(13) n 1 cos .由于limn n 112n n 1 n 1nnn2因而原级数发散.(14)11.由于coslimcos 1 0,由级数收敛的必要条件知,原级数发散. n nnn 11 1 1ln 1 ln 1 n 1 1 1n n 1 (15) ln .由于,而收lim lim 1 3n n 11n n 1n n 1n23nn2敛,故原级数收敛.ln(1 n) 2ln(1 n)ln(1 n)1lim lim 0(16).由于,而级数收敛, 23n n 1nnn 1n 1 n23n2故原级数收敛.11sinarcsin111nn(17) sinarcsin.由于lim 1,而级数 2收敛,故原级数n 1nnn 1n 1nn2收敛.nnn(18) narctann.由于极限lim ,而对于级数 n,根据n n2n 1n 122nn1nlimn 1,故由根式判别法知,级数 n收敛,因而原级数收敛. n 22n 12 (19) 1 .对通项进行分子有理化可得 nn 1111111 1 , n1112n(n 1)2(n 1)1n n 2n nnn由于2(n 1)发散,故原级数发散.n 122 1 212 11(20) 1 2 1 .由于 1 2 1 2 4,而级数 2, 4均nn n n 1nn 1nn 1 n收敛,因而原级数收敛.2.判别下列级数的敛散性:nn(1);n 1n!(2)nlnn; n2n 1n!2n(3) n;n 1nn!3n(4) n;n 1nn!en(5) n;n 1n(6)n 1n21nnn;(7)2n 1 ; n 1 3n 2 n2(8)n 1nn(3n2 n)n 12;xn(x 0);(9) 2n(1 x)(1 x) (1 x)n 1(10)33 53 5 73 5 7 9 . 11 41 4 71 4 7 10(n 1)n 1nnnnn(n 1)! n 1解(1).由于lim lim e 1,所以发散. nn n n!nn n 1n 1n!n!(2)nlnn.由于 nn 12(n 1)ln(n 1)n 1ln 1n 1n 1 n 1ln(n 1) 1, lim lim lim 1 limn n n n nlnnlnn 2nlnn 2 2n2n根据达朗贝尔判别法知,原级数收敛.(n 1)!2n 1nn!2nn!2n2(n 1)n 1 n(3) n.由于lim 2lim 1,故 n收敛. nn n en!2 n 1 n 1nn 1nnn(n 1)!3n 1nn!3nn!3n3(n 1)n 1 n3lim (4) n.由于lim 1,故 n发散. nn n n 1enn!3 n 1n 1nnnn!en(5) n.这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知nn! 2n e12nenn(0 1),n!en因而nnn2n e12nene 12n2ne 2n,通项的极限不为0,由级数收敛的nnn!en必要条件知原级数 n发散.n 1n(n)2n2lim 0 1,(6).因为lim故收敛. nnnn n 11 n 1 1 n 1 1 n n n n nnnn n2n2(7)2n 1.由于lim n n 1 3n 2n22n 1 2n 1n 3n 2 3n 2n221,由柯西判别法3知,原级数收敛.(8)n 1nn(3n2 n)n 12.由于nn(3n2 n)n 12nn(3n2 n)n213n n20(n ),nn因此,如果级数n 1nn(3n2 n)nn2收敛,则原级数也收敛.考虑级数n 1(3n2 n),由于limnnn(3n2 n)n2limn3n n2131,故它收敛,因而原级数也收敛.xn(x 0).当x 0时,级数显然收敛;当x 0时,(9) 2n n 1(1 x)(1 x) (1 x)由于xn 1x,0 x 1,2n 11x(1 x)(1 x) (1 x)lim lim x 1, ,nn 1n n x1 x 2x 1. 0,(1 x)(1 x2) (1 xn)xn因而收敛,因此原级数对一切x 0收敛. 2n(1 x)(1 x) (1 x)n 1(10)由于3 5 7 (2n 1)33 53 5 73 5 7 9,.级数的一般项un1 4 7 (3n 2)11 41 4 71 4 7 10un 1n un3 5 7 (2n 3)2n 321 4 7 (3n 1)lim lim 1, n 3 5 7 (2n 1)n 3n 13 1 4 7 (3n 2)因而原级数收敛.3.判别级数的敛散性:(1)nn 1lnn;(2); lnn(lnn)n 1(3)2n 1lnn;(4)3n 1lnn;(5)3n 1n;(6)3n 1n;(7)lnn(p是任意实数); pnn 1(p是任意实数). pn 2nlnn(8)解(1)nn 1lnn.当n 9时lnn 2,故当n 9时1nlnn112,而 2收敛,由nn 1n比较判别法知,原级数收敛.(2)111.由于,且ln(lnn) (n ),故存在N, lnnlnnln(lnn)(lnn)nn 1(lnn)ln(lnn)当n N时ln(lnn) 2,从而n收敛,故原级数收敛.(3)n,即当n N时,(lnn)2lnnn,而级数22n 1n2n 1lnn.方法1 由于unlimn n u n 11 1 ln 11 n ln 1 lnn2 1n limn 2 1 lim, 1 limn 1 n 1n n 1 ln(n 1) n 2该极限为型极限,由L'hospital法则得 021 ln 1 nlim2 limn1 ln 1 nln2n1n1 12 1 1n ln2 1, 1 2n由Raabe判别法知,原级数发散.方法2 由于2lnnelnnn,所以12lnn11,而级数发散,由比较判别法知,原nn 1n级数2n 1lnn发散.) ln(1 1 un3n 1 ln3 1,由Raabe判别法 1 limn.由于limn n n u n 1 (4)3n 1lnn知,原级数收敛.一般地,对n 1lnn(a 0),当0 a e时,对一切n N,alnn elnn n成立,所以1alnnun 111 lna 1,由Raabe ,从而 lnn发散;当a e时,由于limn n nn 1a un 1 判别法知,级数an 11lnn收敛.(5)3n 1.由于limnn2,所以存在N 0,当n N时,有,n lnnlnnln3即nln3 2lnn,从而3 n,故213n1112,而 2收敛,故 n收敛. nn 1nn 13(6)n 1nn.由于limnn3,所以存在N 0,当n N时,有,n lnnlnnln3n即nln3 3lnn,从而3 n,故3n311n2,而 2收敛,故收敛. nn 1nn 13lnn11lnn(7) p(p是任意实数).由于当n 3时,p p,所以若 p发散,nnn 1nn 1n1lnn则原级数必发散,而p 1时 p发散,因而p 1时,原级数 p发散.n 1nn 1n当p 1时,由于xxxlnt11lnx111 p p 1, lnt tdt lntdt 11 p 11 pxp 1(1 p)2xp 1(1 p)2tplnxlnt1,利用柯西积分判别法知,原级数收敛. pp2 1tx(1 p)因而limx 1x1111(8) p(p是任意实数).当p 1时,由于p p且 p收敛,nlnnnn 2nlnnn 2n故原级数收敛;当p 1时,由于x112tlnt 2lntlnt ln(lnx) ln(ln2),x1 1因而lim ,由柯西积分判别法知,原级数发散;当p 1时,2x 2tlntxlnxx111由于p,而就是前面p 1时的级数,已证得它发散,因而原级数nlnnnlnnnlnnn 2发散.4.利用Taylor公式估算无穷小量的阶,从而判别下列级数的收敛性:1 n(1) e 1 ;n 1 np1 (2) ln;cosn n 3p(3)(n 1 n)plnn 1n 1; n 1(4)(n 1n a n2 n b).px1 n 1 1解(1) e 1 .令f(x) 1 ,则lnf(x) xln 1 ,从而x x n 1 nx 2 1 1 1 1 , f (x) f(x) ln 1 x 1 ln1 1x x x x 1 1 x因此1 1 1 e 1 00 n n limlimn n 1nnn1 1 ln1 n1 2 1 1 n n 1 lim n1 ln1 n 1nnn 1 2nn111 2 1 1 1lim n 1 233n nnn 12n3nnn11 1 2 1 1 lim 1 n 2 3 3 n 3n n n(n 1)2n n n2 111e 1 n 1 lim 1 e . n 22 n n(n 1)23n n 111该极限为有限数,因而e 1 与是同阶无穷小量,由于 p当p 1时收敛,nn n 1nn1 np 1时发散,因而原级数 e 1 当p 1时收敛,p 1时发散.n 1 np(2) ln.由于cosn n 3pln1 112 2 lnsec lnsec ln1 tan cos n2n2n 22)1 2 (tan 2 tan tan, 2 n2n故lim ln n cos1 211ln,这是一个有限数,从而与是同阶无穷小量,因222ncosnp111此原级数 ln与的收敛性一致,所以当即时,原级数收敛,2p 1p 2p2cos n 1nn 3而当2p 1即p 时,原级数发散.2(3)(n 1 n)plnn 1n 1p.由于(n 1 n) 0,ln 0,故原级数n 1n 1是负项级数,又由于n 1 12(n 1 n)p( 1)ln ln1 n 1 n 1 n n 1n 1 n故(n 1 n)plnpp2 1 n 1 n 1 ,1n 1p与p是同阶无穷小量,因而当 1 1,即p 0时,原级1n 12n2数收敛,p 0时,原级数发散.(4)(n 1n a n2 n b).因为(n a) n2 n bn a n n b2n a n n b2(2a 1)n a2 b(n a n n b)(n a n n b)2,因而当a1111时,上式与3是同阶无穷小量,故原级数收敛;当a 时,上式与1是22 n2n2同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1); pn(lnn)n 2(2); n lnn lnlnnn 2(3)n(lnn)n 2lnlnn( 0);(4). pqn(lnn)(lnlnn)n 211f(x) .令函数,则该函数在[2, )非负、连续且单 ppx(lnx)n 2n(lnn)解(1)调下降.x11当p 1时,由于lim dt lim dlnt lim(ln(lnx) ln(ln2)) ,因x 2tlntx 2lntxx而原级数发散.当p 1时,由于lim f(t)dt limx2xxx1 pdt lim(lnt)dlnt2t(lnt)px 2xlim(lnx)1 p (ln2)1 px 1 p,(ln2)1 p,p 1p 1,p 1.因而由柯西积分判别法知,当p 1时级数发散,当p 1时级数收敛.综上可知,级数在p 1时收敛,在p 1时发散. pn(lnn)n 2(2)11u.根据级数通项,可令函数,则f(x) nx lnx lnlnxn 2n lnn lnlnnun f(n),(n 2)且f(x)在[2, )非负、连续且单调下降,由于limxx2x11f(t)dt lim dlnt lim dlnlntx 2lntlnlntx 2lnlntxlim lnlnlnx lnlnln2 .x由柯西积分判别法知,原级数发散.(3)n(lnn)n 2lnlnn( 0).由于limlnlnn ,故当n充分大时,nlnlnn 1,因而数收敛.(4)1n(lnn)111,由(1)知收敛,从而原级 1 1nn)lnlnnn(lnn)n 2n(l. pqn(lnn)(lnlnn)n 2当p 1时,由于211dx 2(lnlnx)qdln(lnx),故q 1时级数收xlnx(lnlnx)q敛,q 1时级数发散.当p 1时,令p 1 2 ( 0),则un11, pq1 qn(lnn)(lnlnn)n(lnn)(lnn)(lnlnn)q q由于lim(lnn)(lnlnn) ,故存在N 0,任意n N时,(lnn)(lnlnn) 1,n11从而un ,而由(1)知收敛,从而原级数收敛. 1n(lnn)n(lnn)1 n 1当p 1时,令p 1 2 ( 0),则1(lnn)un , pq1 qn(lnn)(lnlnn)n(lnn)(lnlnn)(lnn) (lnn) 11u 由于,从而当充分大时,,从而,而由nn(lnlnn)q(lnlnn)qn(lnn)1(1)知发散,因此原级数发散. 1n 1n(lnn)的收敛情况是:当p 1或p 1,q 1时收 pqn(lnn)(ln(lnn))n 2综上可知,原级数敛,当p 1或p 1,q 1时发散.6.利用拉阿比判别法研究下列级数的收敛性.(2n 1)!!(1) (p是实数);(2n)!!n 1p(2)n 1( 1) ( n 1)1n!pn( 0, 0).p(2n 1)!! (2n 1)!!u 解(1)级数的通项n (2n)!! ,因而根据二项展开式得(2n)!!n 1(2n 1)!!(2n 2)!! p unlimn 1 n (2n)!! (2n 1)!! 1 limn unn 12n 2 p npplimn 1 lim(2n 2) (2n 1) pn n (2n 1) 2n 1。

10数学分析简明教程答案(尹小玲邓东皋)[1].pdf

10数学分析简明教程答案(尹小玲邓东皋)[1].pdf

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132−++++='n n x na x a x a a y , 22432)1(1262−−++++=''n n x a n n x a x a a y .从而 134232)1(1262−−++++=''n n x a n n x a x a x a y x , 且 111232210+−−−++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++−−−n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=−−.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'−''−y l l y x y x .解 设nn nx ay ∑∞==,则11−∞=∑='n n n xna y ,22)1(−∞=∑−=''n n nx an n y ,故∑∑∑∞=∞=−∞=−−−−=−−=''−2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=−−=−='−111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'−''−y l l y x y x ,得y l l y x y x )1(2)1(02++'−''−=∑∑∑∑∞=∞=∞=∞=−++−−−−=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++−−−++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++−=+++−−=++−=++−=++++−.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++−+−+−−=⨯⨯⨯++−−=⨯+−−=⨯+−−=−++++−+−−=⨯⨯++−=⨯+−−=+−=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡−+++−+−−+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++−+−+−−++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+−1)15)(45(1n n n ; (2)∑∞=−12141n n;(3)∑∞=−−−1112)1(n n n ; (4)∑∞=−1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+−−=+−15145151)15)(45(1n n n n ,故)15)(45(11161611+−++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+−−++−+−=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+−=n n , 所以级数的和51=S . (2)由于⎪⎭⎫ ⎝⎛+−−=−121121211412n n n ,故 )(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+−=⎪⎭⎫⎝⎛+−−++−+−=n n n n S n . 所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛−−=⎪⎭⎫⎝⎛−=−−∞=∞=−−∑∑n n n n n .(4)12221222121111−=⎪⎭⎫ ⎝⎛−=−∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和nn n S 2226242232++++= ,则 14322222226242221++−++++=n n n nn S , 故1432222222222212121+−+++++=−=n n n n n n S S S 1432222121212121+−⎪⎭⎫ ⎝⎛+++++=n nn112222112112121+−−−⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛−+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=−=−=−∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111−++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111−++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑−=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n −+−++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212−++−+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r,故xr r xr S n n cos 21sin lim 2−+=∞→,因此xr r xr nx r n n cos 21sin sin 21−+=∑∞=. (6)级数的部分和kx r S nk k n cos 1∑==,从而 []x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111−++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111−++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑−=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n −++−++=+,从中解得xr r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212−+−=−+−+−+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221−+−=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=−112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (3)∑∞=+112cosn n π;(4)∑∞=+−1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→−n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+−−=+−13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+−++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+−−++−+−=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+−=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+−=+−+=+++11111)1()1(1n nn n nn n n n n ,从而∞→n 时, 111111131212111→+−=+−++−+−=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++−−)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=−−1122)12(1n n n ; (3)∑∞=−−112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=−+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=−+15sin))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛−11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sinn nn ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛−+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+122111n n . 解(1)∑∞=+121n nn .由于111lim2=+∞→nn n n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=−−1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤−−−, 而级数∑∞=1222n n收敛,由比较判别法知,原级数收敛. (3)∑∞=−−112n n n n .由于02112lim ≠=−−∞→n n n n ,所以级数∑∞=−−112n n n n 发散. (4)∑∞=12sin n nπ.由于ππ=∞→nn n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故nnn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nnn ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n n n .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n nnn ,故原级数收敛. (9)∑∞=−+12)1(2n nn. 方法1因为∑∑∑∞=∞=−∞=−+=−+11112)1(212)1(2n n n n n n nn ,而∑∞=−1121n n 和∑∞=−12)1(n n n 均收敛,故∑∞=−+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤−+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=−+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→n n nn n n nn n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=−+15sin))1(3(n nnn π.由于4)1(3≤−+n,因此,若∑∞=15sin4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→n n nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛−11cos 1n n n .由于21121sin 2lim 11cos 1lim 22==⎪⎭⎫ ⎝⎛−∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sinlim2=∞→n n n n ,而级数∑∞=121n n 收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim<=∞→nn n n ,故由根式判别法知,级数∑∞=12n n n 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛−+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=−+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=−⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛−+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n nn 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n nn 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n n e e e n n n e n n n nn nn n 222!1212>=⎪⎭⎫ ⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n .因为101)(lim 1lim22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n nn n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛−+122312n n n n .由于1322312lim 2312lim 2<=−+=⎪⎭⎫⎝⎛−+∞→∞→n n n n n n nn ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753−⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=−⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1−=⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎭⎫ ⎝⎛−⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=−⎪⎭⎫ ⎝⎛−+⋅⋅=−⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎭⎫⎝⎛−+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛−+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛.(6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp −+−−−=−=⋅=−−+−−⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x −==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122−==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n nn 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π;(3)∑∞=+−−+111ln)1(n p n n n n ; (4)∑∞=++−+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=−⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+−=⎪⎭⎫ ⎝⎛+−∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+−⎪⎭⎫⎝⎛++−⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++−+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++−+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+−11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+−=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n 的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+−−+111ln)1(n p n n n n .由于0)1(>−+pn n ,011ln <+−n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛−+⎪⎪⎭⎫ ⎝⎛++=+−−−+121ln 1111ln )1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛−+−⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+−−+n n n n p与121+p n 是同阶无穷小量,因而当112>+p,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++−+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++−+=++−+))(()12(2422b n n a n b n n a n ba n a ++++++++−+−=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qp n n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=−==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰−∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p−−∞→−−=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>−<∞+=−.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散. (2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=−=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qp n n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q ,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→q n n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>−=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ−==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >q n n σ,从而σ−≥1)(ln 1n n u n ,而由(1)知∑∞=−11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡−1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>−++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡−1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡−=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎪⎭⎫ ⎝⎛++⋅−=⎪⎪⎭⎫⎝⎛−∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +−++=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++−++⋅++=−−∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+−++=−∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++−++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>−++∑∞=βααααβn nn n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅−++=+n n n n n n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+−−⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛−∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+−=+−−⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n , 所以当11>+−βα,即βα<时级数收敛;当11<+−βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+−++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++−++++++−++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++−+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max(1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max(1∑∞=n n nv u一定发散.事实上,0),max(≥≥n n n u v u ,而∑∞=1n n u 发散,故),max(1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=−−−+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(−−++−+−=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++−− 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++−− 211212)(,即nna a a n S S S S n S n nn n n +++=++++−−− 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=−=⎪⎭⎫⎝⎛++++−−=+++−∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n n a 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=−1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+−+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=−+12)1(2n nn,由于21232)1(22121→≤−+=≤=nn n n n n n a , 故21lim=∞→nn n a ,而 613221,231223************=⋅==⋅=++−−m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim2=∞→n n nn ; (2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n a n ,由于 )(0)12)(22(!1∞→→++=+n an n u u n n n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>−=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=−−=−>l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>−=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=−+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nn p pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+−1100)1(n nn n;(2)∑∞=12sin ln n n nn π; (3)∑∞=++++−1131211)1(n nnn ;(4)∑∞=−+−2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π; (6)∑∞=−−12)1(3)1(n n n n ;(7))0()1(1>−∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=−12cos )1(n nnn; (10)∑∞=−12sin )1(n nn n;(11))0(sin)1(1≠−∑∞=x nxn n ; (12)∑∞=+−12)1()1(n n n n; (13)++−−+++−−++−−1111131131121121n n ; (14))0(1)1(11>+−∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+−1100)1(n n n n .令100)(+=x x x f ,则2)100(2100)(+−='x x xx f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于 ⎩⎨⎧∈−=−∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=−−−=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f −=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++−1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=−+−2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+−−=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+−−−=−+⋅−=−+−2311)1(1)1(1)1()1(11)1()1()1(n O n n n O n n nn n nn nnnnn ,而级数∑∞=−2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n 发散,因而原级数发散.(5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n −+−=−++=+ππππnn n ++−=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=−−12)1(3)1(n n n n .由于∑∑∞=∞=−=−112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>−∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=−12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin −−+++−+−=n n 1sin )12sin(−+=n ,故1sin 11sin 21sin )12sin(2cos 1≤−+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=−12cos )1(n n n n 收敛,从而原级。

数值分析简明教程(第二版)课后习题答案

数值分析简明教程(第二版)课后习题答案

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

10_数学分析简明教程答案

10_数学分析简明教程答案

10_数学分析简明教程答案第十章数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++=Λ2210,则必有),,2,1(0n i a i Λ==.证明由多项式解nn x a x a x a a y ++++=Λ2210得1232132-++++='n n x na x a x a a y Λ,22432)1(1262--++++=''n n x a n n x a x a a y Λ.从而 134232)1(1262--++++=''n n x a n n x a x a x a y x Λ,且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy Λ.将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a Λ.比较系数得递推公式如下:===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a ΛΛ 由此解得0210=====n a a a a Λ,因而),,2,1,0(0n i a i Λ==.2.试确定系数ΛΛ,,,,10n a a a ,使n n nx a=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n x a n n xa n n x y x ,=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2 =++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120ΛΛΛΛn n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得++++-+-+--=++--=?+--=?+--=-++++-+--=??++-=?+--=+-=+ΛΛΛΛΛΛΛΛΛΛΛΛ,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(11213512402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y ΛΛ+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a ΛΛ.其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和:(1)∑∞=+-1)15)(45(1n n n ;(2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ;(4)=-1212n nn ;(5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++?+?=n n S n Λ ??? ??+--++-+-=1514511116161151n n Λ )(5 1151151∞→→??? ??+-=n n ,所以级数的和51=S . (2)由于+--=-1211212112n n n ,故)(21121121121121513131121∞→→??? ??+-=??? ??+--++-+-= n n n n S n Λ.所以级数的和21=S . (3)322111212)1(11111=??--=-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=??? ??-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++=Λ,则14322222226242221++-++++=n n n nn S Λ,故1432222222222212121+-+++++=-=n n n n n n S S S Λ 14322 22121212121+-??? ??+++++=n nnΛ112222112112121+---??-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412 221211=-=-=-∑∑∞=∞=n n n n n n .(5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→,因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性:(1)∑∞=-112n n n;(2)∑∞=??+13121n nn;(3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ;(5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散.(2)由于∑∑∞=∞=??? ??=112121n nn n ,∑∑∞=∞=??=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++?+?=n n S n Λ ??+--++-+-=131231714141131n n Λ)(31131131∞→→??? ??+-=n n ,因而原级数收敛.(5)由于+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 11 1111131212111→+-=+-++-+-=n n n S n Λ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u.证明设∑∑==='= nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S n k k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim ,设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ,所以)(1v u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即ΛΛ,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中ΛΛ<<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明设∑∑====nk k n nk kS 11,σ,则n nk k n U U U U +++==∑=Λ211σ)()(21112121k k k k u u u u u u +++++++=++ΛΛ n n n n k k k k S u u u =+++++++--)(2111ΛΛ.由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈?,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性:(1)∑=+121n nn ;(2)∑∞=--1122)12(1n n n ;(3)∑∞=--112n n nn ;(4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n;(6)∑∞=11n nn;(7)n n n ∑∞=??+1121;(8)[]∑∞=+1)1ln(1 n nn ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n0
n2
n1
n0
比较系数,得递推公式如下:
l(l 1)a0 2a2 0, (l 1)(l 2)a1 6a3 0,
(l 2)(l
3)a2
12a4
0,
(l (n 1))(l n)an1 (n 1)nan1 0,
(l n)(l .
n 1)an
(n 2)(n 1)an2
lim
n
S
n
4 ,因此原级数
n1
2n 1 2n
n1
2n 2n
1
41 ห้องสมุดไป่ตู้.
n
(5)由于级数的部分和 Sn r k sin kx ,故 k 1
2r cos xSn n 2r k1 sin kx cos x n r k1 sin(k 1)x sin(k 1)x
k 1
k 1
n
n
r k1 sin(k 1)x r k1 sin(k 1)x
n0
n0
将上述结果代入勒让德方程 (1 x 2 ) y 2xy l(l 1) y 0 ,得
0 (1 x 2 ) y 2xy l(l 1) y
n(n 1)an x n2 n(n 1)an x n 2nan x n l(l 1)an x n
n2
n2
n1
n0
(n 2)(n 1)an2 x n n(n 1)an x n 2nan x n l(l 1)an x n .
由此解得 a0 a1 a2 an 0 ,因而 ai 0(i 0,1,2,, n) .
2.试确定系数 a0 , a1,, an , ,使 an x n 满足勒让德方程 n0
(1 x 2 ) y 2xy l(l 1) y 0 .
解 设 y an x n ,则 y nan x n1 , y n(n 1)an x n2 ,故
k 1
k 1
n1
n1
r k sin kx r 2 r k sin kx
3)(l 54
4)
a3
(l
3)(l 1)(l 2)(l 5 4 3 2
4)
a1 ,
a2k 1
(1) k
(l
2k
1)(l
2k
3)(l 1)(l (2k 1)!
2)(l
4) (l
2k) a1,
从而可以得到
y
a0
a
0
k 1
(1)
k
(l
2k
2)(l
2k
4)l(l (2k )!
2n 2n
,则
1 2
S
n
2 22
4 23
6 24
2n 2 2n
2n 2 n1


1 2
S
n
Sn
1 2
S
n
1
2 22
2 23
2 24
2 2n
2n 2 n1
1
2
1 22
1 23
1 24
1 2n
2n 2 n1
1
2
1 22
1
1 2
1 1
n1
2n 2 n1
.
2
从而
lim
n
1 2
S
n
2
,即
0,
由此解得
a2
l
(l
2
1)
a0
,
a4
(l
2)(l 3) 43
a2
(l
2)l(l 1)(l 4 3 2
3) a0 ,
a2k
(1) k
(l
2k
2)(l
2k
4)l(l 1)(l (2k )!
3)(l
2k
1) a0 ,
a3
(l
1)(l 3 2
2)
a1 ,
a5
(l
a1 (a0 4a2 )x (a1 9a3 )x 2 (a2 16a4 )x3
(an2 n 2 an )x n1 an1 x n an x n1 0 .
比较系数得递推公式如下:
a1 a0
0, 4a2
0,
a1 9a3 0,
an2 n 2an 0,
a
n1
0,
an 0.
y 2a2 6a3 x 12a4 x 2 n(n 1)an x n2 .
从而
xy 2a2 x 6a3 x 2 12a4 x3 n(n 1)an x n1 ,

xy a0 x a1 x 2 a2 x 3 an2 x n1 an1 x n an x n1 .
将上述结果代入微分方程 xy y xy 0 ,得
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程 xy y xy 0 有多项式解
y a0 a1x a2 x 2 an x n ,
则必有 ai 0(i 1,2,, n) .
证明 由多项式解 y a0 a1x a2 x 2 an x n 得
y a1 2a2 x 3a3 x 2 nan x n1 ,
n0
n1
n2
(1 x 2 ) y (1 x 2 ) n(n 1)an x n2 n(n 1)an x n2 n(n 1)an x n ,
n2
n2
n2
2xy 2x nan x n1 2nan x n ,
n1
n1
l(l 1) y l(l 1) an x n l(l 1)an x n .
(1)n1
(3)
n1
2 n1

2n 1
(4)
n1
2n

(5) r n sin nx, r 1; n1
(6) r n cos nx, r 1. n1
解(1)由于
(5n
1 4)(5n
1)
1 5
1 5n
4
1 5n
1
,故
Sn
1 1 6
1 6 11
1 (5n 4)(5n 1)
1 1 5
1 6
1 6
1 11
1 5n
4
1 5n
1
1 1 1 1 (n ) , 5 5n 1 5
所以级数的和 S 1 . 5
(2)由于
1 4n2 1
1 2
1 2n 1
1 2n
1
,故
Sn
1 1 2
1 3
1 3
1 5
1 2n 1
1 2n 1
1 1 2
1 2n 1
1 2
(n
) .
所以级数的和 S 1 . 2
(1)n1
(3)
n1
2 n1
n1
1 n1 2
1 1 1
2. 3
2
(4)
n1
2n 1 2n
n1
2n 2n
1 n n1 2
n1
2n 2n
1,因此欲求原级数的和,只需计算级数
n1
2n 2n
即可.对级数
n1
2n 2n
,设其部分和
Sn
2 2
4 22
6 23
1)(l
2k
1)
x 2k
a1 x
a1
(1) k
k 1
(l
2k
1)(l
2k
3)(l 1)(l (2k 1)!
2) (l
2k )
x
2
k
1
.
其中 a0 , a1 取任何常数.
§2 数项级数的收敛性及其基本性质 1.求下列级数的和:
1
(1)

n1 (5n 4)(5n 1)
1
(2) n1 4n 2 1 ;
相关文档
最新文档