高二数学正弦定理2
002正弦定理二
全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计课 题:正弦定理二 编制人:王远刚学习目标:1.学会利用正弦定理解决有关平几问题以及判断三角形的形状,掌握化归与转化的数学思想;2.能熟练运用正弦定理解斜三角形.一、自学质疑:1.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,若ac b =2,A =60°,则bsinB c=________. 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)·cosA=acosC ,则cosA 的值等于________.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ccosB =bcosC ,且cosA =23,则sinB 等于________.4.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为________.5.在锐角△ABC 中,BC =1,B =2A ,则AC cosA的值等于________,AC 的取值范围为________. 6.在△A BC 中,A 、B 、C 的对应边分别是a 、b 、c 且sinB =12,sinC =32,则a∶b∶c=________.二、例题精讲:例1.(教材9P 例4)在ABC ∆中,已知C c B b A a cos cos cos ==,试判断三角形的形状.例2.(教材10P 例5)在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BD AC DC =.例3.在ABC ∆中,已知角C B A ,,所对的边分别为c b a ,,,若b c a 2=+, (1)求证:2cos 2cos2C A C A -=+; (2)若3π=B ,试确定ABC ∆形状.例4.在ABC ∆中,c b a ,,分别为ABC ∆三边长,若31cos =A , (1)求A CB 2cos 2sin 2++的值; (2)若3=a ,求三角形ABC 外接圆的半径.例5.(教材9P 例3)某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米).三、矫正反馈:1.在ABC ∆中,A B B A 22sin tan sin tan ⋅=⋅,那么ABC ∆一定是 (填三角形形状). 2.在ABC ∆中,A 为锐角,2lg sin lg 1lglg -==+A cb ,则ABC ∆形状为_______. 3.在ABC ∆中,若3,600==a A ,则_______sin sin sin =++++C B Ac b a . 四、迁移应用:1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =4bsinA ,则cosB =________.2.在△ABC 中,BC =1,∠B=π3,当△ABC 的面积等于3时,tanC 等于________.3.已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为________.4.如图,测量河对岸的旗杆AB 的高时,选与旗杆底B 在同一水平面内的两个测点C 与D.测得∠BCD=75°,∠BDC=60°,CD =a ,并在点C 测得旗杆顶A 的仰角为60°,则旗杆高AB 为________.5.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是________米.6.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.五、总结反思:【教师个人介绍】王远刚,江苏省海州高级中学(连云港市),邮编:222023,中学高级教师,数学备课组长,坚持理论指导教学实践,在教学中取得很好效果!从教16年来坚持撰写教科研论文,有两百余篇论文发表、获奖。
高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
高二数学正弦定理2精选教学PPT课件
正弦定理: 在一个三角形中,各边和它所对 角的正弦的比相等,即
a b c sin A sin B sin C
思考: 正弦定理的基本作用是什么?
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B ②已知三角形的任意两边与其中一边 的对角可以求其他角的正弦值,如 a sin A sin B b
湖南省长沙市一中卫星远程学校
课堂小结
2. 正弦定理的应用范围: ①已知两角和任一边,求其它两边及 一角; ②已知两边和其中一边对角,求另一 边的对角.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读必修5教材P.2到P.4; 2. 教材P.10习题1.1A组第1、2题.
湖南省长沙市一中卫星远程学校
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A
A C B
C
B
复习引入
如图,固定△ABC的边CB及∠B, 使边AC绕着顶点C转动.
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A 能否用一个等式把 这种关系精确地表示出 C 来? B
解三角求其他的边和角的过程叫作
解三角形.
讲解范例: 例1. 在△ABC中,已知A=32.0 , B=81.8 ,a=42.9cm,解三角形.
o o
练习: 在△ABC中,已知下列条件,解三角 形(角度精确到1 , 边长精确到1cm):
高中数学苏教版必修5学案:1.1.2 正弦定理(2) Word版含解析
第2课时正弦定理(2)1.利用正弦定理判断三角形的形状,计算三角形的面积.(重点) 2.正弦定理与三角恒等变换的综合应用.(难点)3.利用正弦定理解题时,忽略隐含条件而致误.(易错点)[基础·初探]教材整理正弦定理的应用阅读教材P9~P12,完成下列问题.1.正弦定理的深化与变形(1)asin A=bsin B=csin C=________=________.(2)a=________,b=________,c=________.(3)ab=________,ac=________,bc=________.(4)a∶b∶c=________:________:________.【答案】(1)2Ra+b+csin A+sin B+sin C(2)2R sin A2R sin B2R sin C(3)sin Asin Bsin Asin Csin Bsin C(4)sin A sin B sinC2.三角形面积公式S△ABC=________=________=________.【答案】12ab sin C12bc sin A12ac sin B判断(正确的打“√”,错误的打“×”)(1)在有些三角形中,a =sin A ,b =sin B ,c =sin C .( ) (2)在△ABC 中,asin A =b +c sin B +sin C.( )(3)在△ABC 中,a =2,b =1,C =30°,则S △ABC =1.( )【解析】 由正弦定理a sin A =b sin B =c sin C 可知(1),(2)正确;又S △ABC =12×2×1×sin 30°=12,故(3)错误.【答案】 (1)√ (2)√ (3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________ 疑问4:_________________________________________________ 解惑:_________________________________________________[小组合作型]在△c ,且B =30°,c =23,b =2,求△ABC 的面积S .【精彩点拨】 先求C ,再求A ,最后利用S △ABC =12bc sin A 求解. 【自主解答】 由正弦定理得sin C =c sin B b =23sin 30°2=32.又∵c >b ,∴C=60°或C=120°.当C=60°时,A=90°,∴S=12bc sin A=23;当C=120°时,A=30°,∴S=12bc sin A=3,∴△ABC的面积S为23或3.求三角形的面积,要充分挖掘题目中的条件,转化为求两边或两边之积及其夹角正弦的问题,要注意方程思想在解题中的应用.另外也要注意三个内角的取值范围,以避免由三角函数值求角时出现增根错误.[再练一题]1.在△ABC中,cos A=-513,cos B=35.(1)求sin C的值;(2)设BC=5,求△ABC的面积.【导学号:91730004】【解】(1)在△ABC中,0<A<π,0<B<π,A+B+C=π,由cos A=-513,得sin A=1213,由cos B=35,得sin B=45,∴sin C=sin(A+B)=sin A cos B+cos A sin B=1213×35+⎝⎛⎭⎪⎫-513×45=1665.(2)在△ABC中,由正弦定理得,AC=BC×sin Bsin A=5×451213=133,∴S△ABC=12×BC×AC×sin C=12×5×133×1665=83.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 【精彩点拨】 根据正弦定理可以把问题转化为角的问题,借助三角恒等变换知识化简得到角与角的等量关系,再进一步判断.【自主解答】 由已知得a 2sin B cos B =b 2sin Acos A . 由正弦定理得sin 2 A sin B cos B =sin 2 B sin Acos A , 即sin A cos A =sin B cos B ,亦即sin 2A =sin 2B . ∴2A =2B 或2A =π-2B , ∴A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形或等腰直角三角形.根据边角关系判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦定理实施边、角转换.[再练一题]2.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.【解】 法一:在△ABC 中,根据正弦定理:a sin A =b sin B =csin C =2R . ∵sin 2A =sin 2B +sin 2C ,∴⎝ ⎛⎭⎪⎫a 2R 2=⎝ ⎛⎭⎪⎫b 2R 2+⎝ ⎛⎭⎪⎫c 2R 2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ),∴sin 2B =12,∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形. 法二:在△ABC 中,根据正弦定理: sin A =a 2R ,sin B =b 2R ,sin C =c 2R . ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C , ∴sin B cos C -cos B sin C =0,即sin(B -C )=0,∴B -C =0,即B =C , ∴△ABC 是等腰直角三角形.[探究共研型]图1-1-1【提示】 如图,在B 侧选一条基线BC ,测得BC =a ,∠ABC =α,∠ACB =β,则由正弦定理可知 AB sin β=BCsin (α+β),即AB=BC sin βsin(α+β).探究2你能画出下列各角吗?(1)南偏西30°;(2)仰角30°,俯角45°.【提示】如图1-1-2,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C和D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.图1-1-2【精彩点拨】先求出∠CBD,利用正弦定理求BC,再在△ABC中,求AB.【自主解答】在△BCD中,∠BCD=α,∠BDC=β,∴∠CBD=180°-(α+β),∴BCsin β=ssin[180°-(α+β)],即BCsin β=ssin(α+β),∴BC=sin βsin(α+β)·s.在△ABC中,由于∠ABC=90°,∴ABBC=tan θ,∴AB=BC·tan θ=sin β·tan θsin(α+β)·s.解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[再练一题]3.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北方向,0.5 h后在B处望见灯塔C在货轮的北偏东30°方向.若货轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的西北方向时,求A,D两处的距离.【解】如图所示,在△ABC中,∠A=45°,∠ABC=90°+30°=120°,∴∠ACB=180°-45°-120°=15°,AB=30×0.5=15(n mile).由正弦定理,得AC sin∠ABC =ABsin∠ACB,∴AC=AB sin∠ABCsin∠ACB=15×sin 120°sin 15°=32+62×15(n mile).在△ACD中,∵∠A=∠D=45°,∴△ACD是等腰直角三角形,∴AD=2AC=15(3+3)(n mile).∴A,D两处之间的距离是15(3+3)n mile. 答:A,D两处的距离为15(3+3)n mile.[构建·体系]1.在△ABC中,AB=3,BC=1,B=30°,则△ABC的面积S△ABC=________.【解析】S△ABC =12×AB×BC×sin B=12×3×1×12=34.【答案】3 42.在△ABC中,若acos A=bcos B=ccos C,则△ABC是________三角形.【解析】由正弦定理asin A=bsin B=csin C=2R可知a=2R sin A,b=2R sin B,c=2R sin C.由acos A=bcos B=ccos C可知tan A=tan B=tan C,即A=B=C,∴△ABC为等边三角形.【答案】等边3.如图1-1-3所示,设A,B两点在河的两岸,一测量者在A的同侧,在A 所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为________ m.【导学号:91730005】图1-1-3【解析】 由题意可知∠ABC =180°-105°-45°=30°,由正弦定理,得AB =AC ·sin ∠ACB sin ∠ABC=50×2212=502(m).【答案】 50 24.在△ABC 中,2a sin A -b sin B -csin C =________. 【解析】 由正弦定理可知a sin A =b sin B =csin C , 故2a sin A -b sin B -csin C =0. 【答案】 05.如图1-1-4,A ,B 是海平面上的两个点,相距800 m .在A 点测得山顶C 的仰角为30°,∠BAD =105°,又在B 点测得∠ABD =45°,其中D 是点C到水平面的垂足.求山高CD .图1-1-4【解】 在△ABD 中,由正弦定理,得 AD =AB sin ∠ABD sin ∠ADB =800sin 45°sin (180°-105°-45°)=8002,在Rt △ACD 中,CD =AD ·tan 30°=8002×33=80063(m). 答:山高CD 为80063 m.我还有这些不足:(1)_________________________________________________(2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________(2)_________________________________________________学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.已知△ABC的面积为3且b=2,c=2,则A=______.【解析】∵S△ABC =12bc sin A,b=2,c=2,∴12×2×2sin A=3,∴sin A=3 2.又A∈(0,π),∴A=π3或2π3.【答案】π3或2π32.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是________ n mile.【解析】如图所示,易知C =45°,由正弦定理得AB sin C =BC sin A , ∴BC =AB sin Asin C =5 6. 【答案】 5 63.(2016·苏州高二检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________.【导学号:91730006】【解析】 由正弦定理知,b sin B =c sin C ,结合条件得c =b sin Csin B =2 2. 又sin A =sin(π-B -C )=sin(B +C )=sin B cos C +cos B sin C =6+24, 所以△ABC 的面积S =12bc sin A =3+1. 【答案】3+14.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.【解析】 由正弦定理得a sin A =bsin B ,∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0,∴cos A =32. 又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,即△ABC 为直角三角形, 由勾股定理得c =12+(3)2=2. 【答案】 25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2 B -sin 2 Asin 2A的值为________.【解析】 由正弦定理得,原式=2b 2-a 2a 2=2⎝ ⎛⎭⎪⎫b a 2-1=2×⎝ ⎛⎭⎪⎫322-1=72.【答案】 726.(2016·泰州高二检测)在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.【解析】 由a =2b cos C 可知 sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0, ∴B =C ,∴b =c , ∴△ABC 为等腰三角形. 【答案】 等腰7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B ·cos C +c sin B cos A =12b ,且a >b ,则B =________.【解析】 根据正弦定理将边化角后约去sin B ,得sin(A +C )=12,所以sin B =12,又a >b ,所以A >B ,所以B =π6.【答案】 π68.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.【解析】 设最小角为α,则最大角为120°-α, ∴sin (120°-α)sin α=3+12,∴2sin(120°-α)=(3+1)sin α, ∴sin α=cos α,∴α=45°,∴最大角为120°-45°=75°. 【答案】 75° 二、解答题9.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,求这时船与灯塔的距离.【解】 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,∴∠ABC =45°,AC =60.根据正弦定理, 得BC =AC sin ∠BAC sin ∠ABC=60sin 30°sin 45°=302(km).10.在△ABC 中,∠A 的平分线交BC 于D ,用正弦定理证明:AB AC =BDDC . 【证明】 如图,由题意可知,∠1=∠2,∠3+∠4=180°,在△ABD 中,由正弦定理得 AB sin ∠3=BDsin ∠1,① 在△ADC 中,由正弦定理得 AC sin ∠4=DCsin ∠2,②又sin ∠1=sin ∠2,sin ∠3=sin ∠4, 故①②得AB AC =BD DC. [能力提升]1.在△ABC 中,a cos B =bcos A ,则△ABC 的形状一定是________. 【解析】 在△ABC 中,∵a cos B =bcos A ,∴a cos A =b cos B ,由正弦定理, 得2R sin A cos A =2R sin B cos B , ∴sin 2A =sin 2B ,∴2A =2B 或2A +2B =180°, ∴A =B 或A +B =90°.故△ABC 为等腰三角形或直角三角形或等腰直角三角形. 【答案】 等腰或直角三角形或等腰直角三角形2.(2016·南京高二检测)在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,则ab 的取值范围为________.【解析】 在锐角三角形ABC 中,A ,B ,C 均小于90°, 即⎩⎨⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2Bsin B =2cos B ∈(2,3), 故ab 的取值范围是(2,3). 【答案】 (2,3)3.△ABC 中,A =π3,BC =3,则△ABC 的周长为________(用B 表示).【导学号:91730007】【解析】 在△ABC 中,A +B +C =π可知C =2π3-B . 由正弦定理得3sin π3=AB sin ⎝ ⎛⎭⎪⎫2π3-B =ACsin B ,∴AB =23sin ⎝ ⎛⎭⎪⎫2π3-B ,AC =23sin B ,∴△ABC 的周长为AB +AC +BC =23·⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B +3=3+6sin ⎝ ⎛⎭⎪⎫B +π6.【答案】 3+6sin ⎝ ⎛⎭⎪⎫B +π64.(2016·如东高二检测)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.【解】 (1)因为a =3,b =26,B =2A , 所以在△ABC 中,由正弦定理得3sin A =26sin 2A, 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2 A =33. 又B =2A ,所以cos B =2cos 2 A -1=13, 所以sin B =1-cos 2 B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539, 所以c =a sin Csin A =5.。
高二数学必修5第1章第 2课时学案
高二数学必修5第1章第 2课时学案
1.1正弦定理(二)
[学习目标]
初步运用正弦定理解决一些与测量和几何计算有关的实际问题.
[自学质疑]范围:课本P 9~11。
1.什么是正弦定理?它可以解决什么类型的斜三角形?
2.练习:(1)在ΔABC 中,已知A=300,b=26,a=x,若三角形有两解,求x 的范围.
(2)在ΔABC 中,已知,45,30,26600==+=+B A b a 求S c ,.
3.什么叫仰角?什么叫俯角?尝试解决例3并思考此种类型的测量问题如何解决?
4.尝试解决例4并思考正弦定理在判断三角形形状中的作用,解决下列问题: 在ΔABC 中,C B bc B c C b cos cos 2sin sin 2
222=+,试判断ΔABC 形状.
的外角平分线交BC的延长线于D,此等式是5.尝试解决例5并思考:在ΔABC中,A
否成立?如成立,请你给出证明.
P练习题吗?动动手有问题与同学或老师交流.
6.你能解决教材
10
[矫正反馈]
P3,4,5,6,7.
1.教材习题
11
2.同步导学第2课时.。
高二数学公式总结
高二数学公式总结高二数学公式总结一、函数与方程1. 一次函数:y = kx + b,其中k为斜率,b为截距。
2. 二次函数:y = ax^2 + bx + c,其中a为二次项系数,b为一次项系数,c为常数项。
3. 反函数:若y = f(x),则x = f^(-1)(y)。
4. 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x),余切函数cot(x)。
5. 幂函数:y = x^a,其中a为常数。
6. 对数函数:y = loga(x),其中a为底数。
7. 指数函数:y = a^x,其中a为底数。
二、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 等比数列通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3. 等差数列前n项和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为第n项。
4. 等比数列前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。
5. 数学归纳法:若能证明当n=k时命题成立,且当n=k+1时,命题成立,则对于所有自然数n,命题均成立。
三、几何1. 相似三角形:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
2. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。
3. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中a、b、c为三角形的边长,C为夹角。
4. 钝角余弦定理:c^2 > a^2 + b^2 - 2ab*cosC。
5. 射影定理:在直角三角形中,斜边上的垂直射影等于斜边与直角边的乘积。
6. 平行四边形性质:对角线互相平分,对角线互相交于中点,对角线长度平方和等于边长平方和的两倍。
7. 三角形面积公式:S = 1/2 * a * b * sinC,其中a、b为两边长,C为夹角。
1.1.1正弦定理 (2)
1.1.1正弦定理(一)教学目标1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形中的一类简单问题2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:正弦定理的推导即理解(三)教学过程1[创设情景]如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。
A思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角∠C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B2[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt∆ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,你有什么发现?AB a C思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:Cb aA c B结论:类似可推出,当∆ABC是钝角三角形时,以上关系式仍然成立。
讨论探究:对于上面的性质,你能给出证明么?正弦定理:[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sina k A=,sinb k B=,sinc k C=;(2)sin sina bA B=sincC=等价于sin sina bA B=,sin sinc bC B=,sinaA=sincC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sinsinb AaB=;β②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sinaA Bb=。
高二数学公式总结
高二数学公式总结数学公式是数学知识的精华,是解决各种数学问题的有力工具。
在高二数学学习中,我们学习了众多数学公式,这些公式帮助我们更好地理解和应用数学知识。
下面我将对高二数学中常用的公式进行总结,希望能帮助大家更好地掌握数学知识。
一、代数公式1. 平方差公式:(a+b)(a-b)=a²-b²2. 平方和公式:a²+2ab+b²=(a+b)²3. 二次求和公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²4. 二次差公式:a²-b²=(a+b)(a-b)5. 三次求和公式:(a+b)³=a³+3a²b+3ab²+b³,(a-b)³=a³-3a²b+3ab²-b³6. 三次差公式:a³-b³=(a-b)(a²+ab+b²)7. 二次立方和公式:(a+b)³=a³+3a²b+3ab²+b³,(a-b)³=a³-3a²b+3ab²-b³8. 二次立方差公式:a³-b³=(a-b)(a²+ab+b²)9. 二次立方和差公式:a³+b³=(a+b)(a²-ab+b²)10. 四次求和公式:(a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴11. 四次差公式:a⁴-b⁴=(a²+b²)(a²-b²)=(a²+b²)(a+b)(a-b)12. 二次求差公式:a²-b²=(a+b)(a-b)二、函数公式1. 一次函数:y=kx+b,其中k为斜率,b为截距2. 二次函数:y=ax²+bx+c,其中a,b,c为常数,a≠03. 二次函数顶点坐标公式:x=-b/2a,y=-Δ/4a,其中Δ=b²-4ac为二次函数的判别式4. 二次函数对称轴公式:x=-b/2a为二次函数的对称轴5. 二次函数焦点公式:(x,y)=(h,k±√p),其中(h,k)为二次函数顶点坐标,p=(1+4a)为焦距的倍数6. 二次函数直角坐标系内接公式:y=a(x-h)²+k,其中(h,k)为顶点坐标7. 二次函数直角坐标系外接公式:y=a(x-h)²+k,其中(h,k)为顶点坐标,a的正负决定了抛物线开口方向8. 已知一次函数两点坐标求解公式:y-y₁=k(x-x₁),其中(x₁,y₁),(x,y)为一次函数的两个点坐标9. 已知一次函数斜率和一点坐标求解公式:y-y₁=k(x-x₁),其中k为一次函数的斜率,(x₁,y₁)为一点坐标三、几何公式1. 数轴上两点间距离公式:d=|x₂-x₁|2. 二维平面两点间距离公式:d=√((x₂-x₁)²+(y₂-y₁)²)3. 点到直线距离公式:d=|ax₀+by₀+c|/√(a²+b²),其中(a,b)为直线的法向量,(x₀,y₀)为点的坐标,c为常数4. 直线的一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为05. 直线的斜截式方程:y=kx+b,其中k为斜率,b为截距四、三角函数公式1. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径2. 余弦定理:c²=a²+b²-2abcosC,其中a、b、c为三角形的边长,C为对应的角度3. 正切定理:tanA=(a/b) ,tanB=(b/a)4. 半径公式:R=a/(2sinA),R=b/(2sinB),R=c/(2sinC),其中a、b、c为三角形的边长,A、B、C为对应的角度5. 二倍角公式:sin2A=2sinAcosA,cos2A=cos²A-sin²A=2cos²A-1=1-2sin²A,tan2A=(2tanA)/1-tan²A6. 三倍角公式:sin3A=3sinA-4sin³A,cos3A=4cos³A-3cosA,tan3A=(3tanA-tan³A)/(1-3tan²A)7. 和差化积公式:sin(A±B)=sinAcosB±cosAsinB,cos(A±B)=cosAcosB∓sinAsinB总结:高二数学中的公式众多,覆盖了代数、函数、几何和三角函数等四个部分。
正弦定理
已知两边和其中一边的 对角,解三角形
【例 2】 (12 分)已知△ABC 中, a=2
3 ,b=6,A=30°,解三角形.
名师导引:(1)已知边 a、 b 及角 A,用正弦定理可求 出什么量?(角 B) (2)要求角 C,还要用到什么条件?(A+B+C=180°) (3)现在有了边 a,b 及角 A、B、C,如何求边 c?(用
a b = = sin A sin B
c sin C
)
解:根据三角形内角和定理得 A=180°-(B+C)=180°-(45°+105°)=30°,
a b c 由正弦定理 = = sin A sin B sin C a sin B sin 45 b= =5× =5 2 , sin A sin 30 a sin C c= sin A
2 2 2
(2)在利用正弦定理判断三角形形状时应注 意什么?(①判断出一个三角形是等腰三角形 后,还要进一步讨论它是否可能是等边三角 形或等腰直角三角形,不要匆忙下结论;②在 △ABC 中,若 sin 2A=sin 2B,不一定只有 A=B, 因为 sin 2A=sin 2B⇒ 2A=2B,或 2A=π-2B⇒
a b 2 2 ∴ = = = sin A sin B sin 60 3 2
答案:(1)D
4 3 = . 3
4 3 (2) 3
已知三角形两角和任一边, 求其他边和角
【例 1】 在△ABC 中,a=5,B=45°,C=105°,解 这个三角形.
名师导引:(1)解这个三角形需要求出哪些量?(求 出 A,b,c) (2)要求 A 还需知道什么条件?(A+B+C=180°) (3)用什么关系求 b、c?(
正弦定理教案
正弦定理(2)韶关市第一中学张卫年一、教学内容分析《正弦定理》是高中课程人教A版数学(必修5)第一章第一节内容,教学安排2个课时,本节为第二课时。
本节课主要解决2个问题,一是“已知两边及一对角的三角形问题”,另一个是正弦定理的变形应用,即通过角边互化来解三角形问题。
本节课集新授课、习题课及复习课于一身,教师以主导者的身份带领学生通过解答一些三角形问题来探究新知,增强学生的发现、归纳及整理的能力。
学生在课堂上自主探究、合作交流,通过解决一些角边互化的例题来增强对正弦定理的应用能力。
正弦定理是研究任意三角形边角之间关系的重要开端;用正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;正弦定理作为三角形中的一个定理,在日常生活和工业生产中的应用又十分广泛。
因此,正弦定理的地位体现在它的基础性,作用体现在它的工具性。
二、学生学情分析本次教学的对象是全市最好学校的文科班学生,其学习积极性比较高,在数学知识的把握上也比较好。
在这节课之前学生已经学过了正弦定理的推导,学会了正弦定理的简单应用。
教师可以充分调动学生学习积极性对一些问题进行探讨,结合初中所学的三角形全等判定定理引导学生对解三角形的情况进行归纳整理,充分发展学生各方面的能力。
另外可以让学生自主交流,合作探究一些解三角形的中等问题。
虽然在这过程会出现一些困难,但通过老师恰当的点拨与引导,相信学生能在这节课中实现全面把握正弦定理的应用这一目标。
三、教学目标定位(一)知识与技能1、熟记正弦定理及其变形;2、熟练应用正弦定理解三角形;(二)过程与方法让学生养成自主学习的习惯,喜欢与老师和同学合作交流,善于发现问题,敢于探究问题,增强对数学学习的兴趣。
(三)情感态度与价值观让学生感受到师生、生生合作交流的快乐,得到获取知识的满足,体会自主学习的喜悦,从而喜欢上学习,喜欢思考,喜欢解决问题,勇于挑战难题。
教学重点1、利用正弦定理解已知两角一边或两边及一对角的三角形;2、正弦定理的变形应用;教学难点1、正确讨论三角形解的情况;2、熟练掌握正弦定理变形应用;四、教学策略“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。
正弦定理二
高二数学学案编号:2教学课题 课型 主备教师把关教师 使用教师使用时间、班级正弦定理二新授课学习目标:1.熟练掌握正弦定理的简单应用。
2.会用正弦定理求三角形的面积。
3.能利用正弦定理判断三角形的形状。
学习重点、难点:正弦定理的应用。
教学过程课前预习1.正弦定理的内容:在一个三角形中,各边的长和 的比 。
2.正弦定理公式:=Aasin = =2R (其中R 是ABC ∆外接圆的半径) 或=a ;=b ;=c 或=C B A sin :sin :sin . 3.求三角形的面积公式有哪些?(1)ah S 21=(h 为a 边上的高)。
(2)A bc B ac C ab sin 21sin 21sin 21S ===试写出三角形的面积公式C ab sin 21S =的推导过程教学设计教师是学生学习的引导者 学生是学习的主人!合作探究展示合作探究一 在ABC ∆中,2,AC ,32AB ,30B 0===求ABC ∆的面积。
变式练习一 已知ABC ∆中,边a,b 分别为方程02322=+-x x 的两个根,A,B 满足,3)sin(2=+B A 求角C 和面积S 。
合作探究二 在ABC ∆中,,tan tan 22A b B a =判断ABC ∆的形状。
补充深化认真听讲是学习高效的捷径!变式练习二在ABC ∆中,acosA=bcosB,试判断这个三角形的形状课堂小结 当堂练习1.在ABC ∆中,,45,8,60===C b a 则ABC ∆的面积为( ) A 224 B 212 C 26 D 282.已知ABC ∆中,,30,1,30===B b a 求三角形的面积。
3.在ABC ∆中,C B A 222sin sin sin =+,求证:ABC ∆是直角三角形。
学生总结积极思考 勤于动手 天才来自勤奋 !课后巩固作业1.在ABC ∆中,,12=ac 面积ABC R 32R 3,S ∆==为(的外接圆半径),则b=( ) A 22 B 32 C 62 D 232.在ABC ∆中,,31812,36,60A 0====∆ABC S b a ,则.___________,__________sin sin sin ==++++c CB A cb a3.已知方程0cos )cos (2=+-B a x A b x 的两根之积等于两根之和,且a,b 为ABC ∆ 的两边,A,B 为两内角,试判断这个三角形的形状。
高考数学正弦定理知识点总结
正弦定理是三角学中的一个基本定理,高考数学考试大纲中要求掌握的内容,下面是给大家带来的,希望对你有帮助。
高中数学正弦定理知识点总结一正弦定理的应用领域在解三角形中,有以下的应用领域:1已知三角形的两角与一边,解三角形2已知三角形的两边和其中一边所对的角,解三角形3运用a:b:c=inA:inB:inC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦正弦定理在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/inA=b/inB=c/inC=2R其中R为三角形外接圆的半径正弦定理的变形公式1a=2RinA,b=2RinB,c=2RinC;2inA:inB:inC=a:b:c;在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题3相关结论:a/inA=b/inB=c/inC=ab/inAinB=abc/inAinBinCc/inC=c/inD=BD=2 RR为外接圆半径4设R为三角外接圆半径,公式可扩展为:a/inA=b/inB=c/inC=2R,即当一内角为90°时,所对的边为外接圆的直径。
灵活运用正弦定理,还需要知道它的几个变形inA=a/2R,inB=b/2R,inC=c/2RainB=binA,binC=cinB,ainC=cinA5a=binA/inBinB=binA/a高中数学正弦定理知识点总结二一、正弦定理变形的应用1.2022山东威海高二期中,4已知△ABC的三个内角之比为AB∶C=3∶2∶1,那么对应的三边之比ab∶c等于A.32∶1B∶2∶1C∶1D2∶∶1答案:D解析:A∶B∶C=3∶2∶1,∴B=2C,A=3C,再由ABC=π,可得C=,故A=,B=,C=a∶b∶c=inA∶inB∶inC=1∶=2∶∶3在△ABC中,A=60°,a=3,则等于A.BCD2答案:D解析:利用正弦定理及比例性质,得=2二、利用正弦定理解三角形42022山东潍坊四县联考,2在△ABC中,已知a=8,B=60°,C=75°,则b等于A.答案:A解析:B=60°,C=75°,∴A=180°-60°-75°=45°∴由正弦定理可得b==4故选A5在△ABC中,三个内角A,B,C的对边分别为a,b,=,b=,B=60°,那么A=A.45°B135°C45°或135°D60°答案:A解析:由正弦定理可得inA=,但ab,∴A=60°或A=120°8在△ABC中,已知a=5,B=120°,C=15°,求此三角形最大的边长解:B=120°,C=15°,∴A=180°-B-C=180°-120°-15°=45°∵B最大,b最大由正弦定理,得b=。
高中数学必修二 专题6 7 正弦、余弦定理-同步培优专练
专题6.7 正弦、余弦定理知识储备一.余弦定理在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,则有【思考】在a 2=b 2+c 2-2bc cos A 中,若A =90°,公式会变成什么? 【答案】a 2=b 2+c 2,即勾股定理. 二.正弦定理在一个三角形中,各边和它所对角的正弦的比相等.即CcB b A a sin sin sin == 三.正弦定理的变形公式1.a =2R sin A ,b =2R sin B ,c =2R sin C .2.RcC R b B R a A 2sin ,2sin ,2sin ===(其中R 是△ABC 外接圆的半径). 【思考】在正弦定理中,三角形的各边与其所对角的正弦的比都相等,那么这个比值等于多少?与该三角形外接圆的直径有什么关系?【答案】等于2R (R 为该三角形外接圆的半径),与该三角形外接圆的直径相等.能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·广西桂林市·高二期末(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若45A =︒,60B =︒,2a =,则b =( )ABCD.【答案】A【解析】因为45A =︒,60B =︒,2a =,所以由正弦定理可得sin sin a bA B=, 则b=2sin 2sin 60sin sin 45a B A ===,故选:A. 2.(2021·云南高三期末)在ABC 中,若4AC =,6AB =,BC =A ∠=( )A .6πB .4π C .3π D .2π 【答案】C【解析】由余弦定理可得:2221636281cos 22462b c a A bc +-+-===⨯⨯又()0,A π∈所以3A π=故选:C3.(2021·广西桂林市·高二期末(理))ABC 的内角,,A BC 的对边分别为,,a b c ,且1a =,c =6B π=,则ABC 的面积为( )A .32B .34C D 【答案】D【解析】在ABC 中,由1a =,c =6B π=,则111sin 12224ABCSac B ==⨯=. 故选:D .4.(2021·河南新乡市·高二期末(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin sin b B c C a A +=,则ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定【答案】C【解析】因为2222b c a +=,所以2222cos 022b c a c A bc bc+--==<,所以90A >︒,所以ABC 的形状为钝角三角形.故选C5.(2021·河南信阳市·高二期末(理))已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且22226c ab a b +=++,若ABC 的面积为2,则tan C 的值为( )A B C .1 D 1【答案】B【解析】由题意22222262cos c a b ab a b ab C =+-+=+-即()1cos 3ab C -=①,1sin 2S ab C ==①联立①①得1cossin C C -=sin 2sin 3C C C π⎛⎫=+= ⎪⎝⎭即sin 32C π⎛⎫+= ⎪⎝⎭又0C π<<4333C πππ∴<+< 2,333C C πππ∴+==tan C ∴=B . 6.(2021·江苏镇江市·高一期末)如皋定慧寺原有佛塔毁于五代时期,现在的观音塔为2002年6月12日奠基,历时两年完成的,是仿明清古塔建筑,框架七层、八角彩绘,总建筑面积700多平方米.塔内供奉观音大士铜铸32应身,玻璃钢彩铸大悲咒出相84尊,有通道拾级而上可登顶层.塔名由中国书法协会名誉主席、中国佛教协会顾问、国学大师启功先生题写.塔是佛教的工巧明(即工艺学,比如建筑学就是工巧明之一),东汉明帝永平年间方始在我国兴建.所谓救人一命胜造七级浮屠,这七级浮屠就是指七级佛塔.下面是观音塔的示意图,游客(视为质点)从地面D 点看楼顶点A 的仰角为30,沿直线DB 前进51米达到E 点,此时看点C 点的仰角为45︒,若23BC AC =,则该八角观音塔的高AB 约为( ) 1.73≈)A .8米B .9米C .40米D .45米【答案】D【解析】设AC x =,由23BC AC =得,32BC x =因为45CEB ∠=︒,所以32BE BC x ==,在Rt ABD △中,32tan 3033512x xAB BD x +︒===+,解得18x =≈所以5452AB x =≈故选D7.(2021·全国高三专题练习(理))秦九韶,字道古,汉族,鲁郡(今河南范县)人,南宋著名数学家,精研星象、音律、算术、诗词、弓、剑、营造之学.1208年出生于普州安岳(今四川安岳),咸淳四年(1268)二月,在梅州辞世. 与李冶、杨辉、朱世杰并称宋元数学四大家.他在著作《数书九章》中创用了“三斜求积术”,即是已知三角形的三条边长,,a b c ,求三角形面积的方法.其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =,若ABC 满足2sin c A 2sin C =,3cos 5B =,且a<b<c ,则用“三斜求积”公式求得ABC 的面积为( ) A .35B .45 C .1 D .54【答案】B【解析】因为2sin c A 2sin C =,所以22,2ac c ac =∴=.因为3cos 5B =,所以22222236,2525a cb ac b ac +-+-=∴=,所以45S ==.故选:B 8.(2021·江西新余市·高二期末(文))在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B B A A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A B .44+ C .3 D .42+ 【答案】A【解析】在ABC 中,sin 1cos sin cos B BA A-=,sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =,∴ABC 是等边三角形,OACB AOBABCS SS∴=+211||||sin ||22OA OB AB θ=⋅+⨯)22121sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯+-⋅sin (41221cos )4θθ=++-⨯⨯⨯sin 4θθ=-+2sin 34πθ⎛⎫=-+ ⎪⎝⎭ 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为2=故选A.二、多项选择题:本题共4小题,每小题5分,共20分。
2023年高二数学知识点人教版(高二上册数学必修二知识点)
2023高二数学知识点人教版(高二上册数学必修二知识点)高二数学重要学问点归纳正弦定理a/sinA=b/sinB=c/sinC=2R注:R表示三角形的外圆半径余弦定理b2=a2 c2-2accosB留意:角B是边a和边c的夹角圆标准方程(x-a)2 (y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2 y2 Dx Ey F=0注:D2 E2-4F>0抛物线标准方法y2=2pxy2=-2p2=2pyx2=-2py直棱柱侧面的S=ch斜棱柱侧面S=c”h正棱锥侧面的S=1/2ch”正棱面侧面积S=1/2(c c”)h”圆台侧面积S=1/2(c c”)l=pi(R r)l球的外表积S=4pir2圆柱侧面S=ch=2pih圆锥侧面S=1/2cl=pirl弧长公式l=ara圆心角弧度数r>0扇形面积公式s=1/2lr锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h斜棱柱体积V=S”L注:其中,S”是直截面积,L是侧棱长柱体体积公式V=sh圆柱体V=pr2h乘法和因式分为a2-b2=(a b)(a-b)a3 b3=(a b)(a2-ab b2)a3-b3=(a-b(a2 ab b2)三角不等式|a b|≤|a| |b||a-b|≤|a| |b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|解决一元二次方程-b √(b2-4ac)/2a-b-√(b2-4ac)/2aX1根与系数的关系 X2=-b/aX1X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不同的实根b2-4ac注:方程没有实根,有共轭复数根<0注:方程没有实根,有共轭复数根高二数学必修二学问点用样本的数字特征估量整体数字特征1、本均值:样品标准差:3.用样本估量整体时,假如抽样方法合理,样本可以反映整体信息,但样本获得的信息会有偏差。
正弦定理与余弦定理
余弦定理、正弦定理
余弦定理
正弦定理、余弦定理
1/6
2016 个性化辅导教案
7. 在△ABC 中,已知两边和其中一边的对角(如 a,b 和 A)时解的情况如下: A 为锐角 A 为钝角或直角
图形
关系式 解的个数
a<bsinA 无解
a=bsinA 一解
bsinA< ������ < ������ 两解
������ +������ 2
1
+ ������������������2������的值; (2)若a = 3,求 bc 的最大值.
2/6
2016 个性化辅导教案
例 3 在△ABC 中,sinA + cosA = 2 ,AC=2,AB=3,求 tanA 的值和△ABC 的面积.
2
例 4 如图所示,港口 B 在港口 O 的正东 120 海里处,小岛 C 在港口 O 北偏东 60 方向,港口 B 北偏西 30 方向上.一艘科学考察船从港口 O 出发,沿北偏东 30 的 OA 方向以每小时 20 海里的速度驶离港口 O,一 艘快艇从港口 B 出发,以每小时 60 海里的速度驶向小岛 C,在 C 岛装补给物资给考察船送去.现两船同时 出发,补给物资的装船时间为 1 小时,问快艇驶离港口 B 后,最少要经过多少小时才能和考察船相遇?
,������ = 2 2,求△ABC 的面积.
11.设△ABC 的内角∠������、∠B、∠C的对边分别是 a、b、c,且 acosB=3,bcosA=4. (1)求边长 a; (2)若△ABC 的面积 S=10,求△ABC 的周长 l.
5/6
2016 个性化辅导教案
12. 在△ABC 中,已知内角������ = ,边 BC=2 3,设内角 B=x,周长为 y.
正弦定理
高二数学必修五复习导学案课题:正弦定理 备课:高二数学备课组 NO :fx5101班级: 姓名:一、知识回顾(1)正弦定理:=R 2 = = .(R 为三角形外接圆的半径)变形形式有:a = ,b= , c=b aB A=sin sin sin sin A C = bc =(2)三角形中的边角关系①角角间的互补与互余:如: )sin(sin C B A C B A +=⇒=++π等)sin (sin b a B A B A >⇔>⇔>②边角间的对应关系——等边对等角;大边对大角③边边间的不等式关系——任两边之和大于第三边任两边之差小于第三边(3)利用正弦定理,可以解决以下两类斜三角形问题(1)已知两角和任一边,求其它两边和另一角(2)已知两国边和其中一边的对角,求另一边的对角及其它边、角对(1)而言三角形的形状唯一确定,所以仅有 解。
对(2)而言三角形的形状不唯一确定,因此会出现 解、一解、两解的情况。
二、例题分析例题1、在三角形ABC 中,已知006,45,75,c A C a ===求例题2、在三角形ABC 中解下列三角形(1)06,2,120;a b B === (2)06,45;a b A == (3)045;a b B ==三、随堂练习1、在三角形ABC 中,已知006,45,75,b A B a ===求2、在三角形ABC 中解下列三角形(1)07,8,105;a b A === (2)010,60;b c C === (3)06,30;a b A ===四、课后作业1、在△ABC 中,已知a =52,c =10,A =30°,则B =( )A .105°B .60°C .15°D .105°或15°2、在ABC ∆中,a =4,A =45°,B =60°,求边b 等于__________.3、以下关于正弦定理的叙述或变形错误的是( )A .在△ABC 中,a ∶b ∶c =sin A ∶sinB ∶sin CB .在△ABC 中,若sin 2A =sin 2B ,则a =bC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin B 都成立D .在△ABC 中,a sin A =b +csin B +sin C4、若sin A a =cos B b =cosC c ,则△ABC 是( )A .等边三角形B .直角三角形,且有一个角是30°C .等腰直角三角形D .等腰三角形,且有一个角是30°5、在ABC ∆中,若b Ba Acos sin =,则B 的值为( )A . 30B . 45C . 60D . 906、在ABC ∆中,已知 45=A ,6=AB ,2=BC ,解此三角形.。
高二数学正弦定理教案5篇最新
高二数学正弦定理教案5篇最新正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,采用转化,分类讨论的的数学思想,是学生们易于接受的一种证明方法。
今天小编在这里整理了一些高二数学正弦定理教案5篇最新,我们一起来看看吧!高二数学正弦定理教案1一、教材分析“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。
这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。
而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。
但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的`解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
正弦定理、余弦定理精讲精析(解析版)
正弦定理、余弦定理精讲精析点点突破热门考点01 正弦定理正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为: a ∶b ∶c =sin A ∶sin B ∶sin C ;a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.面积公式S =12ab sin C =12bc sin A =12ac sin B【典例1】(2019·全国高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【典例2】(2020·江苏省高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin C =;(2)2tan 11DAC ∠=.【解析】(1)由余弦定理得22222cos 9223252b ac ac B =+-=+-⨯⨯⨯=,所以5b =. 由正弦定理得sin 5sin sin sin 5c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =-=. 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【总结提升】已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式 a <b sin Aa =b sin Ab sin A <a<ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解热门考点02 余弦定理余弦定理:2222cos a b c ab C +-= , 2222cos b c a ac A +-= , 2222cos c a b ac B +-=.变形公式cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,os C =a 2+b 2-c 22ab【典例3】(2020·全国高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,3AB AD ==,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14- 【解析】AB AC ⊥,3AB =1AC =,由勾股定理得2BC ==,同理得BD =BF BD ∴==在ACE △中,1AC =,AE AD ==,30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【典例4】(2019·北京高考真题(文))在△ABC 中,a =3,–2b c =,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值. 【答案】(Ⅰ)7,5b c ==;. 【解析】(Ⅰ)由余弦定理可得2221cos 22a cb B ac +-==-,因为3a =,所以22390c b c -++=;因为2b c -=,所以解得75b c =⎧⎨=⎩.(Ⅱ)由(Ⅰ)知3,7,5a b c ===,所以22213cos 214b c a A bc +-==;因为A 为ABC ∆的内角,所以sin A ==.因为sin()sin()sin B C A A +=π-==. 【总结提升】应用余弦定理解答两类问题:热门考点03正弦定理与余弦定理的综合运用【典例5】(2020·北京高考真题)在中,,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)和的面积.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ), ;选择条件②(Ⅰ)6(Ⅱ), .【解析】选择条件①(Ⅰ)(Ⅱ)由正弦定理得:选择条件②(Ⅰ)由正弦定理得:(Ⅱ)【典例6】(2019·全国高考真题(理))ABC的内角A,B,C的对边分别为a,b,c,设22-=-.(sin sin)sin sin sinB C A B C(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C =. 【解析】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,πA ∈3Aπ(2)22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C +=整理可得:3sin C C =22sin cos 1C C += (()223sin 31sin C C ∴=-解得:sin C =因为sin 2sin 2sin 0B C A C ==>所以sin C >,故sin C =(2)法二:22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 222C C C ++=整理可得:3sin 63cos C C -=,即3sin 3cos 23sin 66C C C π⎛⎫-=-= ⎪⎝⎭2sin 62C π⎛⎫∴-=⎪⎝⎭ 由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+ 62sin sin()46C ππ+=+=. 【总结提升】应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.热门考点04 应用正弦定理、余弦定理判定三角形形状【典例7】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形【答案】D 【解析】因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =2π或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形. 【规律方法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范对三角函数值的限制.热门考点05 与三角形面积有关的问题【典例8】(2018·全国高考真题(文))△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.. 【解析】因为sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=, 可得1sin 2A =,因为2228b c a +-=, 结合余弦定理2222a b c bccosA =+-,可得2cos 8bc A =,所以A 为锐角,且cos A =,从而求得bc =,所以ABC ∆的面积为111sin 222S bc A ===.【典例9】(2017·上海高考真题)已知函数()221cos sin 2f x x x =-+,()0,x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求ABC ∆的面积.【答案】(1)[,)2ππ;(2 【解析】(1)函数2211()cos sin cos 2,(0,)22f x x x x x π=-+=+∈ 由222,k x k k Z πππ-≤≤∈,解得,2k x k k Z πππ-≤≤∈1k =时,12x ππ≤≤,可得()f x 的增区间为[,)2ππ(2)设△ABC 为锐角三角形,角A 所对边a =B 所对边b=5, 若()0f A =,即有1cos 202A += 解得223A π=,即3A π= 由余弦定理可得a 2=b 2+c 2﹣2bc cos A , 化为c 2﹣5c +6=0, 解得c =2或3, 若c =2,则cos 0B =<即有B 为钝角,c =2不成立, 则c =3,△ABC 的面积为11sin 532224S bc A ==⨯⨯⨯=【总结提升】1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.提醒:正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.热门考点06 与三角形周长有关的问题【典例10】(2017课标1,理17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【答案】 【解析】【典例11】(2019·江西洪都中学高二月考(理))在ABC △中,A ,B ,C 所对的边分别为a ,b ,c 且cos 4c A =,sin 5a C =.(1)求边长c ;(2)若ABC △的面积20S =.求ABC △的周长. 【答案】(141(2)8241+【解析】(1)由正弦定理可得:2sin sin sin a b cR A B C===,可得sin sin a C c A =, 因为sin 5a C =,可得sin 5c A =,所以5sin A c=, 又由cos 4c A =,可得4cos A c=,又因为22222516sin cos 1A A c c+=+=,解得c = (2)由题意,ABC ∆的面积1sin 202S ab C ==,sin 5a C =,解得8b =,由余弦定理,可得2222cos 64412841a b c bc A =+-=+-=,解得a =,所以ABC ∆的周长88L a b c =++=+=+【总结提升】应用正弦定理、余弦定理,建立边长的方程,是解答此类问题的基本方法,解答过程中,要注意整体代换思想的应用,如果遇到确定最值问题,往往要结合均值定理求解.热门考点07 三角形中的最值与范围问题【典例12】(2018·江苏高考真题)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例13】(2020·全国高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴周长的最大值为3+【典例14】(2019·全国高考真题(文))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1) 3B π=;(2). 【解析】 (1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B <π,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B =π,所以3B π=. (2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )sin 3tan 38tan C C C C C ππππ-==-=又因,tan 623C C ππ<<>,故3188tan 82C <+<,故82ABCS <<. 故ABCS的取值范围是 【总结提升】三角形中的最值范围问题,往往有三种情况,一是转化成三角函数的值域问题,利用三角函数的图象和性质;二是利用基本不等式求最值,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误;三是利用函数的单调性.热门考点08 应用正弦定理、余弦定理解决实际问题【典例15】(2019·上海市金山中学高一月考)如图,在笔直的海岸线l 上有两个观测点A 和B ,点A 在点B 的正西方向,2AB km =.若从点A 测得船C 在北偏东60°的方向,从点B 测得船C 在北偏东45°的方向,则船C 离海岸线l 的距离为______km .(结果保留根号)【答案】13+ 【解析】如图所示,过点C 作CD AB ⊥,交AB 的延长线与点D ,设CD x =,45CBD BCD ∴∠=∠=, 设BD CD x ==, 又2AB =,2AD AB BD x ∴=+=+,30,tan CDCAD CAD AD︒∠=∠=, 323x x ∴=+, 解得:13x =+所以船C 离海岸线l 的距离为(13)km , 故答案为:13+【典例16】(2018届山东、湖北部分重点中学高考冲刺(二))我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”请你计算出海岛高度为__________步.(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123 步, 人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步, 人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少? 岛与前标杆相距多远?)(丈、步为古时计量单位,当时是“三丈=5步”) 【答案】1255步【解析】如图所示,设岛高步,与前标杆相距步,由相似三角形的性质有,解得:,则海岛高度为1255步.【典例17】(2019·海南高一期中)在海岸A 处发现北偏东45︒方向,距A 处()31-海里的B 处有一艘走私船.在A 处北偏西75︒方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.【答案】缉私船应沿北偏东60︒的方向行驶,才能最快截获走私船,大约需要15分钟. 【解析】如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则3CD t =海里,10BD t =海里, 在ABC ∆中,由余弦定理,得2222cos BC AB AC AB AC A =+-⋅⋅))2212212cos1206=+-⋅⋅⋅︒=,解得=BC 又sin sin BC ACBAC ABC=∠∠,sin sin2AC BAC ABC BC ⋅∠∴∠===45ABC ∴∠=︒,故B 点在C 点的正东方向上,9030120CBD ∴∠=︒+︒=︒,在BCD ∆中,由正弦定理,得sin sin BD CDBCD CBD=∠∠,sin sin BD CBDBCD CD⋅∠∴∠=12==. 30BCD ∴∠=︒,∴缉私船沿北偏东60︒的方向行驶.又在BCD ∆中,120CBD ∠=︒,30BCD ∠=︒,30D ∴∠=︒,BD BC ∴=,即10t =解得t =15≈分钟. ∴缉私船应沿北偏东60︒的方向行驶,才能最快截获走私船,大约需要15分钟.【总结提升】1.测量距离问题,归纳起来常见的命题角度有: (1)两点都不可到达; (2)两点不相通的距离;(3)两点间可视但有一点不可到达. 2. 求解高度问题的三个关注点(1)在处理有关高度问题时,要理解仰角、俯角(在铅垂面上所成的角)、方向(位)角(在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题. 3. (1)测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.提醒:方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角. (2)解决角度问题的注意事项①测量角度时,首先应明确方位角及方向角的含义. ②求角的大小时,先在三角形中求出其正弦或余弦值.③在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.巩固提升1.(2020·全国高考真题(文))在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C 【解析】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C2.(2020·全国高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12 D .23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.3. (2019·上海市金山中学高一月考)在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】B 【解析】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选:B4.(2016·全国高考真题(文))△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b=( ) A .2 B .3C .2D .3【答案】D 【解析】 由余弦定理得,解得(舍去),故选D.5.(2018·全国高考真题(理))在ABC ∆中,cos 2C =,则AB=( )A .BCD .【答案】A 【解析】因为223cos 2cos 121,25C C =-=⨯-=-所以22232cos 125215()325c a b ab C c =+-=+-⨯⨯⨯-=∴= A.6.(2012·陕西高考真题(理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12D .12-【答案】C 【解析】2221()2c a b =+,由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,cos C ∴的最小值为12,选C.7.(2019·吴起高级中学高二期中(文))在ABC ∆中,角A ,B ,C 所对的边为a,b,c ,60B =,b =则ABC ∆外接圆的面积是( ) A .2π B .πC .34πD .2π 【答案】B 【解析】设ABC △外接圆的半径r ,则22sin sin 60b r B ===,解得1r =, ∴ABC △外接圆的面积21ππ=⨯=,8.(2019·榆林市第二中学高二期中(文))在ΔABC 中,4a =,5b =,A =45°,则此三角形解的情况是( ) A .两解 B .一解C .一解或两解D .无解【答案】A 【解析】因为4a =,5b =,A =45°,所以由余弦定理得2222cos a b c bc A =+-,所以290c -+=,解得2c =或2c =, 所以此三角形解有两解. 故选:A .9.(2019·榆林市第二中学高二期中(文))已知△ABC 中,sin sin sin c b Ac a C B-=-+,则B =( ) A .6πB .4π C .3π D .34π 【答案】C 【解析】 因为sin sin sin c b Ac a C B -=-+,利用正弦定理角化边得c b a c a c b-=-+,所以()()()c b c b a c a -+=-, 所以222c b ac a -=-, 所以222a c b ac +-=,所以222122a cb ac +-=,根据余弦定理可得2221cos 22a cb B ac +-==,因为0B π<<,所以3B π=.10.(2019·陕西高三(理))在ABC △中,角,,A B C 所对的边分别是,,a b c ,且cos cos sin A B Ca b c+=,若22285b c a bc +-=,则tan B 的值为( ) A .13- B .13C .3-D .3【答案】C 【解析】ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,由cos cos sin A B C a b c +=,得:cos cos sin 1sin sin sin A B CA B C +==, 故111tan tan A B+=, 若22285b c a bc +-=,则222425b c a bc +-=,即4cos 5A =.3sin 5A ∴=,故3tan 4A =, 代入111tan tan A B+=,解得tan 3B =-. 故选:C .11.(2019·四川高三月考(理))已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且()sin sin sin a b A c C b B -⋅=-,若ABC △的面积为ABC △的周长的最小值为( )A .B .3+C .D .3+【答案】C 【解析】()sin sin sin a b A c C b B -⋅=-,∴222a ab c b -=-,∴222a b c ab +-=,∴222cos 122a b c C ab +-==,∴3C π=, 1sin2S ab C ==∴12ab =,222212c a b ab ab ab =+-≥-=(当且仅当c =时取等号),∴c ≥∴222()3()36c a b ab a b =+-=+-,∴a b +=,∴a b c c ++=设()f c c =()f c 单调递增,c ≥,∴a b c ++≥=故选:C.12.(2019·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【答案】A 【解析】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 13.(2018·全国高考真题(文))ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =( )A .π2B .π3C .π4D .π6【答案】C 【解析】 由题可知222124ABCa b c SabsinC +-==所以2222absinC a b c +-= 由余弦定理2222a b c abcosC +-=所以sinC cosC =()C 0,π∈C 4π∴=故选C.14.(2020·江苏省高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185. 当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.15.(2019·江苏高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)25. 【解析】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)3c c +-=,即213c =.所以3c =. (2)因为sin cos 2A Ba b=, 由正弦定理sin sin a b A B=,得cos sin 2B Bb b =,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.(2020·山东海南省高考真题)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________?注:如果选择多个条件分别解答,按第一个解答计分.【答案】详见解析【解析】解法一:由可得:,不妨设,则:,即.选择条件①的解析:据此可得:,,此时.选择条件②的解析:据此可得:,则:,此时:,则:.选择条件③的解析:可得,,与条件矛盾,则问题中的三角形不存在.解法二:∵,∴,,∴,∴,∴,∴, 若选①,,∵,∴,∴c=1; 若选②,,则,;若选③,与条件矛盾.。
高二数学正弦定理2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选,A1型题]佝偻病肺脾气虚型的治法是()A.温脾助运B.健脾益肺,调和营卫C.补肾填精D.补肾壮骨E.平肝潜阳 [单选,A1型题]具有高等学校医学专科学历,参加执业助理医师资格考试者,应在医疗、预防、保健机构中试用期满()A.6个月B.18个月C.1年D.2年E.3年 [单选]论文的主题、对象应主要来源于()A、实际B、书本C、个人想象 [名词解释]纱支 [单选]下列关于会计报表的编制要求,表述不正确的是()。A.在编制报表时,应保证内容完整,不得漏填B.会计报表之间,本期报表与上期报表之间的数字应允许不一致C.账簿记录是编制会计报表的主要依据,在编制会计报表前,要做好对账和结账工作,在保证账证、账账、账实相符的前提下 [单选]下列不属于合同风险的是()。A.合同期限方面的风险B.合同策划方面的风险C.合同订立方面的风险D.合同执行方面的风险 [单选]诊断急性脓胸最可靠的依据是()A.高热、胸痛B.X线所见胸部致密影C.白细胞升高D.胸穿抽出脓液E.抗生素治疗有效 [单选,A1型题]高血压风热感冒患者应避免使用()A.麻黄B.葛根C.薄荷D.菊花E.桑叶 [单选,A2型题,A1/A2型题]以下不是食品中天然有毒有害成分的是()。A.河豚毒素B.四季豆中皂苷C.鱼中组胺D.杏仁中氰苷E.有毒蜂蜜 [多选]心理护理的主要适应证是()A.情绪障碍B.心身疾病C.休克状态D.谵妄状态E.疾病康复期病人 [单选]通过传播媒介,交易者能够及时了解期货市场的交易情况和价格变化,这反映了期货价格的()。A.公开性B.预期性C.连续性D.权威性 [单选]树立()是职业道德的培训目标。A.职业道德B.个人形象C.社会榜样D.生活目标 [填空题]干气密封系统中,前置密封气介质是(),使防止机体内介质污染()。 [单选]当膨胀机进出口压力一定时,机前温度越高,单位制冷量()A、越小B、不变C、越大 [问答题,简答题]从实验数据表16.2中,计算直流稳压电路的输出电阻ro,它的大小有何意义? [单选]关于袖套测压法错误的是()A.袖套太宽,读数相对较低B.一般袖套宽度应为上臂周径的2/3C.婴儿只宜使用2.5cm的袖套D.小儿袖套宽度需覆盖上臂长度的2/3E.袖套太狭窄,压力读数偏高 [单选]溃疡性结肠炎病变多位于()A.回盲部B.末段回肠C.升结肠D.直肠和乙状结肠E.肛门 [填空题]文学的特殊对象是以______________为中心的具有审美意义的社会生活整体。 [问答题,简答题]竞赛激励活动的管理及评估内容有哪些? [单选,A1型题]患儿男,12个月。牛乳喂养,食欲欠佳,不肯进辅食,逐渐面色苍黄2个月,体重7.8kg,睑结膜苍白,心前区2级收缩期杂音,肝肋下3cm,脾肋下1.5cm。欲判断患儿有无贫血及其程度,应首先做哪种检查()A.血常规B.骨髓象C.血清总铁结合力测定D.血清铁E.转铁蛋白 [单选]黄体的形成、发育和功能,描述恰当的是().A.维持14天左右均退化B.分泌孕激素C.排卵后由卵泡内膜和卵泡颗粒细胞形成D.排卵后由卵泡膜形成E.排卵后由卵泡细胞形成 [单选]不行经肘窝内的结构有()A.肱二头肌腱B.正中神经C.桡动脉D.桡神经E.尺神经 [单选]廉租住房单套建筑面积控制在()以内。A、40㎡B、50㎡C、60㎡D、70㎡ [填空题]高层建筑结构通常要考虑()、()、()、()等方面的验算。 [单选]关于妊娠滋养细胞肿瘤,下列哪项正确?()A.侵蚀性葡萄胎可发生在流产后B.绒毛膜癌可发生在葡萄胎之后C.前次妊娠为异位妊娠,不发生绒毛膜癌D.绒毛膜癌最早出现的是脑转移E.以上都不对 [填空题]游艺机操作要做好三个安全()、()、()。 [单选,A2型题,A1/A2型题]具有明目去翳,收湿止痒敛疮功效的药物是()A.硼砂B.明矾C.炉甘石D.芒硝E.铅丹 竞争性拮抗剂B.螺内酯可以抑制醛固酮的分泌C.不可以判断是原发性还是继续性D.服药后,血钾升高E.服药后,尿钾降低 [单选,A1型题]骨盆骨折最易损伤的尿道部位是()A.阴茎悬垂部B.球部尿道C.膜部尿道D.前列腺部尿道E.膀胱颈部 [单选]提示慢性肺心病右心室肥大的最主要表现是()A.心音低钝B.心界缩小C.P2=A2D.剑突下有明显搏动E.双肺听诊有湿啰音 [判断题]接地线沿墙敷设时必须穿PVC管,同一级电压的电力电缆可穿在同一管孔内。A.正确B.错误 [单选]关于骨产道,下述哪项是正确的().A.骨盆是由骶骨、耻骨、尾骨组成B.真骨盆两侧为髂骨翼,后面为第五腰椎C.骨盆入口平面为骶岬、髂耻线与耻骨联合上缘D.骨盆出口平面是由骶尾关节、两侧坐骨棘、耻骨联合下缘围绕的骨盆腔最低平面E.中骨盆平面横径为坐骨结节间径 [单选]石油化工企业消防车辆的车型配备,应以()为主。A.大型泡沫消防车B.干粉一泡沫联用车C.高喷车D.通讯指挥车 [单选,A2型题,A1/A2型题]遵守医学伦理道德,尊重患者的知情(),为患者保守医疗秘密和健康隐私,维护患者合法权益。A.选择权B.同意权C.隐私权D.同意权和隐私权 [单选,A1型题]药品说明书中所列的【有效期】系指该药品被批准的()A.贮藏期限B.使用期限C.安全期限D.生产日期E.销售期限 [单选]阴道表层细胞脱落增加,受下列哪种激素影响?()A.孕激素B.雌激素C.雄激素D.黄体生成激素E.FSH卵泡刺激素 [单选,A1型题]长期全胃肠外营养(TPN)病人,出现高渗性非酮性昏迷的主要原因是()A.微量元素缺乏B.深静脉插管感染致败血症C.渗透性利尿,水、电解质失衡D.病人胰岛素方面不足E.内毒素中毒 [单选]信息工作程序不包括()。A.收集、整理B.辨类、归类C.整理、传递D.反馈、利用 [单选]开机后,检查电机的电流是否在额定值内,若泵在额定流量运转而电机超负荷,应()。A、停泵检查B、适当关小出口阀C、适当关小进口阀D、只要机泵振动不超标,就维持现状 [单选]单负链RNA病毒本身具有哪种酶()A.解链酶B.水解酶C.DNA多聚酶D.依赖RNA的RNA多聚酶E.依赖RNA的DNA多聚酶