高三数学一轮复习函数概念与表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009~2010学年度高三数学(人教版A版)第一轮复习资料
第二讲函数概念与表示
一.【课标要求】
1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;
2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;
3.通过具体实例,了解简单的分段函数,并能简单应用;
4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;
5.学会运用函数图象理解和研究函数的性质
二.【命题走向】
函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。
从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。
高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大
预测20XX年高考对本节的考察是:
1.题型是1个选择和一个填空;
2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。
三.【要点精讲】
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x
2.构成函数的三要素:定义域、对应关系和值域
(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:
①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);
②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;
③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题
①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函
数图象等)。
3.两个函数的相等:
函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;
(3)区间的数轴表示
5.映射的概念
一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f :A →B ”。
函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。
注意:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述。
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思 6.常用的函数表示法
(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;
(2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系 7.分段函数
若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;
8.复合函数
若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域
四.【典例解析】
题型1:函数概念
例1.21.(2009天津卷文)设函数⎩⎨⎧<+≥+-=0
,60,64)(2x x x x x x f 则不等式)1()(f x f >的解
集是( )
A.),3()1,3(+∞⋃-
B.),2()1,3(+∞⋃-
C.),3()1,1(+∞⋃-
D.)3,1()3,(⋃--∞
答案 A
解析 由已知,函数先增后减再增
当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。
当0 故3)1()(=>f x f ,解得313><<-x x 或 【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解 (2)江苏省如皋中学2007—2008学年度第二学期阶段考试高三数学(理科) 请设计一个同时满足下列两个条件的函数y = f (x ): ①图象关于y 轴对称;②对定义域内任意不同两点12x x 、, 都有 12 12()()2( )2 x x f x f x f ++<答: . 答案不唯一,在定义域内图象上凸的偶函数均可,如 2(),()cos (),()|tan |()2 2 2 2 f x x f x x x f x x x π π π π =-=- ≤≤ =-- << 等等. 首先由①知f (x )为偶函数,由②知f (x )在定义域内图象上凸,然后在基本初等函数中去寻找符合这两点的模型函数 【总结点评】本题主要考查函数的图象与性质,问题以开放的形式出现,着重突出对考生数学素质的要求. 点评:讨论了函数的解析式的一些常用的变换技巧(赋值、变量代换、换元等等),这都是函数学习的常用基本功 变式题:(2009北京文)已知函数3,1, (),1, x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = . 答案 3log 2 解析 本题主要考查分段函数和简单的已知函数值求x 的值. 属于基础知识、基本运算的考查. 由31log 232 x x x ≤⎧⇒=⎨=⎩,1 22x x x >⎧⎨-=⇒=-⎩无解,故应填3log 2. 例2.(2007安徽 文理15) (1)函数()f x 对于任意实数x 满足条件()() 1 2f x f x += ,若()15,f =-则()()5f f =__ ________; (2)函数()f x 对于任意实数x 满足条件()() 1 2f x f x += ,若()15,f =-则