2017年天津市中考数学试卷(含答案解析版)
2017年中考数学真题试题(含答案)
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年中考数学真题试题与答案(word版)
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年陕西省中考数学试卷(含答案解析)
2017年陕西省中考数学试卷(含答案解析) 2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(-)2-1=()A。
-3 B。
-1 C。
-2 D。
32.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A。
B。
C。
D.3.(3分)若一个正比例函数的图象经过A(3,-6),B (m,-4)两点,则m的值为()A。
2 B。
8 C。
-2 D。
-84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A。
55° B。
75° C。
65° D。
85°5.(3分)化简:A。
1B。
C。
D。
x^2+y^2结果正确的是()6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB 上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为()A。
3 B。
6 C。
3√2 D。
6√27.(3分)如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是()A。
-24 D。
-<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A。
1 B。
2 C。
3/2 D。
2/39.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A。
5 B。
5√3 C。
5/√3 D。
5/310.(3分)已知抛物线y=x^2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A。
2017年盘锦市中考数学试题(含答案和解释)
2017年盘锦市中考数学试题(含答案和解释)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是()A.2B..﹣D.﹣2 【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B..D.【答案】.考点:中心对称图形.3.下列等式从左到右的变形,属于因式分解的是()A.B..D.【答案】.【解析】试题分析:A.,故A不是因式分解;B.,故B不是因式分解;.,故正确;D.=a(x+1)(x﹣1),故D分解不完全.故选.考点:因式分解的意义.4.如图,下面几何体的俯视图是()A.B..D.【答案】D.【解析】试题分析:从上面可看到第一行有三个正方形,第二行最左边有1个正方形.故选D.考点:简单组合体的三视图..在我市举办的中学生“争做明盘锦人”演讲比赛中,有1名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这1名学生成绩的()A.众数B.方差.平均数D.中位数【答案】D.考点:统计量的选择.6.不等式组的解集是()A.﹣1<x≤3B.1≤x<3.﹣1≤x<3D.1<x≤3【答案】.考点:解一元一次不等式组.7.样本数据3,2,4,a,8的平均数是4,则这组数据的众数是()A.2B.3.4D.8【答案】B.【解析】试题分析:a=4×﹣3﹣2﹣4﹣8=3,则这组数据为3,2,4,3,8;众数为3,故选B.考点:众数;算术平均数.8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进,结果每位同学比原少分摊4元车费.设原游玩的同学有x名,则可得方程()A.B..D.【答案】D.【解析】试题分析:由题意得:,故选D.考点:由实际问题抽象出分式方程.9.如图,双曲线(x<0)经过▱AB的对角线交点D,已知边在轴上,且A⊥于点,则▱AB的面积是()A.B..3D.6【答案】.考点:反比例函数系数的几何意义;平行四边形的性质.10.如图,抛物线与x轴交于点A(﹣1,0),顶点坐标(1,n),与轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①ab>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥a2+b(为任意实数);⑤一元二次方程有两个不相等的实数根,其中正确的有()A.2个B.3个.4个D.个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴=1,∴b=﹣2a>0,∵与轴的交点在(0,3),(0,4)之间(包含端点),∴3≤≤4,∴ab<0,故①错误;3a+b=3a+(﹣2a)=a<0,故②正确;∵与x轴交于点A(﹣1,0),∴a﹣b+=0,∴a﹣(﹣2a)+=0,∴=﹣3a,∴3≤﹣3a≤4,∴﹣≤a≤﹣1,故③正确;∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+≥a2+b+,∴a+b≥a2+b,故④正确;一元二次方程有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B.考点:抛物线与x轴的交点;根的判别式;二次函数的性质.二、填空题(每小题3分,共24分)11.2016年我国对“一带一路”沿线国家直接投资14亿美元,将14亿用科学记数法表示为.【答案】14×1010.【解析】试题分析:将14亿用科学记数法表示为:14×1010.故答案为:14×1010.考点:科学记数法—表示较大的数.12.若式子有意义,则x的取值范围是.【答案】x>.考点:二次根式有意义的条.13.计算:= .【答案】.【解析】试题分析:原式= ,故答案为:.考点:整式的除法.14.对于▱ABD,从以下五个关系式中任取一个作为条:①AB=B;②∠BAD=90°;③A=BD;④A⊥BD;⑤∠DAB=∠AB,能判定▱ABD是矩形的概率是.【答案】.【解析】试题分析:由题意可知添加②③⑤可以判断平行四边形是矩形,∴能判定▱ABD是矩形的概率是,故答案为:.考点:概率公式;矩形的判定.1.如图,在△AB中,∠B=30°,∠=4°,AD是B边上的高,AB=4,分别以B、为圆心,以BD、D为半径画弧,交边AB、A于点E、F,则图中阴影部分的面积是2.【答案】.考点:扇形面积的计算;勾股定理.16.在平面直角坐标系中,点P的坐标为(0,﹣),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于轴,且AB=8,反比例函数(≠0)经过点B,则= .【答案】﹣8或﹣32.【解析】试题分析:设线段AB交轴于点,当点在点P的上方时,连接PB,如图,∵⊙P 与x轴相切,且P(0,﹣),∴PB=P=,∵AB=8,∴B=4,在Rt△PB 中,由勾股定理可得P= =3,∴=P﹣P=﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(≠0)经过点B,∴=4×(﹣2)=﹣8;当点在点P下方时,同理可求得P=3,则=P+P=8,∴B(4,﹣8),∴=4×(﹣8)=﹣32;综上可知的值为﹣8或﹣32,故答案为:﹣8或﹣32.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.17.如图,⊙的半径A=3,A的垂直平分线交⊙于B、两点,连接B、,用扇形B围成一个圆锥的侧面,则这个圆锥的高为.【答案】.考点:圆锥的计算;线段垂直平分线的性质.18.如图,点A1(1,1)在直线=x上,过点A1分别作轴、x轴的平行线交直线于点B1,B2,过点B2作轴的平行线交直线=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.三、解答题(19小题8分,20小题10分,共18分)19.先化简,再求值:,其中a= .【答案】,1.【解析】试题分析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.试题解析:原式===当a=1+2=3时,原式= =1.考点:分式的化简求值;零指数幂;负整数指数幂.20.如图,码头A、B分别在海岛的北偏东4°和北偏东60°方向上,仓库在海岛的北偏东7°方向上,码头A、B均在仓库的正西方向,码头B和仓库的距离B=0,若将一批物资从仓库用汽车运送到A、B两个码头中的一处,再用货船运送到海岛,若汽车的行驶速度为0/h,货船航行的速度为2/h,问这批物资在哪个码头装船,最早运抵海岛?(两个码头物资装船所用的时间相同,参考数据:≈14,≈17)【答案】这批物资在B码头装船,最早运抵海岛.由题意∠=7°,∠B=60°,∠=4°,∠=90°,∴∠=1°,∠B=30°,=A,∵∠B=∠+∠B,∴∠=∠B=1°,∴B=B=0(),在Rt△B中,= B=2(),B= = (),在Rt△A中,=A=2(),A= ≈3,∴AB=B﹣A≈17(),∴从A码头的时间= =34(小时),从B码头的时间= =3(小时),3<34.答:这批物资在B码头装船,最早运抵海岛.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)0;(2)26;(3)104000元;(4).【解析】试题分析:(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出类型人数,即可补全条形图;(2)由各类的人数可得其总消费,进而可求出该班同学用于饮品上的人均花费是多少元;(3)用总人数乘以样本中的人均消费数额即可;(4)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.试题解析:(1)∵抽查的总人数为:20÷40%=0人,∴类人数=0﹣20﹣﹣1=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(×0+20×2+3×10+4×1)÷0=26元;(3)我市初中生每天用于饮品上的花费=40000×26=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图;加权平均数.22.如图,在平面直角坐标系中,直线l:与x轴、轴分别交于点,N,高为3的等边三角形AB,边B在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B11,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A11所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、1、为顶点的四边形是平行四边形,请直接写出P点坐标.【答案】(1)A1(,3),在直线上;(2);(3)P1(,3),P2(,﹣3),P3(﹣,3).试题解析:(1)如图作A1H⊥x轴于H.在Rt△A1H中,∵A1H=3,∠A1H=60°,∴H=A1H•tan30°= ,∴A1(,3),∵x= 时,=3,∴A1在直线上.(2)∵A1(,3),1(,0),设直线A11的解析式为=x+b,则有:,解得:,∴直线A11的解析式为.(3)∵(4 ,0),A1(,3),1(2 ,0),由图象可知,当以P、A1、1、为顶点的四边形是平行四边形时,P1(,3),P2(,﹣3),P3(﹣,3).考点:一次函数综合题;分类讨论.23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.=﹣10x2+2210x﹣112800,当=880时,﹣10x2+2210x﹣112800=880,整理,得:x2﹣221x+12138=0,解得:x=102或x=119,∵当x=102时,销量为1410﹣1020=390,当x=119时,销量为1410﹣1190=220,∴若要达到880元的利润,且薄利多销,∴此时的定价应为102元;小杰:=﹣10x2+2210x﹣112800= ,∵价格取整数,即x为整数,∴当x=110或x=111时,取得最大值,最大值为9300.答:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.考点:二次函数的应用;二次函数的最值;最值问题.24.如图,在等腰△AB中,AB=B,以B为直径的⊙与A相交于点D,过点D作DE⊥AB交B延长线于点E,垂足为点F.(1)判断DE与⊙的位置关系,并说明理由;(2)若⊙的半径R=,tan= ,求EF的长.【答案】(1)直线DE是⊙的切线;(2).(2)过D作DH⊥B于H,∵⊙的半径R=,tan= ,∴B=10,设BD=,D=2,∴B= =10,∴=2 ,∴BD=2 ,D=4 ,∴DH= =4,∴H= =3,∵DE⊥D,DH⊥E,∴D2=H•E,∴E= ,∴BE= ,∵DE⊥AB,∴BF∥D,∴△BFE∽△DE,∴,即,∴BF=2,∴EF= = .考点:直线与圆的位置关系;等腰三角形的性质;解直角三角形;探究型.2.如图,在Rt△AB中,∠AB=90°,∠A=30°,点为AB中点,点P 为直线B上的动点(不与点B、点重合),连接、P,将线段P绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段B上时,请直接写出线段BQ与P的数量关系.(2)如图2,当点P在B延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在B延长线上时,若∠BP=1°,BP=4,请求出BQ的长.【答案】(1)BQ=P;(2)成立:P=BQ;(3).(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.设E==a,则E=FP=2a,EF= a,在Rt△PE中,表示出P,根据P+B=4,可得方程,求出a即可解决问题;试题解析:(1)结论:BQ=P.理由:如图1中,作PH∥AB交于H.在Rt△AB中,∵∠AB=90°,∠A=30°,点为AB中点,∴=A=B,∠B=60°,∴△B是等边三角形,∴∠HP=∠B=60°,∠PH=∠B=60°,∴∠HP=∠PH=60°,∴△PH是等边三角形,∴P=PH=H,∴H=PB,∵∠PB=∠PQ+∠QPB=∠B+∠P,∵∠PQ=∠P=60°,∴∠PH=∠QPB,∵P=PQ,∴△PH≌△QPB,∴PH=QB,∴P=BQ.(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.∵∠P=1°,∠B=∠P+∠P,∴∠P=4°,∴E=E,设E==a,则E=FP=2a,EF= a,在Rt△PE中,P= = = ,∵P+B=4,∴,解得a= ,∴P= ,由(2)可知BQ=P,∴BQ= .考点:几何变换综合题;探究型;变式探究;压轴题.26.如图,直线=﹣2x+4交轴于点A,交抛物线于点B(3,﹣2),抛物线经过点(﹣1,0),交轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.(1)求抛物线的解析式;(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;(3)在(2)的条下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.【答案】(1);(2)PE=或2,P(2,﹣3)或(,3);(3)E的对称点坐标为(,﹣)或(36,﹣12).【解析】试题分析:(1)把B(3,﹣2),(﹣1,0)代入即可得到结论;(2)由求得D(0,﹣2),根据等腰直角三角形的性质得到DE=PE,列方程即可得到结论;(3)①当P点在直线BD的上方时,如图1,设点E关于直线AB 的对称点为E′,过E′作E′H⊥DE于H,求得直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论;②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE 于H,得到直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论.(2)设P(,),在中,当x=0时,=﹣2,∴D(0,﹣2),∵B(3,﹣2),∴BD∥x轴,∵PE⊥BD,∴E(,﹣2),∴DE=,PE= ,或PE= ,∵△PDE为等腰直角三角形,且∠PED=90°,∴DE=PE,∴= ,或= ,解得:=,=2,=0(不合题意,舍去),∴PE=或2,P(2,﹣3)或(,3);②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE于H,由(2)知,此时,E(2,﹣2),∴DE=2,∴BE′=BE=1,∵EE′⊥AB,∴设直线EE′的解析式为,∴﹣2= ×2+b,∴b=﹣3,∴直线EE′的解析式为,设E′(,),∴E′H= = ,BH=﹣3,∵E′H2+BH2=BE′2,∴()2+(﹣3)2=1,∴=36,=2(舍去),∴E′(36,﹣12).综上所述,E的对称点坐标为(,﹣)或(36,﹣12).考点:二次函数综合题;动点型;翻折变换(折叠问题);分类讨论;压轴题.。
2017年江苏省扬州市中考数学试卷-答案
江苏省扬州市2017年中考试卷数学答案解析一、选择题1.【答案】D【解析】解:1|3|4AB =-=-.故选D .【提示】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【考点】数轴2.【答案】B【解析】解:A .45a a a =g ,不符合题意;B .224()a a =,符合题意;C .3332a a a +=,不符合题意;D .43a a a ÷=,不符合题意,故选B .【提示】利用有关幂的运算性质直接运算后即可确定正确的选项.【考点】幂的运算3.【答案】A【解析】解:∵2(7)4(2)570∆=-⨯-=>-,∴方程有两个不相等的实数根.故选A .【提示】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【考点】一元二次方程的根的判别式4.【答案】D【解析】解:由于方差和标准差反映数据的波动情况.故选D .【提示】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【考点】数据的集中趋势和离散程度5.【答案】B【解析】解:经过圆锥顶点的截面的形状可能是B 中图形,故选:B .【提示】根据已知的特点解答【考点】立体图形的截面6.【答案】C【解析】解:设第三边的长为x ,∵三角形两边的长分别是2和4,∴4224x -<<+,即26x <<. 则三角形的周长:812C <<,C 选项11符合题意,故选C .【提示】连接CO ,根据圆周角定理可得280AOC B ∠=∠=︒,进而得出OAC ∠的度数.故答案为:50.x x164∴261016CB BB BC ''=-=-=.是O 的切线.是平行四边形,又∵都是等边三角形,∴ABF DBG =∠是O 的切线.)①由(1)可知:OCE △中,∵180是O 的切线.首先证明是等边三角形即可解决问题;211 / 11。
2017年中考真题 数学(安徽卷)(含解析)
D.
考点: 解一元一次不等式及其解集在数轴上的表示方法.
6.直角三角板和直尺如图放置.若 1 20 ,则 2 的度数为( )
A. 60
【答案】C 【解析】
B. 50
C. 40
D. 30
试题分析:由题意得:
a b 4 50 2 40
3=50
故选答案 C
考点:平行线的性质、外角的性质
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成
(1)根据以上数据完成下表:
平均数
中位数
方差
甲
8
8
乙
8
丙
6
8
2.2
3
(2)依据表 中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
【答案】解:(1)
平均数
中位数
方差
甲
2
乙
丙
6
[来源:Z|xx|]
【解析】
试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率.
为
.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12 22 32 n2 )
.
因此,12 22 32 n2 =
.
【解决问题】
根据以上发现,计算
12
22 1 2
32 2017 3 2017
2
的结果为
.
【答案】 2n +1 【解析】
(2n +1)×n(n +1)
2
1 n(n +1)(2n +1)
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2017年辽宁省沈阳市中考数学试卷(含解析版)
2017年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)7的相反数是()A.﹣7 B.﹣47C.17D.72.(2分)如图所示的几何体的左视图()A.B.C.D.3.(2分)“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为()万.A.83×10 B.8.3×102C.8.3×103D.0.83×1034.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130° D.140°5.(2分)点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.﹣5 D.﹣106.(2分)在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)7.(2分)下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1 D.(2x)5=2x58.(2分)下列事件中,是必然事件的是()A .将油滴入水中,油会浮在水面上B .车辆随机到达一个路口,遇到红灯C .如果a 2=b 2,那么a=bD .掷一枚质地均匀的硬币,一定正面向上9.(2分)在平面直角坐标系中,一次函数y=x ﹣1的图象是( )A .B .C .D . 10.(2分)正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( )A .√3B .2C .2√2D .2√3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)因式分解3a 2+a= .12.(3分)一组数2,3,5,5,6,7的中位数是 .13.(3分)x+1x •x x 2+2x+1= . 14.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”)15.(3分)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润.16.(3分)如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.三、解答题(本大题共22分)17.(6分)计算|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.18.(8分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.四、解答题(每题8分,共16分)20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是度;(3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?五、解答题(共10分)22.(10分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C .(1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.六、解答题(共10分)23.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2√5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S .(1)填空:AB 的长是 ,BC 的长是 ;(2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.24.(12分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=3√10,请直接写出此时AE的长.25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣√312x2﹣√33x+8√3与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.2017年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•沈阳)7的相反数是()A.﹣7 B.﹣47C.17D.7【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2分)(2017•沈阳)如图所示的几何体的左视图()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(2分)(2017•沈阳)“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为()万.A.83×10 B.8.3×102C.8.3×103D.0.83×103【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:830万=8.3×102万.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(2分)(2017•沈阳)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130° D.140°【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.5.(2分)(2017•沈阳)点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.﹣5 D.﹣10【考点】G6:反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质得出k的值.【解答】解:∵点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,∴k的值是:k=xy=﹣2×5=﹣10.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出xy=k是解题关键.6.(2分)(2017•沈阳)在平面直角坐标系中,点A,点B关于y轴对称,点A 的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.7.(2分)(2017•沈阳)下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1 D.(2x)5=2x5【考点】4F:平方差公式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x3与x5不是同类项,故不能合并,故A不正确;(B)x3与x5不是同类项,故不能合并,故B不正确;(D)原式=25x5=32x5,故D不正确;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型8.(2分)(2017•沈阳)下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(2分)(2017•沈阳)在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【考点】F3:一次函数的图象.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选B【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.10.(2分)(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.√3B.2 C.2√2 D.2√3【考点】MM:正多边形和圆.【分析】连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.【解答】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•沈阳)因式分解3a 2+a= a (3a +1) .【考点】53:因式分解﹣提公因式法.【分析】直接提公因式a 即可.【解答】解:3a 2+a=a (3a +1),故答案为:a (3a +1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.12.(3分)(2017•沈阳)一组数2,3,5,5,6,7的中位数是 5 .【考点】W4:中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7,则中位数为:5+52=5. 故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)(2017•沈阳)x+1x •x x 2+2x+1= 1x+1. 【考点】6A :分式的乘除法.【分析】原式约分即可得到结果.【解答】解:原式=x+1x •x (x+1)2=1x+1,故答案为:1x+1【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.(3分)(2017•沈阳)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是丙(填“甲”或“乙”或“丙”)【考点】W7:方差;W1:算术平均数.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵S甲2=0.53,S乙2=0.51,S丙2=0.43,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2017•沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是35元/时,才能在半月内获得最大利润.【考点】HE:二次函数的应用.【分析】设销售单价为x元,销售利润为y元,求得函数关系式,利用二次函数的性质即可解决问题.【解答】解:设销售单价为x元,销售利润为y元.根据题意,得:y=(x﹣20)[400﹣20(x﹣30)]=(x﹣20)(1000﹣20x)=﹣20x2+1400x﹣20000=﹣20(x ﹣35)2+4500,∵﹣20<0,∴x=35时,y 有最大值,故答案为35.【点评】本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题16.(3分)(2017•沈阳)如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 3√105.【考点】R2:旋转的性质;LB :矩形的性质.【分析】连接AG ,根据旋转变换的性质得到,∠ABG=∠CBE ,BA=BG ,根据勾股定理求出CG 、AD ,根据相似三角形的性质列出比例式,计算即可.【解答】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,CG=√BG 2−BC 2=4,∴DG=DC ﹣CG=1,则AG=√AD 2+DG 2=√10,∵BA BC =BG BE,∠ABG=∠CBE , ∴△ABG ∽△CBE ,∴CE AG =BC AB =35,解得,CE=3√105, 故答案为:3√105.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三、解答题(本大题共22分)17.(6分)(2017•沈阳)计算|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0=√2﹣1+19﹣2×√22+1 =19【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)(2017•沈阳)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF .求证:(1)△ADE ≌△CDF ;(2)∠BEF=∠BFE.【考点】L8:菱形的性质;KD:全等三角形的判定与性质.【分析】(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥BA,DF⊥CB,∴∠AED=∠CFD=90°,在△ADE和△CDE,∵{AD=CD∠A=∠C∠AED=∠CFD=90°,∴△ADE≌△CDE;(2)∵四边形ABCD是菱形,∴AB=CB,∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等,此题难度一般.19.(8分)(2017•沈阳)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果,∴两次抽取的卡片上的数字都是奇数的概率为4 9.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.四、解答题(每题8分,共16分)20.(8分)(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=50,n=30;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是72度;(3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图.【分析】(1)根据其他的人数和所占的百分比即可求得m 的值,从而可以求得n 的值;(2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数;(3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书.【解答】解:(1)m=5÷10%=50,n%=15÷50=30%,故答案为:50,30;(2)由题意可得,“艺术”所对应的扇形的圆心角度数是:360°×1050=72°, 故答案为:72;(3)文学有:50﹣10﹣15﹣5=20,补全的条形统计图如右图所示;(4)由题意可得,600×1550=180, 即该校600名学生中有180名学生最喜欢科普类图书.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(8分)(2017•沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【考点】C9:一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分以上),即小明的得分>90分,设小明答对了x ,就可以列出不等式,求出x 的值即可.【解答】解:设小明答对了x 题,根据题意可得:(25﹣x )×(﹣2)+6x >90,解得:x >1712, ∵x 为非负整数,∴x 至少为18,答:小明至少答对18道题才能获得奖品.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.五、解答题(共10分)22.(10分)(2017•沈阳)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C .(1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.【考点】ME :切线的判定与性质;T7:解直角三角形.【分析】(1)连接EO ,由∠EOG=2∠C 、∠ABG=2∠C 知∠EOG=∠ABG ,从而得AB ∥EO ,根据EF ⊥AB 得EF ⊥OE ,即可得证;(2)由∠ABG=2∠C、∠ABG=∠C+∠A知∠A=∠C,即BA=BC=6,在Rt△OEG中求得OG=OEsin∠EGO=5、BG=OG﹣OB=2,在Rt△FGB中求得BF=BGsin∠EGO,根据AF=AB﹣BF可得答案.【解答】解:(1)如图,连接EO,则OE=OC,∴∠EOG=2∠C,∵∠ABG=2∠C,∴∠EOG=∠ABG,∴AB∥EO,∵EF⊥AB,∴EF⊥OE,又∵OE是⊙O的半径,∴EF是⊙O的切线;(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC=6,在Rt△OEG中,∵sin∠EGO=OE OG,∴OG=OEsin∠EGO=335=5,∴BG=OG﹣OB=2,在Rt△FGB中,∵sin∠EGO=BF BG,∴BF=BGsin∠EGO=2×35=6 5,则AF=AB ﹣BF=6﹣65=245. 【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键.六、解答题(共10分)23.(10分)(2017•沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2√5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S .(1)填空:AB 的长是 10 ,BC 的长是 6 ;(2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.【考点】LO :四边形综合题.【分析】(1)利用勾股定理即可解决问题;(2)如图1中,作CE ⊥x 轴于E .连接CM .当t=3时,点N 与C 重合,OM=3,易求△OMN 的面积;(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F .则F (0,4).由GN ∥CF ,推出BN BC =BG BF ,即12−2t 6=BG 4,可得BG=8﹣43t ,由此即可解决问题; (4)分三种情形①当点N 在边长上,点M 在OA 上时.②如图3中,当M 、N在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB =245,列出方程即可解决问题.③同法当M 、N 在线段AB 上,相遇之后,列出方程即可;【解答】解:(1)在Rt △AOB 中,∵∠AOB=90°,OA=6,OB=8,∴AB=√OA 2+OB 2=√62+82=10.BC=√(2√5)2+42=6,故答案为10,6.(2)如图1中,作CE ⊥x 轴于E .连接CM .∵C (﹣2√5,4),∴CE=4OE=2√5,在Rt △COE 中,OC=√OE 2+CE 2=√(2√5)2+42=6,当t=3时,点N 与C 重合,OM=3,∴S △ONM =12•OM•CE=12×3×4=6, 即S=6.(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F .则F (0,4).∵OF=4,OB=8,∴BF=8﹣4=4,∵GN ∥CF ,∴BN BC =BG BF ,即12−2t 6=BG 4, ∴BG=8﹣43t , ∴y=OB ﹣BG=8﹣(8﹣43t )=43t .(4)①当点N 在边长上,点M 在OA 上时,12•43t•t=485, 解得t=6√105(负根已经舍弃). ②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB =245, 由题意12[10﹣(2t ﹣12)﹣(t ﹣6)]•245=485, 解得t=8,同法当M 、N 在线段AB 上,相遇之后.由题意12•[(2t ﹣12)+(t ﹣6)﹣10]•245=485,解得t=323, 综上所述,若S=485,此时t 的值8s 或323s 或6√105s . 【点评】本题考查四边形综合题、平行线分线段吧成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.七、解答题(共12分)24.(12分)(2017•沈阳)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF .(1)如图1,当点E 与点A 重合时,请直接写出BF 的长;(2)如图2,当点E 在线段AD 上时,AE=1;①求点F 到AD 的距离;②求BF 的长;(3)若BF=3√10,请直接写出此时AE 的长.【考点】LO :四边形综合题.【分析】(1)作FH ⊥AB 于H ,由AAS 证明△EFH ≌△CED ,得出FH=CD=4,AH=AD=4,求出BH=AB +AH=8,由勾股定理即可得出答案;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM=AH ,AM=FH ,①同(1)得:△EFH ≌△CED ,得出FH=DE=3,EH=CD=4即可;②求出BM=AB +AM=7,FM=AE +EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同(1)得::△EFH ≌△CED ,得出FH=DE=4+AE ,EH=CD=4,得出FK=8+AE ,在Rt △BFK 中,BK=AH=EH ﹣AE=4﹣AE ,由勾股定理得出方程,解方程即可;②当点E 在边AD 的右侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同理得:AE=2+√41.【解答】解:(1)作FH ⊥AB 于H ,如图1所示:则∠FHE=90°,∵四边形ABCD 和四边形CEFG 是正方形,∴AD=CD=4,EF=CE ,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED ,在△EFH 和△CED 中,{∠FHE =∠EDC =90°∠FEH =∠CED EF =CE,∴△EFH ≌△CED (AAS ),∴FH=CD=4,AH=AD=4,∴BH=AB +AH=8,∴BF=√BH 2+FH 2=√82+42=4√5;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,如图2所示: 则FM=AH ,AM=FH ,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH ≌△CED (AAS ),∴FH=DE=3,EH=CD=4,即点F 到AD 的距离为3;②∴BM=AB +AM=4+3=7,FM=AE +EH=5,∴BF=√BM 2+FM 2=√72+52=√74;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,如图3所示:同(1)得::△EFH ≌△CED ,∴FH=DE=4+AE ,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3√10)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+√41;综上所述:AE的长为1或2+√41.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.八、解答题(共12分)25.(12分)(2017•沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣√312x2﹣√33x+8√3与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【考点】HF:二次函数综合题.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣b2a=﹣2,所以点D在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=8√3,∴B(0,8√3),∴OB=8√3,当y=0时,y=﹣√312x2﹣√33x+8√3=0,x2+4x﹣96=0,(x﹣8)(x+12)=0,x1=8,x2=﹣12,∴A(8,0),∴OA=8,在Rt△AOB中,tan∠ABO=OAOB=8√3=√33,∴∠ABO=30°,故答案为:8,30;(2)①证明:∵DE ∥AB ,∴OM AM =OH BH, ∵OM=AM ,∴OH=BH ,∵BN=AN ,∴HN ∥AM ,∴四边形AMHN 是平行四边形;②点D 在该抛物线的对称轴上,理由是:如图1,过点D 作DR ⊥y 轴于R ,∵HN ∥OA ,∴∠NHB=∠AOB=90°,∵DE ∥AB ,∴∠DHB=∠OBA=30°,∵Rt △CDE ≌Rt △ABO ,∴∠HDG=∠OBA=30°,∴∠HGN=2∠HDG=60°,∴∠HNG=90°﹣∠HGN=90°﹣60°=30°,∴∠HDN=∠HND ,∴DH=HN=12OA=4, ∴Rt △DHR 中,DR=12DH=12×4=2,∴点D的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣b2a=﹣−√332×(−√312)=﹣2,∴点D在该抛物线的对称轴上;(3)如图3中,连接PQ,作DR⊥PK于R,在DR上取一点T,使得PT=DT.设PR=a.∵NA=NB,∴HO=NA=NB,∵∠ABO=30°,∴∠BAO=60°,∴△AON是等边三角形,∴∠NOA=60°=∠ODM+∠OMD,∵∠ODM=30°,∴∠OMD=∠ODM=30°,∴OM=OD=4,易知D(﹣2,﹣2√3),Q(﹣2,10√3),∵N(4,4√3),∴DK=DN=√62+(6√3)2=12,∵DR∥x轴,,∴∠KDR=∠OMD=30°∴RK=12DK=6,DR=6√3,∵∠PDK=45°,∴∠TDP=∠TPD=15°,∴∠PTR=∠TDP+∠TPD=30°,∴TP=TD=2a,TR=√3a,∴√3a+2a=6√3,∴a=12√3﹣18,可得P(﹣2﹣6√3,10√3﹣18),∴PQ=√(6√3)2+182=12√3.【点评】本题考查二次函数综合题、平行四边形的判定和性质、锐角三角函数、30度角的直角三角形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2017年天津市中学考试数学试卷(Word版含问题详解)
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)。
1.计算(﹣3)+5的结果等于()。
A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()。
A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()。
A.B. C. D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4 月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()。
A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。
A.B. C. D.6.估计的值在()。
A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间7.计算的结果为()。
A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()。
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()。
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()。
A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()。
【真题】2017年哈尔滨市中考数学试卷含答案解析(Word版)
2017年省市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为.12.函数y=中,自变量x的取值围是.13.把多项式4ax2﹣9ay2分解因式的结果是.14.计算﹣6的结果是.15.已知反比例函数y=的图象经过点(1,2),则k的值为.16.不等式组的解集是.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.2017年省市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【考点】B3:解分式方程.【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =【考点】S9:相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为 5.67×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值围是x≠2 .【考点】E4:函数自变量的取值围.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:15.已知反比例函数y=的图象经过点(1,2),则k的值为 1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3 .【考点】CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【考点】MN:弧长的计算.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为4或2.【考点】L8:菱形的性质.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【考点】N4:作图—应用与设计作图;KQ:勾股定理;L6:平行四边形的判定;T7:解直角三角形.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【考点】MR:圆的综合题.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin ∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【考点】HF:二次函数综合题.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD 于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR ⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣ t ﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣ t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.2017年7月5日。
2017年江苏省泰州市中考数学试卷(含解析版)
2017年江苏省泰州市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2的算术平方根是()A.±√2B.√2C.−√2D.22.(3分)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a33.(3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点5.(3分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,P为反比例函数y=kx(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)|﹣4|=.8.(3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.(3分)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.10.(3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.(3分)将一副三角板如图叠放,则图中∠α的度数为.12.(3分)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.13.(3分)方程2x2+3x﹣1=0的两个根为x1、x2,则1x1+1x2的值等于.14.(3分)小明沿着坡度i为1:√3的直路向上走了50m,则小明沿垂直方向升高了m.15.(3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.16.(3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB 方向从点A运动到点B,则点E运动的路径长为.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(1)计算:(√7﹣1)0﹣(﹣12)﹣2+√3tan30°;(2)解方程:x+1x−1+41−x2=1.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(10分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.22.(10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG 于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.(10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.̂的中点;(1)求证:点P为BD(2)若∠C=∠D,求四边形BCPD的面积.25.(12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.2017年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•泰州)2的算术平方根是()A.±√2B.√2C.−√2D.2【考点】22:算术平方根.【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是√2,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3分)(2017•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3分)(2017•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【考点】K5:三角形的重心.【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)(2017•泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数的意义、方差的意义,可得答案.【解答】解:x原=160+165+170+163+1675=165,S2原=585,x 新=160+165+170+163+167+1656=165,S2新=586,平均数不变,方差变小,故选:C.【点评】本题考查了方差,利用方差的定义是解题关键.6.(3分)(2017•泰州)如图,P为反比例函数y=kx(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ,易证△BOE ∽△AOD ,根据相似三角形对应边比例相等的性质即可求出k 的值.【解答】解:作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ;设P 点坐标(n ,k n),∵直线AB 函数式为y=﹣x ﹣4,PB ⊥y 轴,PA ⊥x 轴,∴∠PBA=∠PAB=45°,∴PA=PB ,∵P 点坐标(n ,k n), ∴OD=CQ=n ,∴AD=AQ +DQ=n +4;∵当x=0时,y=﹣x ﹣4=﹣4,∴OC=DQ=4,GE=OE=√22OC=2√2; 同理可证:BG=√2BF=√2PD=√2k n, ∴BE=BG +EG=√2k n +2√2; ∵∠AOB=135°,∴∠OBE +∠OAE=45°,∵∠DAO +∠OAE=45°,∴∠DAO=∠OBE ,∵在△BOE 和△AOD 中,{∠DAO =∠OBE ∠BEO =∠ADO =90°, ∴△BOE ∽△AOD ;∴OE OD =BE AD ,即2√2n =√2k n+2√24+n; 整理得:nk +2n 2=8n +2n 2,化简得:k=8;故选D .【点评】本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•泰州)|﹣4|= 4 .【考点】15:绝对值.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.8.(3分)(2017•泰州)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 4.25×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将42500用科学记数法表示为:4.25×104.故答案为:4.25×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【考点】4J:整式的混合运算—化简求值.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.10.(3分)(2017•泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(3分)(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为 15° .【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.(3分)(2017•泰州)扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为 3π cm 2.【考点】MO :扇形面积的计算;MN :弧长的计算.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n ,则:2π=n⋅π⋅3180, 得:n=120°.∴S 扇形=120⋅π⋅32360=3πcm 2. 故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.13.(3分)(2017•泰州)方程2x 2+3x ﹣1=0的两个根为x 1、x 2,则1x 1+1x 2的值等于 3 .【考点】AB :根与系数的关系.【专题】11 :计算题.【分析】先根据根与系数的关系得到x 1+x 2=﹣32,x 1x 2=﹣12,再通分得到1x 1+1x 2=x 1+x 2x 1x 2,然后利用整体代入的方法计算. 【解答】解:根据题意得x 1+x 2=﹣32,x 1x 2=﹣12, 所以1x 1+1x 2=x 1+x 2x 1x 2=−32−12=3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.14.(3分)(2017•泰州)小明沿着坡度i为1:√3的直路向上走了50m,则小明沿垂直方向升高了25m.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,由坡度为1:√3,可求得坡角∠A=30°,又由小明沿着坡度为1:√3的山坡向上走了50m,根据直角三角形中,30°所对的直角边是斜边的一半,即可求得答案.【解答】解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:√3,∴tan∠A=1:√3=√3 3,∴∠A=30°,∵AB=50m,∴BE=12AB=25(m).∴他升高了25m.故答案为:25.【点评】此题考查了坡度坡角问题.此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.15.(3分)(2017•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为(7,4)或(6,5)或(1,4).【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】由勾股定理求出PA=PB=√32+22=√13,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=√13,即可得出点C 的坐标.【解答】解:∵点A、B、P的坐标分别为(1,0),(2,5),(4,2).∴PA=PB=√32+22=√13,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB=√13=√22+32,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).【点评】本题考查了三角形的外接圆、坐标与图形性质、勾股定理;熟练掌握勾股定理是解决问题的关键.16.(3分)(2017•泰州)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为6√2.【考点】O4:轨迹.【分析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,求出AC′即可解决问题.【解答】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′=√62+62=6√2,故答案为6√2.【点评】主要考查轨迹、平移变换、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•泰州)(1)计算:(√7﹣1)0﹣(﹣12)﹣2+√3tan30°;(2)解方程:x+1x−1+41−x2=1.【考点】B3:解分式方程;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;522:分式方程及应用.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣4+1=﹣2;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2017•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)求得16﹣20的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:6﹣10个的有6人,占10%,∴总人数为6÷10%=60人,∴16﹣20的有60﹣6﹣6﹣24﹣12=12人,∴条形统计图为:(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×12+12+2460=960人. 【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大.19.(8分)(2017•泰州)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8分)(2017•泰州)如图,△ABC 中,∠ACB >∠ABC .(1)用直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM=∠ABC (不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D ,AB=9,AC=6,求AD 的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC 为一边,在∠ACB 的内部作∠ACM=∠ABC 即可;(2)根据△ACD 与△ABC 相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM 即为所求;(2)∵∠ACD=∠ABC ,∠CAD=∠BAC ,∴△ACD ∽△ABC ,∴AD AC =AC AB ,即AD 6=69, ∴AD=4.【点评】本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.21.(10分)(2017•泰州)平面直角坐标系xOy 中,点P 的坐标为(m +1,m ﹣1).(1)试判断点P 是否在一次函数y=x ﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x +3的图象与x 轴、y 轴分别相交于点A 、B ,若点P 在△AOB 的内部,求m 的取值范围.【考点】F8:一次函数图象上点的坐标特征;F5:一次函数的性质.【分析】(1)要判断点(m +1,m ﹣1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m +1<6,0<m ﹣1<3,m ﹣1<﹣12(m +1)+3,解不等式组即可求得.【解答】解:(1)∵当x=m +1时,y=m +1﹣2=m ﹣1,∴点P (m +1,m ﹣1)在函数y=x ﹣2图象上.(2)∵函数y=﹣12x +3, ∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m ﹣1<3,m ﹣1<﹣12(m +1)+3 ∴1<m <73. 【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.22.(10分)(2017•泰州)如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于E ,DF ⊥AG 于F ,连接DE .(1)求证:△ABE ≌△DAF ;(2)若AF=1,四边形ABED 的面积为6,求EF 的长.【考点】LE :正方形的性质;A3:一元二次方程的解;KD :全等三角形的判定与性质.【分析】(1)由∠BAE +∠DAF=90°,∠DAF +∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ;(2)设EF=x ,则AE=DF=x +1,根据四边形ABED 的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD 是正方形,∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF=90°,∠DAF +∠ADF=90°,∴∠BAE=∠ADF ,在△ABE 和△DAF 中,{∠BAE =∠ADF ∠AEB =∠DFA AB =AD,∴△ABE ≌△DAF (AAS ).(2)设EF=x ,则AE=DF=x +1,由题意2×12×(x +1)×1+12×x ×(x +1)=6,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.23.(10分)(2017•泰州)怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【考点】HE :二次函数的应用;9A :二元一次方程组的应用.【分析】(1)由A 种菜和B 种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A 种菜多卖出a 份,则B 种菜少卖出a 份,最后建立利润与A 种菜少卖出的份数的函数关系式即可得出结论.【解答】解:(1)设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得,{20x +18y =1120(20−14)x +(18−14)y =280, 解得:{x =20y =40,答:该店每天卖出这两种菜品共60份;(2)设A 种菜品售价降0.5a 元,即每天卖(20+a )份;总利润为w 元因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份每份售价提高0.5a 元.w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a +120)+(﹣0.5a 2+16a +160)=﹣a 2+12a +280=﹣(a ﹣6)2+316当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.【点评】此题主要考查的是二元一次方程组和二次函数的应用,解本题的关键是正确理解题意,找出题目中的等量关系,再列出方程组或函数关系式,最后计算出价格变化后每天的总利润.24.(10分)(2017•泰州)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为BD̂的中点;(2)若∠C=∠D,求四边形BCPD的面积.【考点】MC:切线的性质.【分析】(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.【解答】(1)证明:连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴PB̂=PD̂,∴点P为BD̂的中点;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=12AB=6,∴PC=6√3,∵∠ABD=∠C=30°,∴OE=12OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6√3×3=18√3.【点评】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.25.(12分)(2017•泰州)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【考点】FI:一次函数综合题.【分析】(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;P位于AC右侧时,作AP2⊥AB,交x轴于点P2,证△ACP2≌△BEA得AP2=BA=5,从而知P2C=AE=3,继而可得答案;(3)分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;点P位于AC右侧且P3M=6时,作P2N⊥P3M于点N,知四边形AP2NM是矩形,证△ACP2∽△P2NP3得AP2P2P3=CP2NP3,求得P2P3的长即可得出答案.【解答】解:(1)如图1,作AC⊥x轴于点C,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P 到线段AB 的距离PA=√PC 2+AC 2=√42+42=4√2;(2)如图2,过点B 作BD ∥x 轴,交y 轴于点E ,①当点P 位于AC 左侧时,∵AC=4、P 1A=5,∴P 1C=√P 1A 2−AC 2=√52−42=3,∴OP 1=5,即t=5;②当点P 位于AC 右侧时,过点A 作AP 2⊥AB ,交x 轴于点P 2,∴∠CAP 2+∠EAB=90°,∵BD ∥x 轴、AC ⊥x 轴,∴CE ⊥BD ,∴∠ACP 2=∠BEA=90°,∴∠EAB +∠ABE=90°,∴∠ABE=∠P 2AC ,在△ACP 2和△BEA 中,∵{∠ACP 2=∠BEA =90°AC =BE =4∠P 2AC =∠ABE,∴△ACP 2≌△BEA (ASA ),∴AP 2=BA=√AE 2+BE 2=√32+42=5,而此时P 2C=AE=3,∴OP 2=11,即t=11;(3)如图3,①当点P 位于AC 左侧,且AP 3=6时,则P 3C=√AP 32−AC 2=√62−42=2√5,∴OP 3=OC ﹣P 3C=8﹣2√5;②当点P 位于AC 右侧,且P 3M=6时,过点P 2作P 2N ⊥P 3M 于点N ,则四边形AP 2NM 是矩形,∴∠AP 2N=90°,∠ACP 2=∠P 2NP 3=90°,AP 2=MN=5,∴△ACP 2∽△P 2NP 3,且NP 3=1,∴AP 2P 2P 3=CP 2NP 3,即5P 2P 3=31, ∴P 2P 3=53, ∴OP 3=OC +CP 2+P 2P 3=8+3+53=383, ∴当8﹣2√5≤t ≤383时,点P 到线段AB 的距离不超过6. 【点评】本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.26.(14分)(2017•泰州)平面直角坐标系xOy 中,点A 、B 的横坐标分别为a 、a +2,二次函数y=﹣x 2+(m ﹣2)x +2m 的图象经过点A 、B ,且a 、m 满足2a ﹣m=d (d 为常数).(1)若一次函数y 1=kx +b 的图象经过A 、B 两点.①当a=1、d=﹣1时,求k 的值;②若y 1随x 的增大而减小,求d 的取值范围;(2)当d=﹣4且a ≠﹣2、a ≠﹣4时,判断直线AB 与x 轴的位置关系,并说明理由;(3)点A 、B 的位置随着a 的变化而变化,设点A 、B 运动的路线与y 轴分别相交于点C 、D ,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.【考点】HF :二次函数综合题.【分析】(1)①当a=1、d=﹣1时,m=2a ﹣d=3,于是得到抛物线的解析式,然后求得点A 和点B 的坐标,最后将点A 和点B 的坐标代入直线AB 的解析式求得k 的值即可;②将x=a ,x=a +2代入抛物线的解析式可求得点A 和点B 的纵坐标,然后依据y 1随着x 的增大而减小,可得到﹣(a ﹣m )(a +2)>﹣(a +2﹣m )(a +4),结合已知条件2a ﹣m=d ,可求得d 的取值范围;(2)由d=﹣4可得到m=2a +4,则抛物线的解析式为y=﹣x 2+(2a +2)x +4a +8,然后将x=a 、x=a +2代入抛物线的解析式可求得点A 和点B 的纵坐标,最后依据点A 和点B 的纵坐标可判断出AB 与x 轴的位置关系;(3)先求得点A 和点B 的坐标,于是得到点A 和点B 运动的路线与字母a 的函数关系式,则点C (0,2m ),D (0,4m ﹣8),于是可得到CD 与m 的关系式.【解答】解:(1)①当a=1、d=﹣1时,m=2a ﹣d=3,所以二次函数的表达式是y=﹣x 2+x +6.∵a=1,∴点A 的横坐标为1,点B 的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0, ∴A (1,6),B (3,0).将点A 和点B 的坐标代入直线的解析式得:{k +b =63k +b =0,解得:{k =−3b =9, 所以k 的值为﹣3.②∵y=﹣x 2+(m ﹣2)x +2m=﹣(x ﹣m )(x +2),∴当x=a 时,y=﹣(a ﹣m )(a +2);当x=a +2时,y=﹣(a +2﹣4)(a +4), ∵y 1随着x 的增大而减小,且a <a +2,∴﹣(a ﹣m )(a +2)>﹣(a +2﹣m )(a +4),解得:2a ﹣m >﹣4,又∵2a ﹣m=d ,∴d 的取值范围为d >﹣4.(2)∵d=﹣4且a ≠﹣2、a ≠﹣4,2a ﹣m=d ,∴m=2a +4.∴二次函数的关系式为y=﹣x 2+(2a +2)x +4a +8.把x=a 代入抛物线的解析式得:y=a 2+6a +8.把x=a +2代入抛物线的解析式得:y=a 2+6a +8.∴A (a ,a 2+6a +8)、B (a +2,a 2+6a +8).∵点A 、点B 的纵坐标相同,∴AB ∥x 轴.(3)线段CD 的长随m 的值的变化而变化.∵y=﹣x 2+(m ﹣2)x +2m 过点A 、点B ,∴当x=a 时,y=﹣a 2+(m ﹣2)a +2m ,当x=a +2时,y=﹣(a +2)2+(m ﹣2)(a +2)。
天津市2017中考试题数学卷(含解析)
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算(3) 5的结果等于( )A. 2 B2C . 8D .8【答案】 A.【解析】试题分析 根据有理数的加法法则即可得原式-2,故选A.2. COS600的值等于( )A 品B.1C 2D1 2【答案】D.【解析】试题分析;棍据特殊角的三角函数值可得3丸0匸:,故选D3.在一些美术字中,有的汉子是轴对称图形 •下面4个汉字中,可以看作是轴对称图形的 是( )礼迎全运CA )(B ) (C ) (D )【答案】C. 【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选 C.4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 放社会保障卡12630000张•将12630000用科学记数法表示为()【答案】B.2017年4月末,累计发 8 7A. 0.1263 10 B . 1.263 106C . 12.63 105D . 126.3 10试题分析:学记数法的表示形式为a x I0n的形式,其中1w|a|v 10, n为整数,n的值为这个数的整数位数减1,所以=1.263 107.故选B.5. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是()第<5)IS (O【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3, 1,故选D.6. 估计.38的值在()A. 4和5之间 B . 5和6之间C. 6和7之间D . 7和8之间【答案】C.【解析】试題分析:由即可得X ,烦<匚故选C7.计算a1的结果为()a 1 a 11A. 1B.aC. a 1Da 1【答案】A.【解析】试题分析:根据同分母的分式相加减的法则可得,原式=a 1 1,故选A.a 1y2x8.方程组J的解是()3x y15x2x4x4x3A.B C. D .y3y3y8y6(A>iD)【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为X 3,故选D.y 69.如图,将ABC绕点B顺时针旋转600得DBE,点C的对应点E恰好落在AB延长线上,连接AD .下列结论一定正确的是()【答案】C.【解析】试题分析;WilSC绕点鸟顺时针谄专6L富3EE ,由此可得遊吧厶BXZEBWr ;即可得△ABD为等边三对略根据等边三角形的性贡可得4期司o° ,所以4蛇立瑰,所以,化”比,其它结论都不能够推岀,故选c10.若点A(1, y i) , B(1,y2), C(3,y3)在反比例函数y3的图象上,贝UXy1,y2, y3 的大小关系是()A. y i y2y3 B . y2 y3 屮 C. y3y2 y1 D . y2 y1 y3【答案】B.【解析】试题分析:把A( 1,yJ , B(1, y2), 53小)分别代入y -可得,Xy i 3,y23,y3 1,即可得y2 y3 y i,故选B.CBE C. AD//BC D . AD BCAABD E A.11.如图,在ABC中,AB AC , AD,CE是ABC的两条中线,P是AD上一个动点,EP最小值的是(C. AD D . AC【解试题分析:在ABC 中,AB AC , AD是ABC的中线,可得点B和点D关于直线AD对称,连结CE交AD于点P,此时BP EP最小,为EC的长,故选 B.12.已知抛物线y x2 4x 3与x轴相交于点A,B (点A在点B左侧),顶点为M .平移该抛物线,使点M平移后的对应点M '落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()2 2 2A. y x 2x 1 B . y x 2x 1 C. y x 2x 1D. y x2 2x 1【答案】A.【解析】试题分析=令 E 即r-4A+3 = 0 ;解得口或3,即可得A (b 0), 抛物线+ 3 = 的顶点坐标为(初・1人平移该挞物袋,使点胚平移后的对应点M落在工轴上点B平移后的对应点B'落在>■轴上,也就是把该抽物线问上平移1个单仏向左平移3个单位,抿協抛物线平移规律可得新抛物线的解析式九丄二0+=$ + 2工+1「故选A.二、填空题13.计算x7 x4的结果等于_____________ .【答案】X3.【解析】试题分析:根据同底数幕的除法法则计算即可,即原式=x3.14. 计算(4 7)(4 . 7)的结果等于________ .【答案】9.【解析】试题分析:根据平方差公式计算即可,即原式=16-7=9.15. 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【答案】5.6【解析】试题分析:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5.616. 若正比例函数y kx ( k是常数,k 0 )的图象经过第二、四象限,贝U k的值可以是(写出一个即可).【答案】k<0,只要符合条件的k值都可,例如k=-1.【解析】试題分析=正比例酗"是常数,的團象经过第二HW限’根16正比例函数的性质可得Z 只要符合条件的k值都可』例如k-h17. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【解析】 试题分析:连结 AC 根据正方形的性质可得 A 、E C 三点共线,连结FG 交AC 于点M ,因正 方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC=FG= 2 ,AC=3 ;2 ,即可得AE=2 2 ,因P 为AE 的中点,可得PE=AP= 2 ,再由正方形的GM=EM=Z ,FG 垂直于 AC,在 Rt △ PGM 中,PM 丄22 2PG=.5.【答案】(1) .17 ;( 2)详见解析 【解析】试题分析:⑴根据勾股定理即可求得AB-, 17 ; (2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点 M 、N ,连结DN 、EM ,DN 与EM 相交于性质可得由勾股定理即可求得18. 如图,在每个小正方形的边长为 1的网格中,点 代B,C 均在格点上.(1)AB 的长等于 ___________ ;(2 )在ABC 的内部有一点P ,满足S PAB : S PBC :: S PCA 1:2,请在如图所示的网格中, 用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证 明)点P,点P即为所求•三、解答题19. 解不等式组X 1 2 ①5x 4x 3 ②请结合题意填空,完成本题的解答•(1) ___________________________ 解不等式①,得;(2) ___________________________ 解不等式②,得;(3 )把不等式①和②的解集在数轴上表示出来:0 12 3 4 5(4)原不等式组的解集为__________ •【答案】(1)x > 1; (2) x< 3; (3)详见解析;(4) K x w 3.【解析】试题分析:⑴ 移莎合并同类项即可求得答案;⑵ 移项、合并同类臥系数化为1即可求得答案:⑶ 根据不等式解集在数轴上的表示方法』画出即可,(4)找出这两个不等式解集的公共咅吩』即可得不等式组的解集.试题解析:(1)x > 1 ;(2) x w 3;(J 2 3^5(3)(3) 1 w x w 3.20.某跳水队为了解运动员的年龄情况, 作了一次年龄调查,根据跳水运动员的年龄 (单位:岁),绘制出如下的统计图①和图② •请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为(2 )求统计的这组跳水运动员年龄数据的平均数、众数和中位数 【答案】(1)40, 30;( 2)15,16,15.【解析】试題分析:(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,祁可得本^接受调查的跳水运动 员人如用泊岁年龄的人数除以本次接登调查的跳水运动员人数即可求得m 的怪<2>根据统计囲中给出 的信息,结合求平t 渊、介数、中位数的方法求解即可.试题解析:(1)40,30; (2)观察条形统计图,-13 4 14 10 15 11 16 12 17 3 , J x ---------------------------------------------------- 15 ,40•••这组数据的平均数为 15;•••在这组数据中,16出现了 12次,出现的次数最多, •这组数据的众数为 16;15 15•••将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15 15 15 ,2•这组数据的中位数为 15.21.已知AB 是O O 的直径,AT 是O O 的切线,ABT 50° , BT 交O O 于点C , E 是,图①中m 的值为AB上一点,延长CE交O O于点D .(1) 如图①,求T和CDB的大小;(2) 如图②,当BE BC时,求CDO的大小.【答案】(1) / T=40。
专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
2017-2018学年天津市河西区公办校第三学区八年级(下)期中数学试卷(解析版)
2017-2018学年天津市河西区公办校第三学区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中属于最简二次根式的是()A. B. C. D.2.下列各式中,正确的是()A. B. C. D.3.一个直角三角形的两直角边长分别为3,4,则第三边长是()A. 3B. 4C. 5D. 5或4.使代数式有意义的x的取值范围是()A. B. C. D. 且5.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,26.如图,在▱ABCD中,AB=4cm,AD=7cm,∠ABC平分线交AD于E,交CD的延长线于点F,则DF=()A. 2cmB. 3cmC. 4cmD. 5cm7.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A. 3:1B. 4:1C. 5:1D. 6:18.若+|y-2|=0,则(x+y)2017的值为()A. B. 1 C. D. 09.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为()A. 5B. 6C. 7D. 810.在下列命题中,正确的是()A. 一组对边平行的四边形是平行四边形B. 有一组邻边相等的平行四边形是菱形C. 有一个角是直角的四边形是矩形D. 对角线互相垂直平分的四边形是正方形11.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.+=______.14.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为______.15.矩形ABCD中,AC、BD交于点O,AB=1,∠AOB=60°,则AD=______.16.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入(填“能”或“不能”).17.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.18.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S,则点P到A、B两点距离之和PA+PB的最小值为矩形ABCD______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)-(3+);(2)(+1)(-1)+-()0.四、解答题(本大题共4小题,共38.0分)20.在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.21.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.22.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案和解析1.【答案】A【解析】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数含分母,故D错误;故选:A.根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.2.【答案】C【解析】解:A、原式不能合并,故选项错误;B、原式=3,故选项错误;C、原式=-3,故选项正确;D、原式=|-2|=2,故选项错误.故选:C.A、原式不能合并,错误;B、原式利用平方根的定义计算得到结果,即可找出判断;C、原式利用立方根的定义计算得到结果,即可做出判断;D、原式利用二次根式的化简公式计算得到结果,即可做出判断.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.【答案】C【解析】解:已知直角三角形的两直角边为3、4,则第三边长为=5,故选:C.已知直角三角形的两条直角边,根据勾股定理即可求第三边长的长度.本题考查了勾股定理在直角三角形中的运用,正确应用勾股定理是解题关键.4.【答案】D【解析】解:由题意得:x-4≠0,且x-3≥0,解得:x≥3且x≠4,故选:D.根据二次根式有意义的条件可得x-3≥0,根据分式有意义条件可得x-4≠0,再解不等式即可.此题主要考查了分式与二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式有意义的条件是分母不等于零.5.【答案】D【解析】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选:D.根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.【答案】B【解析】解:∵AB∥CD,∴∠F=∠FBA,∵∠ABC平分线为BE,∴∠FBC=∠FBA,∴∠F=∠FBC,∴BC=CF,∴FD=CF-CD=BC-AB=AD-AB=7-4=3cm.故选:B.由AB∥CD可以推出∠F=∠FBA,又∵∠ABC平分线为AE,∴∠FBC=∠FBA,等量代换即可得到∠F=∠FBC,根据等腰三角形的判定知道BC=CF,所以得到FD=CF-CD=BC-AB=AD-AB,由此可以求出DF.本题利用了平行四边形的性质和角的平分线的性质证出△BCF为等腰三角形而求解.7.【答案】C【解析】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.8.【答案】A【解析】解:由题意得,x+3=0,y-2=0,解得x=-3,y=2,所以,(x+y)2017=(-3+2)2017=-1.故选:A.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.【答案】B【解析】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故选:B.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质.此题难度不大,注意掌握数形结合思想的应用.10.【答案】B【解析】解:A、一组对边平行且相等的四边形是平行四边形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项错误;D、对角线互相垂直平分的四边形是菱形,故D选项错误.故选:B.本题可逐个分析各项,利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】B【解析】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC==10m,故选:B.根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.12.【答案】C【解析】【分析】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.13.【答案】4【解析】解:原式=3+=4.故答案为:4.先化简,然后合并同类二次根式.本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.14.【答案】16【解析】解:∵BD=AD,BE=EC,∴DE=AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16.故答案为16.首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.15.【答案】【解析】解:∵矩形ABCD,∴AC=BC,AO=CO,BO=DO,∠BAD=90°,∴AO=BO,∵∠AOB=60°,∴AO=BO=AB=1,∴BD=2,∴AD===,故答案为:.根据矩形的性质证得AO=CO=BO=DO,∠BAD=90°,由等边三角形的判定得到AO=BO=AB=1,即BD=2,由勾股定理求得结论.本题主要考查了矩形的性质,等边三角形的判定和性质,勾股定理,证得△ABO是等边三角形是解决问题的关键.16.【答案】能【解析】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.本题考查了勾股定理的应用.解题的关键是求出木箱内木棒的最大长度.17.【答案】(-,1)【解析】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(-,1),故答案为(-,1).如图作AF⊥x轴于F,CE⊥x轴于E,先证明△COE≌△OAF,推出CE=OF,OE=AF,由此即可解决问题.本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.【答案】【解析】解:设△ABP中AB边上的高是h.∵S△PAB=S,矩形ABCD∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l 的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故答案为:.,得出动点P在与AB平行且与AB的距离是2首先由S△PAB=S矩形ABCD的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.19.【答案】解:(1)原式=--=-;(2)原式=3-1+2-1=1+2.【解析】(1)先把各二次根式化简为最简二次根式,然后去括号后合并即可;(2)利用平方差公式和零指数幂的意义计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【解析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.21.【答案】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.【解析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.此题主要考查平行四边形的判定和菱形的判断和性质.熟练掌握各种特殊四边形的性质定理和判定定理是解题的关键.22.【答案】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=S矩形ABCD=×6×8=12,在Rt△BAD中,由勾股定理得:BD==10,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,∴PE+PF=,【解析】根据矩形的性质和三角形的面积求出S△AOD=S△DOC=S△AOB=S△BOC=S矩形=×6×8=12,根据勾股定理求出BD,求出AO、DO、根据三角形面积公ABCD式求出即可.本题考查了三角形面积,矩形的性质,勾股定理的应用,注意:矩形的对角线互相平分且相等,等底等高的三角形面积相等.23.【答案】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD-DE=5cm-4cm=1cm;在Rt△APE中,AE=1,AP=3-PB=3-PE,∴EP2=12+(3-EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【解析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm 即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.。
2017年湖北省天门市、仙桃市、潜江市、江汉油田中考数学试卷(含解析版)
2017年湖北省天门市、仙桃市、潜江市、江汉油田中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102B.6.5×102C.6.5×103D.6.5×1043.(3分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25° B.35° C.45° D.50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A.(π﹣3)0=1 B.√9=±3 C.2﹣1=﹣2 D.(﹣a2)3=a66.(3分)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.27.(3分)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8.(3分)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A .﹣13B .12C .14D .159.(3分)如图,P (m ,m )是反比例函数y=9x在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为( )A .92B .3√3C .9+12√34D .9+3√3210.(3分)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=45√5;④AF=2√5,其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)已知2a ﹣3b=7,则8+6b ﹣4a= .12.(3分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元. 13.(3分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t ﹣32t 2,则飞机着陆后滑行的最长时间为 秒.14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD .已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED ,tanE=313√3,则CE 的长为 米.15.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 .16.(3分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,1),B (0,﹣2),C (1,0),点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2017的坐标为 .三、解答题:本大题共9小题,共72分. 17.(6分)化简:5a+3b a 2−b 2﹣2aa 2−b 2.18.(6分)解不等式组{5x +1>3(x −1)12x −1≤7−32x ,并把它的解集在数轴上表示出来.19.(6分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.20.(6分)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014 2015 2016 2017(预计)快递件总量(亿件) 140 207 310 450 电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB . (1)求证:CE=CB ;(2)若AC=2√5,CE=√5,求AE 的长.22.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y 乙(单位:元)与原价x (单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.(10分)已知关于x 的一元二次方程x 2﹣(m+1)x+12(m 2+1)=0有实数根.(1)求m 的值;(2)先作y=x 2﹣(m+1)x+12(m 2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n ≥m )与变化后的图象有公共点时,求n 2﹣4n 的最大值和最小值.24.(10分)在Rt △ABC 中,∠ACB=90°,点D 与点B 在AC 同侧,∠DAC >∠BAC ,且DA=DC ,过点B 作BE ∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME .(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求MEMD的值.25.(12分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.2017年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)(2017•江汉油田)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【考点】11:正数和负数.【分析】“正”和“负”相对,向北走记作正数,那么向南走应【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选 B.【点评】本题考查了正数和负数的定义.2.(3分)(2017•江汉油田)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102B.6.5×102C.6.5×103D.6.5×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数6500用科学记数法表示为6.5×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•江汉油田)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A 的度数是()A.25° B.35° C.45° D.50°【考点】JA:平行线的性质.【分析】先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.【解答】解:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.(3分)(2017•江汉油田)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【考点】I8:专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2017•江汉油田)下列运算正确的是()A.(π﹣3)0=1 B.√9=±3 C.2﹣1=﹣2 D.(﹣a2)3=a6【考点】47:幂的乘方与积的乘方;22:算术平方根;6E:零指数幂;6F:负整数指数幂.【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:解:A、(π﹣3)0=1,故A正确;B、√9=3,故B错误;,故C错误;C、2﹣1=12D、(﹣a2)3=a6,故D错误.故选:A.【点评】本题考查零指数幂、算术平方根、负整数指数幂、积的乘方,熟练掌握运算性质和法则是解题的关键.6.(3分)(2017•江汉油田)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是3,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D 、这组数据的方差是:15[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C .【点评】本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.(3分)(2017•江汉油田)一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( )A .300°B .150°C .120°D .75°【考点】MO :扇形面积的计算;MN :弧长的计算.【专题】11 :计算题;559:圆的有关概念及性质.【分析】利用扇形面积公式1求出R 的值,再利用扇形面积公式2计算即可得到圆心角度数.【解答】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R ×10π, 解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选B【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.8.(3分)(2017•江汉油田)若α、β为方程2x 2﹣5x ﹣1=0的两个实数根,则2α2+3αβ+5β的值为( )A .﹣13B .12C .14D .15【考点】AB :根与系数的关系.【专题】11 :计算题.【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=﹣12,然后利用整体代入的方法计算.【解答】解:∵α为2x 2﹣5x ﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x 2﹣5x ﹣1=0的两个实数根,∴α+β=52,αβ=﹣12,∴2α2+3αβ+5β=5×52+3×(﹣12)+1=12.故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a .也考查了一元二次方程解的定义.9.(3分)(2017•江汉油田)如图,P (m ,m )是反比例函数y=9x 在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为( )A .92B .3√3C .9+12√34D .9+3√32【考点】G5:反比例函数系数k 的几何意义;G6:反比例函数图象上点的坐标特征;KK :等边三角形的性质.【分析】易求得点P 的坐标,即可求得点B 坐标,即可解题.【解答】解:作PD ⊥OB ,∵P (m ,m )是反比例函数y=9x 在第一象限内的图象上一点, ∴m=9m ,解得:m=3,∴PD=3,∵△ABP 是等边三角形,∴BD=√33PD=√3, ∴S △POB =12OB •PD=12(OD+BD )•PD=9+3√32, 故选 D .【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m 的值是解题的关键.10.(3分)(2017•江汉油田)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=45√5;④AF=2√5,其中正确结论的个数有()A.1个B.2个C.3个D.4个【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC=CDBC =12,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD=√BC2+CD2=2√5,根据相似三角形的性质得到AE=45√5;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2√5,故④正确.【解答】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC=CDBC =1 2,∴∠DBC≠30°,故②错误;∵BD=√BC2+CD2=2√5,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴AEAD =ABBD,即AE4=2√5,∴AE=45√5;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB,∵AD ∥BC ,∴∠DAC=∠BAE=∠ACB ,∴∠EAC=90°﹣2∠ACB ,∴∠EAC=2∠ACF ,∵∠EAC=∠ACF+∠F ,∴∠ACF=∠F ,∴AF=AC ,∵AC=BD=2√5,∴AF=2√5,故④正确;故选C .【点评】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)(2017•江汉油田)已知2a ﹣3b=7,则8+6b ﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为:﹣6.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.12.(3分)(2017•江汉油田)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 48 元.【考点】9A :二元一次方程组的应用.【分析】设1套文具的价格为x 元,一套图书的价格为y 元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入x+y 中,即可得出结论.【解答】解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意得:{x +3y =1043x +2y =116,解得:{x =20y =28, ∴x+y=20+28=48.故答案为:48.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出关于x 、y 的二元一次方程组是解题的关键.13.(3分)(2017•江汉油田)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t ﹣32t 2,则飞机着陆后滑行的最长时间为 20 秒.【考点】HE :二次函数的应用.【分析】将s=60t ﹣1.5t 2,化为顶点式,即可求得s 的最大值,从而可以解答本题.【解答】解:解:s=60t ﹣32t 2=﹣32(t ﹣20)2+600,∴当t=20时,s 取得最大值,此时s=600.故答案是:20.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.14.(3分)(2017•江汉油田)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD .已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED ,tanE=313√3,则CE 的长为 8 米.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】分别过A 、D 作下底的垂线,设垂足为F 、G .在Rt △ABF 中,已知坡面长和坡角的度数,可求得铅直高度AF 的值,也就得到了DG 的长;在Rt △CDG 中,由勾股定理求CG 的长,在Rt △DEG 中,根据正切函数定义得到GE 的长;根据CE=GE ﹣CG 即可求解.【解答】解:分别过A 、D 作AF ⊥BC ,DG ⊥BC ,垂点分别为F 、G ,如图所示.∵在Rt △ABF 中,AB=12米,∠B=60°,∴sin ∠B=AF AB, ∴AF=12×√32=6√3,∴DG=6√3.∵在Rt △DGC 中,CD=12√3,DG=6√3米,∴GC=√CD 2−DG 2=18.∵在Rt △DEG 中,tanE=313√3,∴6√3GE =313√3,∴GE=26,∴CE=GE ﹣CG=26﹣18=8.即CE 的长为8米.故答案为8.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,勾股定理.作辅助线构造直角三角形是解答此类题的一般思路.15.(3分)(2017•江汉油田)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 25 . 【考点】X6:列表法与树状图法.【专题】543:概率及其应用.【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【解答】解:列表如下:1 2 3 4 51 ﹣﹣﹣ (2,1) (3,1) (4,1) (5,1)2 (1,2) ﹣﹣﹣ (3,2) (4,2) (5,2)3 (1,3) (2,3) ﹣﹣﹣ (4,3) (5,3)4 (1,4) (2,4) (3,4) ﹣﹣﹣ (5,4)5 (1,5) (2,5) (3,5) (4,5) ﹣﹣﹣ 所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P (恰好是两个连续整数)=820=25, 故答案为:25【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16.(3分)(2017•江汉油田)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,1),B (0,﹣2),C (1,0),点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2017的坐标为 (﹣2,0) .【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2017÷6=336…1,∴点P2017的坐标与P1的坐标相同,即P2017(﹣2,0),故答案为(﹣2,0).【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.三、解答题:本大题共9小题,共72分.17.(6分)(2017•江汉油田)化简:5a+3ba2−b2﹣2aa2−b2.【考点】6B:分式的加减法.【分析】根据分式的减法可以解答本题.【解答】解:5a+3ba2−b2﹣2aa2−b2=5a+3b−2a (a+b)(a−b)=3(a+b) (a+b)(a−b)=3a−b.【点评】本题考查分式的减法,解答本题的关键是明确分式的减法的计算方法.18.(6分)(2017•江汉油田)解不等式组{5x +1>3(x −1)12x −1≤7−32x ,并把它的解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x ﹣1),得:x >﹣2,解不等式12x ﹣1≤7﹣32x ,得:x ≤4,则不等式组的解集为﹣2<x ≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)(2017•江汉油田)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案.【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;【点评】本题考查中心对称图形、轴对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(6分)(2017•江汉油田)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014 2015 2016 2017(预计)快递件总量(亿件)140 207 310 450电商包裹件(亿件)98 153 235 351 (1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?【考点】VE:统计图的选择;V5:用样本估计总体;VA:统计表.【分析】(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2017发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.【解答】解:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2017:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.【点评】本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.21.(8分)(2017•江汉油田)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2√5,CE=√5,求AE的长.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)连接OC,利用切线的性质和已知条件推知OC∥AD,根据平行线的性质和等角对等边证得结论;(2)AE=AD﹣ED,通过相似三角形△ADC∽△ACB的对应边成比例求得AD=4,DC=2.在直角△DCE中,由勾股定理得到DE=√EC2−DC2=1,故AE=AD﹣ED=3.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠1=∠3.又OA=OC,∴∠2=∠3,∴∠1=∠2,∴CE=CB;(2)解:∵AB是直径,∴∠ACB=90°,∵AC=2√5,CB=CE=√5,∴AB=√AC2+CB2=√(2√5)2+(√5)2=5.∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴ADAC =ACAB=DCCB,即2√5=2√55=√5,∴AD=4,DC=2.在直角△DCE 中,DE=√EC 2−DC 2=1,∴AE=AD ﹣ED=4﹣1=3.【点评】本题考查了切线的性质,勾股定理,相似三角形的判定与性质,解题时,注意辅助线的作法.22.(8分)(2017•江汉油田)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲、y 乙(单位:元)与原价x (单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【考点】FH :一次函数的应用.【分析】(1)利用待定系数法即可求出y 甲,y 乙关于x 的函数关系式;(2)当0<x <2000时,显然到甲商店购买更省钱;当x ≥2000时,分三种情况进行讨论即可.【解答】解:(1)设y 甲=kx ,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y 甲=0.8x ;当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000x=2000,解得k=1,所以y 乙=x ;当x ≥2000时,设y 乙=mx+n ,把(2000,2000),(4000,3400)代入,得{2000m +n =20004000m +n =3400, 解得{m =0.7n =600. 所以y 乙={x(0<x <2000)0.7x +600(x ≥2000);(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.【点评】本题考查了一次函数的应用,待定系数法求函数的解析式,正确求出函数解析式进行分类讨论是解题的关键.23.(10分)(2017•江汉油田)已知关于x的一元二次方程x2﹣(m+1)x+1(m2+1)=0有2实数根.(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平(2)先作y=x2﹣(m+1)x+12移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;H6:二次函数图象与几何变换;H7:二次函数的最值.【分析】(1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;(m2+1)=0,【解答】解:(1)对于一元二次方程x2﹣(m+1)x+12△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x+n+2=0, 由题意△≥0,∴36﹣4n ﹣8≥0,∴n ≤7,∵n ≤m ,m=1,∴1≤n ≤7,令y ′=n 2﹣4n=(n ﹣2)2﹣4,∴n=2时,y ′的值最小,最小值为﹣4,n=7时,y ′的值最大,最大值为21,∴n 2﹣4n 的最大值为21,最小值为﹣4.【点评】本题考查抛物线与x 轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.24.(10分)(2017•江汉油田)在Rt △ABC 中,∠ACB=90°,点D 与点B 在AC 同侧,∠DAC >∠BAC ,且DA=DC ,过点B 作BE ∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME .(1)如图1,当∠ADC=90°时,线段MD 与ME 的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD 与ME 的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求ME MD 的值.【考点】SO :相似形综合题.【分析】(1)先判断出△AMF ≌△BME ,得出AF=BE ,MF=ME ,进而判断出∠EBC=∠BED ﹣∠ECB=45°=∠ECB ,得出CE=BE ,即可得出结论;(2)同(1)的方法即可;(3)同(1)的方法判断出AF=BE ,MF=ME ,再判断出∠ECB=∠EBC ,得出CE=BE 即可得出∠MDE=α2,即可得出结论.【解答】解:(1)如图1,延长EM 交AD 于F ,∵BE ∥DA ,∴∠FAM=∠EBM ,∵AM=BM ,∠AMF=∠BME ,∴△AMF ≌△BME ,∴AF=BE ,MF=ME ,∵DA=DC ,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=√3ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=MEMD =√33,∴MD=√3ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=α2,在Rt△MDE中,MEMD =tan∠MDE=tanα2.【点评】此题是相似形综合题,主要考查了全等三角形的判断和性质,等腰三角形的判断和性质,锐角三角函数,解(1)(2)的关键是判断出∠MDE=12∠ADC,是一道基础题目.25.(12分)(2017•江汉油田)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t ≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF 上有一动点,作PM ⊥直线BC 于点M ,交x 轴于点N ,将△PMF 沿直线EF 折叠得到△PTF ,探究:是否存在点P ,使点T 恰好落在坐标轴上?若存在,请求出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t ≤3时,根据已知条件得到四边形ABFE 是平行四边形,于是得到S=AE •OC=4t ;②当3≤t <7时,如图1,求得直线CD 的解析式为:y=2x ﹣4,直线E ′F ′的解析式为:y=﹣2x+2t ﹣10,解方程组得到G (t−32,t ﹣7),于是得到S=S 四边形ABCD ﹣S △DE ′G =20﹣12×(7﹣t )×(7﹣t )=﹣12t 2+7t ﹣92,③当t ≥7时,S=S 四边形ABCD =20,(3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的直线为(m ,﹣2m ﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m ﹣6|=2(m+3|,FM=|m ﹣(﹣1)|=|m+1,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,②假设直线EF 上存在点P ,使点T 恰好落在y 轴上,如图3,连接PT ,FT ,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x ﹣10中,当y=0时,x=﹣5,∴A (﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x ﹣10得,y=﹣4∴OC=4,∴四边形ABCD 的面积=12(3+7)×4=20;故答案为:20;(2)①当0≤t ≤3时,∵BC ∥AD ,AB ∥EF ,∴四边形ABFE 是平行四边形,∴S=AE •OC=4t ;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E ′F ′∥AB ,BF ′∥AE ′∴BF ′=AE=t ,∴F ′(t ﹣3,﹣4),直线E ′F ′的解析式为:y=﹣2x+2t ﹣10,解{y =2x −4y =−2x +2t −10得,{x =t−32y =t −7。
2017年江西省中考数学试卷(含解析版)
2017年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣6的相反数是( )A .16B .﹣16C .6D .﹣62.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×1033.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算正确的是( )A .(﹣a 5)2=a 10B .2a•3a 2=6a 2C .﹣2a +a=﹣3aD .﹣6a 6÷2a 2=﹣3a 35.(3分)已知一元二次方程2x 2﹣5x +1=0的两个根为x 1,x 2,下列结论正确的是( )A .x 1+x 2=﹣52B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.(3分)如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)函数y=√x−2中,自变量x的取值范围是.8.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.9.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.10.(3分)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.11.(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.12.(3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.14.(6分)解不等式组:{−2x<63(x−2)≤x−4,并把解集在数轴上表示出来.15.(6分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.(6分)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.17.(6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18.(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.19.(8分)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)...46810 (150)双层部分的长度y(cm)…737271…(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.20.(8分)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DC ̂=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线;②求PC 的长.22.(9分)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.六、(本大题共12分)23.(12分)我们定义:如图1,在△ABC中,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2√3,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.2017年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2017•江西)﹣6的相反数是( )A .16B .﹣16C .6D .﹣6【考点】14:相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣6的相反数是6,故选C【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.2.(3分)(2017•江西)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×103【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)(2017•江西)下列图形中,是轴对称图形的是( )A.B.C. D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•江西)下列运算正确的是()A.(﹣a5)2=a10 B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【考点】4I:整式的混合运算.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=6a3,故B错误;(C)原式=a,故C错误;(D)原式=﹣3a4,故D错误;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(3分)(2017•江西)已知一元二次方程2x2﹣5x+1=0的两个根为x1,x2,下列结论正确的是()A.x1+x2=﹣52B.x1•x2=1C.x1,x2都是有理数D.x1,x2都是正数【考点】AB:根与系数的关系.【分析】先利用根与系数的关系得到x1+x2=52>0,x1x2=12>0,然后利用有理数的性质可判定两根的符号.【解答】解:根据题意得x1+x2=52>0,x1x2=12>0,所以x1>0,x2>0.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.6.(3分)(2017•江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【考点】LN:中点四边形.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)(2017•江西)函数y=√x−2中,自变量x的取值范围是x≥2.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.8.(3分)(2017•江西)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=75度.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=12(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.9.(3分)(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3.【考点】11:正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.10.(3分)(2017•江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是8.【考点】U2:简单组合体的三视图;I9:截一个几何体.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8.【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键.11.(3分)(2017•江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是 5 .【考点】W5:众数;W1:算术平均数;W4:中位数.【分析】根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数.【解答】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7, 解得y=9,x=5,∴这组数据的众数是5.故答案为5.【点评】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.12.(3分)(2017•江西)已知点A (0,4),B (7,0),C (7,4),连接AC ,BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 :(√7,3)或(√15,1)或(2√3,﹣2) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】由已知得出∠A=90°,BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,当A'E :A'F=1:3时,求出A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,∠OA'D=∠A=90°,在Rt △OA'F 中,由勾股定理求出OF=√42−32=√7,即可得出答案;②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,由A'F :A'E=1:3,则A'F :EF=1:2,求出A'F=12EF=12BC=2,在Rt △OA'F 中,由勾股定理求出OF=2√3,即可得出答案.【解答】解:∵点A (0,4),B (7,0),C (7,4),∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图1所示:①当A'E :A'F=1:3时,∵A'E +A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−32=√7,∴A'(√7,3);②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图2所示:∵A'F :A'E=1:3,则A'F :EF=1:2,∴A'F=12EF=12BC=2, 由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−22=2√3,∴A'(2√3,﹣2);故答案为:(√7,3)或(√15,1)或(2√3,﹣2).【点评】本题考查了折叠的性质、矩形的性质、坐标与图形性质、勾股定理等知识;熟练掌握折叠的性质和勾股定理是解决问题的关键.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(2017•江西)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.【考点】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性质.【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG.【解答】(1)解:原式=x+1(x+1)(x−1)•x−12 =12; (2)证明:∵四边形ABCD 为正方形,∴∠B=∠C=90°,∴∠BEF +∠BFE=90°,∵∠EFG=90°,∴∠BFE +∠CFG=90°,∴∠BEF=∠CFG ,∴△EBF ∽△FCG .【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了分式的乘除法和正方形的性质.14.(6分)(2017•江西)解不等式组:{−2x <63(x −2)≤x −4,并把解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集.【解答】解:解不等式﹣2x <6,得:x >﹣3,解不等式3(x ﹣2)≤x ﹣4,得:x ≤1,将不等式解集表示在数轴如下:则不等式组的解集为﹣3<x ≤1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(6分)(2017•江西)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:1 4;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:212=16.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.16.(6分)(2017•江西)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM 是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.【点评】本题考查复杂作图、平行四边形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(6分)(2017•江西)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【考点】T8:解直角三角形的应用.【分析】(1)Rt△ABC中利用三角函数即可直接求解;(2)延长FE交DG于点I,利用三角函数求得∠DEI即可求得β的值,从而作出判断.【解答】解:(1)∵Rt△ABC中,tanA=BCAB,∴AB=BCtanA=BCtan20°=20411=55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=DIDE=2830=1415,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.【点评】此题综合性比较强,解此题的关键是把实际问题转化为数学问题,本题只要把实际问题抽象到几何图形中来考虑,就能迎刃而解.四、(本大题共3小题,每小题8分,共24分).18.(8分)(2017•江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有800人,其中选择B类的人数有240人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表;VB:扇形统计图.【分析】(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.【解答】解:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为:800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.19.(8分)(2017•江西)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x (cm ) (4)68 10 (150)双层部分的长度y (cm ) … 73 72 71…(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式; (2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm ,求l 的取值范围.【考点】FH :一次函数的应用.【分析】(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,利用待定系数法即可解决问题;(2)列出方程组即可解决问题;(3)由题意当y=0,x=150,当x=0时,y=75,可得75≤l ≤150. 【解答】解:(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,则有{4k +b =736k +b =72,解得{k =−12b =75, ∴y=﹣12x +75.(2)由题意{x +y =120y =−12x +75,解得{x =90y =30, ∴单层部分的长度为90cm .(3)由题意当y=0,x=150,当x=0时,y=75, ∴75≤l ≤150.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•江西)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.【考点】G8:反比例函数与一次函数的交点问题;FA:待定系数法求一次函数解析式;Q3:坐标与图形变化﹣平移.【分析】(1)把点P(2,4)代入直线y=k1x,把点P(2,4)代入双曲线y=k2 x,可得k1与k2的值;(2)根据平移的性质,求得C(6,43),再运用待定系数法,即可得到直线PC的表达式;(3)延长A'C交x轴于D,过B'作B'E⊥y轴于E,根据△AOB≌△A'PB',可得线段AB扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积,据此可得线段AB扫过的面积.【解答】解:(1)把点P(2,4)代入直线y=k1x,可得4=2k1,∴k1=2,把点P(2,4)代入双曲线y=k2x,可得k2=2×4=8;(2)∵A (4,0),B (0,3), ∴AO=4,BO=3,如图,延长A'C 交x 轴于D , 由平移可得,A'P=AO=4, 又∵A'C ∥y 轴,P (2,4), ∴点C 的横坐标为2+4=6,当x=6时,y=86=43,即C (6,43),设直线PC 的解析式为y=kx +b ,把P (2,4),C (6,43)代入可得{4=2k +b 43=6k +b ,解得{k =−23b =163,∴直线PC 的表达式为y=﹣23x +163;(3)如图,延长A'C 交x 轴于D , 由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4), ∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4), ∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO ×B'E +AO ×A'D=3×2+4×4=22.【点评】本题主要考查了反比例函数与一次函数交点问题,待定系数法的运用以及平移的性质的运用,解决问题的关键是将线段AB 扫过的面积转化为平行四边形POBB'的面积+平行四边形AOPA'的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)(2017•江西)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DĈ=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线; ②求PC 的长.【考点】MR :圆的综合题.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP ,PD 的长;(2)①首先得出△OBD 是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.【解答】解:(1)如图2,连接OD , ∵OP ⊥PD ,PD ∥AB , ∴∠POB=90°, ∵⊙O 的直径AB=12, ∴OB=OD=6,在Rt △POB 中,∠ABC=30°,∴OP=OB•tan30°=6×√33=2√3,在Rt △POD 中,PD=√OD 2−OP 2=√62−(2√3)2=2√6;(2)①证明:如图3,连接OD ,交CB 于点F ,连接BD ,∵DĈ=AC ̂, ∴∠DBC=∠ABC=30°, ∴∠ABD=60°, ∵OB=OD ,∴△OBD 是等边三角形, ∴OD ⊥FB ,∵BE=12AB ,∴OB=BE , ∴BF ∥ED ,∴∠ODE=∠OFB=90°, ∴DE 是⊙O 的切线;②由①知,OD ⊥BC ,∴CF=FB=OB•cos30°=6×√32=3√3, 在Rt △POD 中,OF=DF ,∴PF=12DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF ﹣PF=3√3﹣3.【点评】此题主要考查了圆的综合以及直角三角形的性质和锐角三角三角函数关系,正确得出△OBD是等边三角形是解题关键.22.(9分)(2017•江西)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,。
2017中考数学试卷 (含标准答案)
【考点】二次函数解析式 14. 某企业今年第一季度各月份产值占这个季度总产值的百分比如 图 1 所示,又知二月份产值是 72 万元,那么该企业第一季度 月产值的平均数是 【答案】80 【解析】 72 / (1 25% 45%) / 3 80 【考点】统计 15. 如图 2 ,已知 AB / /CD, CD 2 AB, AD、BC 相交于点 E ,设 AE a, CE b , 那么向量 CD 用向量 a 、b 表示为 【答案】80 【解析】 .
A B
万元.
二月份
三月份 45%
一月份 25% 图1
AB AE 1 AB / /CD ED 2 AE CD EB 2
C
E
CD CE ED 2a b
D
图2
4
【考点】向量 16. 一副三角尺按图 3 的位置摆放(定点 C 与 F 重合,边 CA 与边 FE 叠合,顶点
函数解析式为 y 5x 400 .
(2)由(1)知,甲公司费用解析式为 y 5x 400 ,当 x 1200, y 6400 , 乙公司费用 5500 (1200 1000) 4 6300 , 【考点】一次函数应用题
8
6400 6300,选乙公司费用少
B、 C、 D 在 一 条 直 线 上 ) , 将 三 角 尺 DEF 绕 着 点 F 按 顺 时 针 方 向 旋 转 n 后
( 0 n 180 ),如果 EF / / AB ,那么 n 的值是 .
E
E
A
A
E
B
C(F)
图 3
D
B
C(F)
D
D
【答案】 45 【解析】如图
2017年天津市中考数学试题(含解析)
2017年天津市中考数学试卷满分:120分版本:人教版第Ⅰ卷(选择题,共36分)一、选择题(第小题3分,共12小题,合计36分)1.(2017天津)计算(-3)+5的结果等于A.2 B.-2 C.8 D.-8答案:A,解析:根据有理数的加法法则“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
”可得,(-3)+5=+(5-3)=2,故选A.2.(2017天津)cos60°的值等于A B.1C.2D.12答案:D,解析:根据余弦的定义及特殊角度的三角函数值,可得cos60°=12,故选D.3.(2017天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是礼迎全运A.B.C.D.答案:C,解析:根据轴对称图形的定义“将一个图形沿着某条直线对折后,直线两旁的部分能够完全重合的图形叫做轴对称图形”,可知“全”是轴对称图形,故选C.4.(2017天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为A.0.1263×108B.1.263×107C.12.63×106D.126.3×105答案:B,解析:根据科学记数法的定义“将一个大于1的数表示成a×10n(其中1≤|a|<10,n为整数,且等于原数的整数位数减去1)的形式,可知12 630 000=1.263×107,故选B. 5.(2017天津)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.6.(2017天津)A.4和5之间B.5和6之间C.6和7之间D.7和8之间答案:C,解析:由36<38<49,可得67,故选C.7.(2017天津)计算111aa a+++的结果为A.1B.aC.a+1 D.11 a+答案:A,解析:根据同分母分式的加法法则“分母不变,分子相加”可得,原式=11 aa+ +=1,故选A.8.(2017天津)方程组2315y xx y=⎧⎨+=⎩的解是A.23xy=⎧⎨=⎩B.43xy=⎧⎨=⎩C.48xy=⎧⎨=⎩D.36xy=⎧⎨=⎩答案:D,解析:运用“代入消元法”,将方程①代入方程②可得:3x+2x=15,解得x=3,将x=3代入方程①中可得y=6,故选D.9.(2017天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点恰好落在AB的延长线上,连接A D.下列结论一定正确的是A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC第9题答案:C,解析:根据旋转的性质,可得AB=DB,CB=EB,∠ABD=∠CBE=60°,所以△ABD 是等边三角形,所以∠DAB=∠CBE=60°,根据“同位角相等,两直线平行”可得:AD∥BC,故选C.10.(2017天津)若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y= -3x的图象上,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3答案:B,解析:将x=-1,1,3分别代入函数解析式,可得y1=3,y2=-3,y3=-1,所以y2<y3<y1,故选B.11.(2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是A.BC B.CE C.AD D.AC第11题答案:B,解析:由AB=AC,可得△ABC是等腰三角形,根据“等腰三角形的三线合一性质”可知点B与点C关于直线AD对称,BP=CP,因此连接CE,BP+CP的最小值为CE,故选B. 12.(2017天津)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M’落在x轴上,点B平移后的对应点B’落在y轴上.则平移后的抛物线解析式为A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-1答案:A ,解析:令y =0可得x 2-4x +3=0,解得x 1=1,x 2=3,可得A (1,0),B (3,0),根据抛物线顶点坐标公式可得M (2,-1),由M 平移后的对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,可知抛物线分别向左平移3个单位,再向上平移1个单位,根据抛物线平移规律,可知平移后的抛物线为y =(x +1)2=x 2+2x +1,故选A .第Ⅱ卷(非选择题,共84分)二、填空题(每小题3分,共6小题,合计18分) 13.(2017天津)计算x 7÷x 4的结果等于________.答案:x 3,解析:根据同底数幂的除法法则“底数不变,指数相减”,可得x 7÷x 4=x 3.14.(2017天津)计算的结果等于________.答案:9,解析:根据平方差公式,可得2-2=16-7=9.15.(2017天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.答案:56,解析:依题意可知,共有6种等可能结题,其中取出1个球是红球的可能结果有5种,因此它是红球的概率是56.16.(2017天津)若正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、第四象限,则k 的值可以是________(写出一个即可).答案:-1(答案不唯一,只需小于0即可),解析:根据正比例函数的性质,若函数图象经过第二、第四象限,则k <0,因此k 的值可以是任意负数.17.(2017天津)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为________. 第17题G F A第17题GF BAD(如图),延长GE 交AB 于点N ,过点P 作PM ⊥GN 于M .由正方形的性质可知:AN =AB -BN =AB -EF =2,NE =GN -GE =BC -FC =2.根据点P 是AE 的中点及PM ∥AN ,可得PM 为△ANE的中位线,所以ME=12NE=1,PM=12AN=1,因此MG=2.根据勾股定理可得:PG18.(2017天津)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长等于________;(Ⅱ)在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2,请在如图所示的网格中,用无刻..度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)________.答案:(Ⅰ;(Ⅱ)解析:(Ⅰ)根据勾股定理可得=(Ⅱ)如图,AC与网络线相交,得点D、E,取格点F,连结FB并延长,与网格线相交,得点M、N,连结DN、EM,DN与EM相交于点P,点P即为所求.三、解答题(共7小题,合计66分)19.(2017天津)(本小题满分8分)解不等式组,.1≥2 ①5≤43②x x x +⎧⎨+⎩,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:12345(Ⅳ)原不等式组的解集为______________.答案:(Ⅰ)x ≥1;(Ⅱ)x ≤3;(Ⅲ)123450;(Ⅳ)1≤x ≤3.解析:(Ⅰ)移项,可得x ≥1;(Ⅱ)移项,可得5x -4x ≤3;合并同类项,可得x ≤3;(Ⅲ)根据解集在数轴上的表示方法“大于向右,小于向左;有等号实心点,无等号空心圈”,可表示,详图见答案;(Ⅳ)根据不等式解集的定义“不等式解集的公共部分”可得原不等式的解集为1≤x ≤3.20.(2017天津)(本小题8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:图②31211104人数年龄/岁12108642(Ⅰ)本次接受调查的跳水运动员人数为________;图①中m 的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案:(Ⅰ)40;30;(Ⅱ)15;16;15.解析:(Ⅰ)从两副统计图中可知:13岁的运动员共4人,占10%,因此接受调查的跳水运动员人数为4÷10%=40;由于16岁的运动员共12人,因此16岁运动员所占百分比为12÷40×100%=30%,故m =30;(Ⅱ)根据平均数的计算方法,可知13414101511161217340x ⨯+⨯+⨯+⨯+⨯==15,因此这组数据的平均数为15;由于在这组数据中,16出现了12次,出现的次数最多,故这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,根据中位数的定义,取中间两个数的平均数,可得这组数据的中位数为15.21.(2017天津)(本小题10分)已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.第21题图②图①(Ⅰ)如图①,求∠T 和∠CDB 的大小; (Ⅱ)如图②,当BE =BC 时,求∠CDO 的大小.思路分析: (Ⅰ)①根据切线的性质,可知∠BAT =90°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠T =40°; ②连接AC ,根据直径所对的圆周角是直角,可得∠BCA =50°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠BAC =40°,由同弧所对的圆周角相等,可得∠CDB 为40°.(Ⅱ)①连接AD ,根据BE =BC 及∠ABT =50°可计算出∠BCE ;②由同弧所对的圆周角相等,可计算出∠OAD 及∠ADC 的度数;③由OA=OD 可得∠ODA 的度数;④根据∠CDO =∠ODA -∠CDA 可得.解:(Ⅰ)如图,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线, ∴AT ⊥AB ,即∠TAB =90°. ∵∠ABT =50°,∴∠T=90°-∠ABT=40°∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=40°∴∠CDB=∠CAB=40°.图①(Ⅱ)如图,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°∵OA=OD∴∠ODA=∠OAD=65°∵∠ADC=∠ABC=50°∴∠CDO=∠ODA-∠ADC=15°.图②22.(2017天津)(本小题10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B片.求BP 和BA的长(结果取整数)参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05取1.414.思路分析:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120米,在Rt △APM 中利用三角函数可求得PM ,AM 的长;在Rt △BPM 中利用三角函数可求得BM 、PB 的长;根据线段之和求得AB 的长.M解:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120.在Rt △APM 中PM =P A ·sin ∠A =P A ·sin64°≈108,AM =P A ·cos ∠A =P A ·cos64°≈52.8. 在Rt△BPM 中∵∠B=45°∴BM =PM ≈108,PM ≈153 ∴BA =BM +AM ≈108+52.8≈161答: BP 长约为153海里,BA 长约为161海里.23.(2017天津)(本小题10分)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数).(Ⅰ)根据题意,填写下表:(Ⅱ)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(Ⅲ)当x>70时,顾客在哪家复印店复印花费少?请说明理由. 解:(Ⅰ)根据题意得:(Ⅱ)依题意得:y1与x的函数关系式为:y1=0.1x(x≥0).y2与x的函数关系式为:当0≤x≤20时,y2=0.12x;当x>20时,y2=0.12×20+0.09(x-20)=0.09x+0.6;综上所述,y2与x的函数关系式为:y2=0.12 (020) 0.090.6 (20)x xx x≤≤⎧⎨+>⎩.(Ⅲ)顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6∴y1- y2=0.1x-(0.09x+0.6)=0.01x-0.6记y= 0.01x-0.6由0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0∴y1>2y∴当x>70时,顾客在乙复印店复印花费少.24.(2017天津)(本小题10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A0),点B(0,1),点O(0,0).P是AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(Ⅰ)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(Ⅱ)如图②,当P为AB中点时,求A'B的长;(Ⅲ)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).x y x y第24题图②A'BA OA'B A O PP 解:(Ⅰ)∵A (3,0),点B (0,1),∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A'OP ≌△AOP . ∴OA'=OA =3,由A 'B ⊥OB ,得∠A 'BO =90°.在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A'21).(Ⅱ) 在Rt △AOB 中,OA 3,OB =1,∴22OA OB +∵当P 为AB 中点,∴AP =BP =1,OP =12AB =1.∴OP =OB =BP ,∴△BOP 是等边三角形∴∠BOP =∠BPO =60°,∴∠OP A =180°-∠BPO =120°.由(Ⅰ)知,△A'OP ≌△AOP ,∴∠OP A'=∠OP A =120°,P'A =P A =1,又OB =P A ’=1,∴四边形OP A ’B 是平行四边形.∴A 'B =OP =1. (Ⅲ)3333(,)22--或2333(,)22- . 25.(2017天津)(本小题10分)已知抛物线y =x 2+bx -3(b 是常数)经过点A (-1,0).(Ⅰ) 求该抛物线的解析式和顶点坐标;(Ⅱ) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为P '.①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,P 'A 2取得最小值时,求m 的值.解:(1)∵抛物线y =x 2+bx -3经过点A (-1,0),∴0=1-b -3,解得b =-2.∴抛物线的解析式为y =x 2-2x -3,∵y =x 2-2x -3=(x -1)2-4,∴顶点的坐标为(1,-4).(2)①由点P (m ,t )在抛物线y =x 2-2x -3上,有t =m 2-2m -3.∵P 关于原点的对称点为P ',有P ’(-m ,-t ).∴-t=(-m)2-2(-m)-3,即t =-m 2-2m +3∴m 2-2m -3=-m 2-2m +3.解得m 1=3,m 2=-3②由题意知,P '(-m ,-t )在第二象限,∴-m <0,-t >0,即m >0,t <0.又∵抛物线y =x 2-2x -3的顶点坐标为(1,-4),得-4≤t <0.过点P '作P 'H ⊥x 轴于H ,则H (-m ,0)又A (-1,0),t = m 2-2m -3则P 'H 2=t 2,AH 2= (-m +1)2=m 2-2m +1=t +4当点A 和H 不重合时,在Rt △P ’AH 中,P 'A 2= P 'H 2+AH 2当点A 和H 重合时,AH =0,P 'A 2= P 'H 2,符合上式.∴P 'A 2= P 'H 2+AH 2,即P 'A 2= t 2+t +4(-4≤t ≤0)记y '=t 2+t +4(-4≤t ≤0),则y '=(t +12)2+154, ∴当t =-12时,y '取得最小值.把t=-12代入t=m2-2m-3,得-12=m2-2m-3解得m1m2.由m>0,可知m不符合题意.∴m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. (3分)计算(-3)+5的结果等于()A. 2B.- 2C. 8D.- 82. (3分)cos60的值等于()A. B. 1 C. — D.—3. (3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A B C J4. (3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017 年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A. 0.1263X 108B. 1.263X 107C. 12.63X 106D. 126.3X 1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()__u□A. ―B. ――C.— D . ―J―J―6. (3分)估计的值在()A. 4和5之间B. 5和6之间C. 6和7之间D . 7和8之间7. (3分)计算的结果为()A. 1B. aC. a+1D.8. (3分)方程组的解是()9. (3分)如图,将△ ABC 绕点B 顺时针旋转60°得厶DBE,点C 的对应点E 恰好 落在AB 延长线上,连接AD.下列结论一定正确的是()A .Z ABD=Z E B.Z CBE 2 C C. AD// BC D. AD=BC 10.(3 分)若点 A (- 1, y i ), B (1, y 2), C (3, y 3)在反比例函数 -的图象上,贝U y i , y 2, y 3的大小关系是()A . y i <y 2<y 3 B. y 2<y 3<y i c.样巾<y i D .仃y i <乂 11.(3分)如图,在△ ABC 中,AB=AC AD 、。
丘是厶ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于 BP+EP 最小值的是()3 D CA . BC B. CE C. AD D . AC12. (3分)已知抛物线y=x 2- 4x+3与x 轴相交于点A , B (点A 在点B 左侧), 顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后 的对应点B'落在y 轴上,则平移后的抛物线解析式为()A . y=x 2+2x+1 B. y=x 2+2x - 1 C. y=« - 2x+1 D . y=x 2 - 2x - 1二、填空题(本大题共6小题,每小题3分,共18分)13. _________________________________ (3分)计算xJx 4的结果等于 . 14. (3分)计算 ——的结果等于 ________A .B . C. D.15. (3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16. (3分)若正比例函数y=kx (k是常数,k M0)的图象经过第二、四象限,贝U k的值可以是________ (写出一个即可).17. (3分)如图,正方形ABCD和正方形EFCG勺边长分别为3和1,点F, G分别在边BC, CD上, P为AE的中点,连接PG,贝U PG的长为_______ .18. (3分)如图,在每个小正方形的边长为1的网格中,点A, B, C均在格点上.(1)AB的长等于 ____ ;(2)在厶ABC的内部有一点P,满足S\PAB: S PBC: S PCA=1: 2: 3,请在如图所示的网格中,用无刻.度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______ .三、解答题(本大题共7小题,共66分。
解答应写出文字说明、演算步骤或推理过程)19. (8分)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得_____ ;(2)解不等式②,得____ ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为20. (8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水 运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,,图①中m 的值为 (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21. (10分)已知AB 是。
O 的直径,AT 是。
O 的切线,/ ABT=50°, BT 交。
O 于点C ,E 是AB 上一点,延长CE 交O O 于点D . (1)如图①,求/ T 和/CDB 的大小;B 处,求BP 和BA 的长(结果取整数).参考数据:sin64^0.90, cos64~0.44,tan64°^2.05,(1)本次接受调查的跳水运动员人数为P 的南偏东45°方向上的取 1.414.解答下列问题:的A 处,它沿正南方向航行一段时间后,到达位于灯塔120海里23. (10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元•在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.24. (10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点 : ,点B (0,1),点O (0,0) . P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(1)如图①,当点A'在第一象限,且满足A'B丄OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当/ BPA'=30时,求点P的坐标(直接写出结果即可).圉①圉②25. (10分)已知抛物线y=x2+bx-3 (b是常数)经过点A (- 1, 0).(1)求该抛物线的解析式和顶点坐标;(2)P (m, t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P落在该抛物线上时,求m的值;②当点P落在第二象限内,P'A2取得最小值时,求m的值.2017年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. (3分)(2017?天津)计算(-3)+5的结果等于()A. 2B.- 2C. 8D.- 8【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:(-3)+5=5 - 3=2.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. (3分)(2017?天津)cos60的值等于()A. 一B. 1C. —D.-【考点】T5:特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:cos60 °h,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3. (3分)(2017?天津)在一些美术字中,有的汉子是轴对称图形.下面字4个汉中,可以看作是轴对称图形的是()A. B. C D 运【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A 、不可以看作是轴对称图形,故本选项错误; B 、 不可以看作是轴对称图形,故本选项错误; C 、 可以看作是轴对称图形,故本选项正确; D 、 不可以看作是轴对称图形,故本选项错误. 故选C .【点评】本题考查了轴对称图形的概念, 轴对称图形的关键是寻找对称轴,图形 两部分折叠后可重合.4. (3分)(2017?天津)据《天津日报》报道,天津市社会保障制度更加成熟完 善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科 学记数法表示为()A . 0.1263X 108B . 1.263X 107 C. 12.63X 106 D . 126.3X 105 【考点】11:科学记数法一表示较大的数.【分析】科学记数法的表示形式为a X 10n 的形式,其中 K | a| v 10, n 为整数•确 定n 的值是易错点,由于12630000有8位,所以可以确定n=8-仁7. 【解答】 解:12630000=1.263X 107. 故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与n 值是关键. 【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可, 注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.5 (3分)(2017?天津)如图是一个由4个相同的正方体组成的立体图形,它的 主视图是( )C.B.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6. (3分)(2017?天津)估计—的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【考点】2B:估算无理数的大小.【分析】利用二次根式的性质,得出—v —v —,进而得出答案.【解答】解:•••—<—<—,••• 6v —v 7,•••—的值在整数6和7之间.故选C.【点评】此题主要考查了估计无理数的大小,得出—v — v —是解题关键.7. (3分)(2017?天津)计算的结果为()A. 1B. aC. a+1D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式= 1,故选(A)【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. (3分)(2017?天津)方程组的解是()A. B. C. D.【考点】98:解二元一次方程组.【分析】利用代入法求解即可.【解答】解:①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2 X 3=6,所以,方程组的解是故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.9. (3分)(2017?天津)如图,将△ ABC绕点B顺时针旋转60°得厶DBE点C 的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.Z ABD=Z EB.Z CBE2 CC. AD// BCD. AD=BC【考点】R2旋转的性质.【分析】由旋转的性质得到/ ABD=Z CBE=60, AB=BD,推出△ ABD是等边三角形,得到/ DAB=Z CBE于是得到结论.【解答】解:•••△ ABC绕点B顺时针旋转60°得厶DBE•••/ ABD=Z CBE=60, AB=BD,•••△ ABD是等边三角形,•••/ DAB=60,•••/ DAB=Z CBE••• AD// BC,故选C.【点评】本题考查了旋转的性质,等边三角形的判定和性质,平行线的判定,熟练掌握旋转的性质是解题的关键.10. (3 分)(2017?天津)若点A (- 1, y i), B (1, y2), C (3, y3)在反比例函数-的图象上,贝U y1, y2, y3的大小关系是()A. y1<y2<y3B. y<y3<y1C. y3<y2<y1D. y<y〔v y3【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质判断即可.【解答】解::k=- 3<0,•••在第四象限,y随x的增大而增大,二y2< y3< 0,•••屮> 0,••• y2< y3< y1,故选:B.【点评】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解题的关键.11. (3分)(2017?天津)如图,在△ ABC中,AB=AC AD CE是厶ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()【考点】PA 轴对称-最短路线问题;KH:等腰三角形的性质.【分析】如图连接PC,只要证明PB=PC 即可推出PB+PE=PCPE,由PE+PO CE推出P 、C 、E 共线时,PB+PE 的值最小,最小值为CE 的长度.【解答】解:如图连接PC,AD D . AC••• AD 丄BC,••• PB=PC••• PB^PE=PCPE••• PE+PO CE••• P、C E共线时,PB^PE的值最小,最小值为CE的长度,故选B.【点评】本题考查轴对称-最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. (3分)(2017?天津)已知抛物线y=x2- 4x+3与x轴相交于点A,B (点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A. y=x2+2x+1B. y=x2+2x - 1C. y=«- 2x+1D. yrx2-2x- 1【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.【解答】解:当y=0,则0=x2-4x+3,(x- 1)(x-3)=0,解得:X1=1,x?=3,••• A (1, 0),B (3, 0),y=^ - 4x+3=(x- 2)2- 1,•••平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点第12页(共28页)B'落在y轴上,•••抛物线向上平移一个单位长度,再向左平移3个单位长度即可,•I平移后的解析式为:y= (x+1)2=X+2x+1.故选:A.【点评】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.二、填空题(本大题共6小题,每小题3分,共18分)13. (3分)(2017?天津)计算x7十x4的结果等于x3.【考点】48:同底数幕的除法.【分析】根据同底数幕的除法即可求出答案.【解答】解:原式=x3,故答案为:x3【点评】本题考查同底数幕的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.14. (3 分)(2017?天津)计算的结果等于9【考点】79:二次根式的混合运算.【分析】根据平方差公式进行计算即可.【解答】解:一一=16- 7=9.故答案为:9.【点评】本题考查了二次根式的混合运算,掌握平方差公式是解题的关键.15. (3分)(2017?天津)不透明袋子中装有6个球,其中有5个红球、1个绿球, 这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:•••共6个球,有5个红球,•••从袋子中随机摸出一个球,它是红球的概率为 -•故答案为:-.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)二一.16. (3分)(2017?天津)若正比例函数y=kx( k是常数,心0)的图象经过第二、四象限,贝U k的值可以是 -2 (写出一个即可).【考点】F7: —次函数图象与系数的关系.【分析】据正比例函数的性质;当k v0时,正比例函数y=kx的图象经过第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.【解答】解:•••若正比例函数y=kx的图象经过第二、四象限,二k v 0,•••符合要求的k的值是-2,故答案为:-2.【点评】本题主要考查了正比例函数的性质,关键是熟练掌握:在直线y=kx中,当k>0时,y随x的增大而增大,直线经过第一、三象限;当k v 0时,y随x 的增大而减小,直线经过第二、四象限.17. (3分)(2017?天津)如图,正方形ABCD和正方形EFCG勺边长分别为3和1,点F,G分别在边BC, CD上, P为AE的中点,连接PG,则PG的长为—一_ .D【考点】KX三角形中位线定理;KQ:勾股定理;LE:正方形的性质.【分析】延长GE交AB于点0,作PH丄OE于点H,则PH是厶0AE的中位线, 求得PH的长和HG的长,在RtA PGH中利用勾股定理求解.【解答】解:延长GE交AB于点0,作PH丄0E于点H.贝U PH// AB.••• P是AE的中点,••• PH是厶A0E的中位线,••• PH=0Ah (3- 1)=1.•••直角△ A0E中,/ OAE=45,•••△ A0E是等腰直角三角形,即0A=0E=2同理△ PHE中,HE=PH=1••• HG=H^EG=1+1=2.•••在RtA PHG中,PG=故答案是:.【点评】本题考查了勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.18. (3分)(2017?天津)如图,在每个小正方形的边长为1的网格中,点A, B, C均在格点上.(1)AB的长等于_ —_;(2)在厶ABC的内部有一点P,满足S\PAB: S PBC: S PCA=1: 2: 3,请在如图所示的网格中,用无刻.度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M , N.连接DN, EM, DN与EM相交于点P,点P即【考点】N4:作图一应用与设计作图;KQ 勾股定理.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E,取格点F ,连接FB 并且延长,与网格 相交,得到M , N , G •连接DN ,EM ,DG, DN 与EM 相交于点P ,点P 即为所 求.【解答】解:(1) AB==—.故答案为—• (2)如图AC 与网格相交,得到点D 、E,取格点F ,连接FB 并且延长,与网格 相交,得到M , N , G •连接DN , EM , DG, DN 与EM 相交于点P ,点P 即为所 求.理由:平行四边形ABME 的面积:平行四边形 CDNB 的面积:平行四边形 DEMG 的面积=1: 2: 3,△ PAB 的面积=-平行四边形ABME 的面积,△ PBC 的面积匸平行四边形CDNB 的 面积,△ PAC 勺面积=△ PNG 的面积=-△ DGN 的面积 匸平行四边形DEMG 的面积,-±-=«._为所求.HII iii diiaifii5 PAB: S\ PBC S fc\PCA=1 : 2:3.【点评】本题考查作图-应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△ PAB △ PBC △ PAC的面积,属于中考常考题型.三、解答题(本大题共7小题,共66分。