第4章 三角形章末知识汇总

合集下载

七年级数学下册章末小结第四章三角形作业课件新版北师大版

七年级数学下册章末小结第四章三角形作业课件新版北师大版
所以BC=BE+EC=10. (2)因为∠CAD=∠BAC-∠BAD=75°-30°=45°,
所以∠BAE=∠CAD=45°, 所以∠DAE=∠BAE-∠BAD=45°-30°=15°.
四、全等三角形的判定
13.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是(C)
二、三角形的三边关系
6.(2018·长沙)下列长度的三条线段,能组成三角形的是(B)
A.4 cm,5 cm,9 cm
B.8 cm,8 cm,15 cm
C.5 cm,5 cm,10 cm
D.6 cm,7 cm,14 cm
7.(2018·陇南)已知a,b,c是△ABC的三边长,a,b满足|a-7|+(b-1)2=0,c为奇 数,则c=7.
C.65°
D.75°
3.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO
等于(A)
A.25°
B.30°
C.35°
D.40°
4.(2018·株洲)如图,直线l1,l2被直线l3所截,且l1∥l2,过l1上的点A作AB⊥l3交
l3于点B,其中∠1<30°,则下列结论一定正确的是(D)
17.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BE平分∠ABC,延长BE交AD的延
长线于点F.
(1)试说明△ABE≌△理由;
(2)若AD=2,BC=6,求AB的长.
解:(1)因为 AE,BE 分别平分∠DAB,∠CBA, 所以∠BAE=∠EAF,∠ABE =∠EBC , 因 为 AD∥BC ,所 以 ∠EBC = ∠F ,所 以 ∠ABE =∠F ,在 △ABE 和 △AFE 中 , ∠ABE=∠F, ∠BAE= ∠EAF , AE=AE , 所以△ABE ≌△AF E(AAS). (2)因为△ABE≌△AFE,所以 BE =EF,AB=AF.

七年级数学下册第四章三角形知识归纳

七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B

第四章 三角形(单元小结)七年级数学下册(北师大版)

第四章 三角形(单元小结)七年级数学下册(北师大版)

考点专练
考点三:关于三角形的三条重要线段
例3: 如图,已知AD,AE分别是△ABC的中线、高,且AB=5 cm,
AC=3 cm,则△ABD与△ACD的周长之差为 2 cm , △ABD与
△ACD的面积之间的关系为 ___相__等____.
A
B
C DE
考点专练
1.在△ABC中,∠B = 24°,∠C=104°,则∠A 的平分线和 BC 边上的高的夹角等于___4_0_°____.
A D
2.如图3,在△ABC 中,BC 边上的高为__A__E____.
C EB
F
图3
考点专练
(四)关于全等三角形性质及判定
A
例4: 如图,在△ABC 中,AB=AC,BE=CE,则由
E
“SSS”可以判定是(C )
A.△ABD≌△ACD C.△ABE≌△ACE
B.△BDE≌△CDE D. △ABE≌△CDE
知识专题
(五)三角形的三条重要线段 2.在三角形中,一个内角的角平分线与它的对边相交,这个 角的顶点与交点之间的线段,叫做三角形的角平分线.
A

B EC
∵AE是△ABC的角平分线,
∴∠BAE=∠CAE=
1 2
∠BAC.
三角形的三条角平分线交于一点.
知识专题
(五)三角形的三条重要线段 3.从三角形的一个顶点向它的对边所在直线作垂线,顶点 和垂足之间的线段叫做三角形的高线,简称三角形的高.
(2) 3, 4, 7;
(3) 9, 13, 5;
(4) 11, 12, 20;
(5) 14, 15, 31.
解:能摆成三角形的是(1)(3)(4),根据两边之和大于第 三边,两边之差小于第三边.

七年级下册数学第四章三角形

七年级下册数学第四章三角形

七年级下册数学第四章三角形一、三角形的基本概念。

1. 三角形的定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 例如,在平面内有三条线段AB、BC、AC,它们首尾相接,就构成了三角形ABC,记作△ABC。

2. 三角形的边、顶点和内角。

- 边:组成三角形的线段叫做三角形的边。

在△ABC中,AB、BC、AC就是三角形的三条边。

- 顶点:三角形相邻两边的公共端点叫做三角形的顶点。

△ABC有三个顶点A、B、C。

- 内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

△ABC 的三个内角分别是∠A、∠B、∠C。

3. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用符号“Rt△”表示,如Rt△ABC,其中∠C = 90°。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三条边都不相等的三角形。

- 等腰三角形:有两条边相等的三角形。

相等的两条边叫做腰,另一条边叫做底边。

两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

- 等边三角形:三条边都相等的三角形。

等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。

二、三角形的性质。

1. 三角形三边关系。

- 三角形两边之和大于第三边。

例如,在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。

- 三角形两边之差小于第三边。

即AB - BC<AC,AB - AC<BC,BC - AC<AB。

- 可以用来判断三条线段能否组成三角形。

例如,三条线段的长分别为3cm、4cm、5cm,因为3 + 4>5,3+5>4,4 + 5>3,同时3 - 4<5,3 - 5<4,4 - 5<3,所以这三条线段能组成三角形。

第四章 三角形(单元小结)-北师大版数学七年级下册

第四章 三角形(单元小结)-北师大版数学七年级下册
9.三角形的中线
三角形的中线分得的两个三角形 面积相等:S△ABE=S△ACE
(3)三角形的三条中线交于一点,这点称为三角形的重心
交点在三角形的内部
要点梳理
(1)定义:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
注意:三角形的角平分线是一条线段,而内角的角平分线是一条射线,这是二者的重要区别。
要点梳理
考点专练
例1 王伟准备用一段长30米的篱笆围成一个三角形形状的花圃. 已知第一条边长为a米, 由于受地势限制, 第二条边长只能比第一条边长的2倍多2米.(1)请用含a的式子表示出第三条边长.(2)第一条边长可以为8米吗?为什么?请说明理由. (3)能否使围成的花圃是等腰三角形?若能, 说明你的围法;若不能,请说明理由.
考点专练
【要点指导】对于三角形中重要线段的问题, 应掌握重要线段所表示的含义, 例如与角有关的有三角形的角平分线和高线, 与此同时会涉及余角的相关知识, 同时还要注意三角形中平行线性质的运用等.
考点专练
例4 如图, 已知线段AC, BD相交于点E, AE=DE,BE=CE.(1)试说明:△ABE≌△DCE;(2)当AB=5时, 求DC的长.
考点专练
解: (1)在△ABE和△DCE中,因为AE=DE, ∠AEB=∠DEC, BE=CE,所以△ABE≌△DCE(SAS).(2)因为△ABE≌△DCE, 所以AB=DC. 因为AB=5, 所以DC=5.
考点专练
【要点指导】全等三角形的性质为证明线段(角)相等提供了依据.三角形全等的判定方法有四种:“SSS”“SAS”“ASA”和“AAS”.在具体问题中, 一般只直接给出一个或两个条件(有的甚至一个条件也不直接给出), 其余条件常隐含于条件或图形中, 因此找出这些隐含条件是解答问题的关键.

第四章 三角形知识点

第四章   三角形知识点

第四章三角形一、认识三角形●三角形的有关概念1、三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫作三角形。

2、三角形的边:组成三角形的线段叫作三角形的边,可以用两个大写英文字母表示,也可以用一个小写英文字母表示。

3、三角形的顶点:相邻两边的公共端点叫作三角形的顶点。

4、三角形的角:相邻两边组成的角叫作三角形的内角,简称三角形的角。

5、角与边的对应关系:大边对大角。

6、三角形的表示:用符号“△”表示,以A,B,C为顶点的三角形记作“△ABC”,读作“三角形ABC”。

●三角形的分类1、按内角的大小分类锐角三角形(三个角都是锐角)直角三角形(最大内角为直角),互相垂直的两条边叫作直角边,最长的边叫作斜边,直角三角形ABC可以用符号“Rt△ABC”表示钝角三角形(最大内角为钝角)注:在一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个直角,最多有一个钝角。

2、按边的相等关系分类等腰三角形:有两条边相等的三角形叫作等腰三角形,其中相等的两条边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,腰和底边的夹角叫作底角。

等边三角形:三条边都相等的三角形叫作等边三角形,即腰和底边相等的等腰三角形叫作等边三角形,也叫正三角形。

不等边三角形:三边都不相等的三角形。

注:●三角形的三边关系1、三角形的两边的和大于第三边,三角形两边的差小于第三边。

(证明可以依据两点之间线段最短,大角对大边,不等式性质)2、三边关系的运用(1)判断以已知的三条线段为边能否构成三角形(2)确定三角形的第三边长(或周长)的取值范围(3)解决线段的不等关系问题(如证明几何不等式)●三角形的高1、三角形的高的概念:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足所连线段叫做三角形的高。

2、三角形高的几何语言表达形式AD是△ABC的边BC上的高,或AD是△ABC的高,或AD垂直BC与点D,或∠BDA=∠CDA=90°3、三角形三条高的位置锐角三角形三条高都在三角形的内部。

初一下册数学第四章知识点:三角形

初一下册数学第四章知识点:三角形

初一下册数学第四章知识点:三角形三角形是初一下学期学习的第四章内容,并且也是初中数学中几何部分的基础图形,这一部分是初中、高中乃至整个数学的基础,是很重要的一部分内容,具体内容请看下文初一下册数学第四章知识点的内容。

一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形内角和定理:三角形三个内角的和等于180推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角和;推论3 三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。

三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360。

多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

北师大版七年级数学下册教案(含解析):第四章三角形章末复习

北师大版七年级数学下册教案(含解析):第四章三角形章末复习

北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。

内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。

这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。

但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。

因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。

三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。

2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。

四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。

2.难点:三角形的角的性质和边的关系的运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。

2.学生准备:完成本章的学习任务,准备好相关的学习资料。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。

2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。

3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。

4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。

5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。

中考数学 第四章 课时14 三角形及其全等(知识清单重难点讲解中考真题演练)

中考数学 第四章 课时14 三角形及其全等(知识清单重难点讲解中考真题演练)

中考数学一轮复习·学与练第四章 三角形 课时14 三角形及其全等知 识 清 单考点一 三角形的概念及分类 1.三角形的概念由不在同一条直线上的三条线段首尾顺次连接所组成的 图形叫做三角形. 2.三角形的分类(1)按边分一般三角形:三条边都不相等等腰三角形:有两条边相等等边三角形:三条边都相等(2)按角分90锐角三角形:三个角都是锐角直角三角形:有一个角为钝角三角形:有一个角为钝角考点二 三角形的边角关系1.边的关系:两边之和 第三边,两边之差 第三边.判断三条边(a ,b ,c ,a ≤b ≤c )能否构成三角形,只需比较两条短边(a ,b )的和与第三边(c )的大小,若a +b >c ,则能构成三角形;反之不能构成三角形.2.角的关系(1)三角形内角和等于 ;(2)任意一个外角 与它不相邻的两个内角之和; (3)任意一个外角 任何一个和它不相邻的内角.3.边角关系:同一个三角形中,等边对等角,等角对 ,大边对 . 4.三角形的稳定性三角形具有稳定性,即当三角形的三边确定时,三角形的形状和大小也就随之确定,而不再发生改变.考点三 三角形中的重要线段 1.角平分线(1)概念:一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段.(2)图形及性质:如图1,在△ABC 中,AD 为角平分线,则有∠1= =12∠BAC .(3)内心(三角形内切圆的圆心):三角形的三条角平分线交于一点,该点称为三角形的内心,该点到三角形三边的距离相等.图1 图22.中线(1)概念:连接一个顶点与它对边中点的线段.(2)图形及性质:如图2,在△ABC 中,AD 为BC 边上的中线,则有BD = =12BC .(3)重心:三角形的三条中线交于一点,该点称为三角形的重心,该点到三角形顶点的距离等于它到对边中点距离的 倍.3.高线(1)概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.(2)图形及性质:如图3,在△ABC 中,AD 为BC 边上的高线,则有AD ⊥ ,即∠ADB =∠ADC =90°.(3)垂心:三角形的三条高线的交点,该点称为三角形的垂心.图3 图4知识延伸:外心(三角形外接圆的圆心):三角形三条边中垂线的交点.外心到三角形三个顶点的距离 .4.中位线(1)概念:连接三角形两边中点的 .(2)图形及性质:如图4,在△ABC 中,D ,E 分别为AB ,AC 的中点,则DE 为△ABC 中位线,DE ∥ 且DE =12BC .考点四全等三角形的性质及判定1.全等三角形的概念能够的两个三角形叫的全等三角形.2.全等三角形的性质(1)全等三角形的对应角、对应边、周长、面积;(2)全等三角形的对应高、对应中线、对应角平分线都分别.3.全等三角形的判定判定1:三边分别的两个三角形全等(简写成“边边边”或“SSS”).判定2:两边和它们的分别相等的两个三角形全等(简写成“边角边”或“SAS”).判定3:两角和它们的分别相等的两个三角形全等(简写成“角边角”或“ASA”).判定4:两角和其中一个角的对边分别的两个三角形全等(简写成“角角边”或“AAS”).判定5:斜边和一条直角边分别的两个直角三角形全等(简写成“斜边、直角边”或“HL”).重难点讲解命题点1 利用三角形“三线”的性质解题三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角;由三角形的中线可得线段之间的关系;由三角形的角平分线可得角之间的关系,可利用角平分线的性质和三角形的内角与外角的关系建立所求角度与已知条件的联系,达到解题的目的.经典例题1如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°【解析】根据角平分线的定义可得∠ABC=2∠ABE,由AD是BC边上的高可得∠ADB=90°,再由三角形内角和定理可得∠BAD的度数,根据∠DAC=∠BAC-∠BAD即可得解.【答案】B命题点2 全等三角形判定方法的合理选择从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,我们可以利用题目中的已知边(角)确定要补充的边(角),完善三角形全等的条件,从而得到判定两个三角形全等的思路.(1)已知两边⎩⎪⎨⎪⎧找夹角→SAS ,找直角→HL ,找第三边→SSS.(2)已知一边、一角⎩⎪⎨⎪⎧一边为角的对边→找另一角→AAS ,一边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS ,找夹边的另一角→ASA ,找边的对角→AAS.(3)已知两角⎩⎪⎨⎪⎧找夹边→ASA ,找其中一角的对边→AAS.经典例题2 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:∠C =∠D .【解析】根据题意选择“边角边”(SAS)即可求证.【证明】 ∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE .在△ADF 和△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE . ∴∠C =∠D .命题点3 三角形的角度计算问题中的方程思想方程思想的本质是设未知数,用未知量表示已知量的方法,通过分析题目,利用所学定理、性质等寻找出等量关系.三角形有关角度的计算问题,可利用三角形内角和及外角性质构建方程,利用方程思想解决有关角度问题.经典例题3 在△ABC 中,∠A ∶∠B ∶∠C =5∶6∶7,则∠B 的度数是( )A .50°B .60°C .70°D .80° 【解析】因为∠A ∶∠B ∶∠C =5∶6∶7,设∠A =5x °,∠B =6x °,∠C =7x °,根据三角形的内角和是180°,可得5x +6x +7x =180,解得x =10,所以∠B =6x °=60°.【答案】 B中 考 真 题 演 练一、选择题1. 下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 2. 已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2 C .8 D .113. 如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A =54°,∠B =48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°第3题 第4题4. 如图,在△ABC 中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是△ABC 的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG 5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A .14B .10C .3D .26. 如图,点D 在△ABC 边AB 的延长线上,DE ∥BC .若∠A =35°,∠C =24°,则∠D 的度数是( )A .24°B .59°C .60°D .69°第6题 第7题7. 如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E 作EF ∥CD (点F 位于点E右侧),且EF =2CD ,连接DF .若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2 8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =12∠ADC D .∠ADE =13∠ADC9. 如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11第9题 第10题10. 如图,直线l 1∥l 2,∠1=55°,∠2=65°,则∠3为( )A .50°B .55°C .60°D .65° 11. 如图,AB ⊥CD ,且AB =CD .E ,F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a -b +cD .a +b -c第11题 第12题12. 如图,已知点P 在线段AB 外,且P A =PB ,求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC =BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C13. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长线交AC于点E.若DF=5,BC=16,则线段EF的长为( )A.4 B.3 C.2 D.1第13题第14题14. 如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)-CD2. 其中正确的是( )A.①②③④B.②④C.①②③D.①③④二、填空题15. 三角形三边长分别为3,2a-1,4,则a的取值范围是 .16. 如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.第16题第17题17. 如图,在△ABC中,BO,CO分别平分∠ABC,∠ACB.若∠BOC=110°,则∠A=.18. 如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AC=6,则AB=.第18题第19题19. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.20. 等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.三、解答题21. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.22. 如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.23. 如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:△AEF≌△DEC;(2)若CF=AD,试判断四边形AFDC是什么样的四边形?并说明理由.24. 如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连接AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.25. 如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.26. 在等腰直角△ABC中,∠ACB=90°,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连接CQ(如图1).(1)求证:△ACQ≌△BCP;(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.①求证:CQ2=QA·QR;②判断三条线段AH,HP,PB的长度满足的数量关系,并说明理由.中小学教育资源及组卷应用平台21世纪教育网(.21c.c)。

北师版七年级下册数学 第4章 三角形 三角形的三边关系(2)

北师版七年级下册数学 第4章 三角形 三角形的三边关系(2)

感悟新知
3. 下列长度的三条线段能组成三角形的是( A ) A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)
知3-练
感悟新知
4. 下列各组数中,不可能成为一个三角形三边长
的是( ) C
A.2,3,4B.5,7,7
C.5,6,12D.6,8,10
知3-练
感悟新知
知3-练
课堂小结
三角形的三边关系
判断三条线段组成三角形的方法: “三角形的任意两边之和大于第三边”是判断三 条线段能否组成三角形的依据,利用该性质时,通常 我们只比较较短的两边的和与最长边的大小关系,若 前者大于后者,说明可以组成三角形,否则不能组成 三角形.
课堂小结
三角形的三边关系
一个等腰三角形的两边长分别为4,8,则它的周长为 ()
感悟新知
知3-练
例4 一个三角形两边的长分别为5和3,第三边的长是
整数,且周长是偶数,则第三边的长是( )
A.2或4 B.4或6C.4D.2或6
B
感悟新知
知3-练
导引:要求第三边的长,需先求出这条边长的取值范围,再 在其范围内找出满足条件的数.设三角形的第三边的 长为x,则第三边的长的取值范围为5-3<x<5+3, 即2<x<8.又在2到8之间的整数有3,4,5,6,7,而 三角形的周长x+3+5=x+8应为偶数,所以x也是偶 数,所以x的值只能是4或6,所以三角形的第三边的长 是4或6.
感悟新知
知3-练
计算每个三角形的任意两边之差,并与第三边比较, 你能得到什么结论? 再画一些三角形试一试.
感悟新知 归纳
三角形任意两边之差小于第三边.
知3-讲
感悟新知
例2下列各组数可能是一个三角形C.4,6,8

北师大版七年级数学下册学案(含解析):第四章三角形章末复习

北师大版七年级数学下册学案(含解析):第四章三角形章末复习

章末复习
知识技能考点聚焦掌握方法
专题一:三角形的三边关系
1.已知中,,,那么边的长可能是下列哪个值().A.B.C.D.
【答案】B
【解析】
2.若一个等腰三角形的两边长分别是和,则它的周长为().
A.B.C.或D.或
【答案】A
【解析】
3.长为,,,的四根木条,组成三角形,选法有().
A.种B.种C.种D.种
【答案】C
【解析】
专题二:三角形的内角和
4.如图,的大小等于().
A.B.C.D.
【答案】D
【解析】
5.如图,在中,,的平分线,相交于点,,,则
().
A.B.C.D.
【答案】C
【解析】
专题三:全等三角形的判定及应用
6.(2015·绍兴)如图,小敏做了一个角平分仪,其中,,将仪器上的点
与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线
,就是的平分线,此角平分仪的画图原理是:根据仪器结构,可得≌
,这样就有.则说明这两个三角形全等的依据是().
A .
B .
C .
D .
【答案】D
【解析】
7.(2015·宜昌)如图,在方格纸中,以为一边作,使之与全等,从
,,
,四个点中找出符合条件的点,则点有().
A.个B.个C.个D
.个
【答案】C 【解析】
8.(2015·齐齐哈尔)如图,点,
,,在同一直线上,,,要使
≌,则只需添加一个适当的条件是__________.(只填一个即可)
【答案】示例:
【解析】
9.(2015·黄岛区期末)如图,已知,,,则.。

中考数学一轮教材复习-第四章 三角形 锐角三角函数及其应用

中考数学一轮教材复习-第四章  三角形  锐角三角函数及其应用
易得四边形BEFG是矩形,∴EF=BG,
∴AF=AE+EF=AE+BG=576+469=1 045(m).
答:水平距离AF的长约为1 045 m.
(第四章 三角形)
考点2 解直角三角形的实际应用(10年9考)
2-1 [2024黔东南州模拟]随着传统能源的日益紧缺,太阳能的应用将会越来
越广泛,如图(1)是一款太阳能路灯实物图,图(2)是某校兴趣小组测量太
点拨
tan D=tan A
5
2
.
(第四章 三角形)
考点2 解直角三角形的实际应用(10年9考)
2 [2023贵州22题10分]贵州旅游资源丰富.某景区为给游客提供更好
的游览体验,拟在如图(1)景区内修建观光索道.设计示意图如图(2)
所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最

方向角:如图(3),点A,B,C关于点0的方向角分别是北偏东 30°、
的实际
⑰ 南偏东60°
、北偏西45'(也称西北方向)
解直角
应用
【注意】通常需
要作辅助线构造
直角三角形解题
(第四章 三角形)
2 [人教九下P19第9题变式]如图,水库某段横截面迎水坡AB的坡度
i=1∶2,若坡高BC=20 m,则坡面AB的长为 20 5


∠A的正切:tan A=③



(第四章 三角形)
【规律记忆】30°,45°,60°角的正弦值的分母都是2,
分子依次为1, 2, 3;30°,45°,60°角的余弦值分别是
60°,45°,30°角的正弦值
特殊角的三角函数值
α
30°

第四章三角形小结与复习(教案)

第四章三角形小结与复习(教案)
-海伦公式的应用:对于海伦公式的推导和应用,学生可能会感到困惑,需要通过详细讲解和实际例题,使学生理解并能够运用海伦公式解决问题。
-特殊三角形的性质:等腰三角形、直角三角形、等边三角形的性质及其应用是学生理解的难点,需要通过直观图形和实际操作,让学生深入理解其性质。
举例:在讲解三角形判定方法时,针对学生容易混淆的情况,设计不同类型的题目,如给出两边和一角、两边和夹角等,让学生通过练习,掌握判定方法的灵活运用。
-三角形面积计算:灵活运用底乘高除以2的公式计算三角形面积,以及海伦公式的应用。
-特殊三角形:深入理解等腰三角形、直角三角形、等边三角形的性质和判定方法。
举例:在讲解三角形分类时,通过图形展示和实际操作,让学生直观感受不同类型三角形的特点,强调等腰三角形底角相等的重要性。
2.教学难点
-三角形判定方法的灵活运用:学生往往在判定方法的选择和应用上存在困难,需要通过大量实例和练习,帮助学生掌握不同情况下的判定方法。
-直角三角形的性质和判定。
-等边三角形的性质和判定。
7.三角形的应用
-在实际生活中的应用,如测量、设计等。
本节课将围绕以上内容展开,通过复习和巩固,提高学生对三角形知识的掌握程度。
二、核心素养目标
1.培养学生的几何直观能力,通过三角形的学习,使学生能够运用几何图形理解和解决实际问题,提升空间观念。
2.培养学生的逻辑推理能力,通过三角形性质的推理和应用,让学生掌握逻辑思维方法,提高分析问题和解决问题的能力。
第四章三角形小结与复习(教案)
一、教学内容
第四章三角形小结与复习(教案):
1.三角形的定义及分类
-定义:由三条线段首尾相连围成的图形。
-分类:按边长分为不等边三角形、等腰三角形、等边三角形;按角分为锐角三角形、直角三角形、钝角三角形。

2025年四川省聚焦中考数学必备考点透析-第4章 三角形4.3 等腰三角形与直角三角形

2025年四川省聚焦中考数学必备考点透析-第4章 三角形4.3 等腰三角形与直角三角形
容,积累解题素材.
(1)等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰
上的高相等.
(2)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可
用等面积法证明).
返回目录
7
3. 等腰三角形的面积
1
S = ah ,其中 h 是边 a 上的高.
2
方法点拨:等腰三角形底边上的高 h = 2 −
聚焦新中考·必备考点透析
第四章 三角形
4.3 等腰三角形与直角三角形
2025
数 学
目录
1 紧贴课标·考点过关
2 聚焦题型·重难突破
3 四川中考真题精练
紧贴课标·考点过关
1. 等腰三角形的判定
(1)定义:在同一三角形中,有两条边①
相等
的 三角形是等腰

三角形.
(2)判定定理:在同一三角形中,如果两个角相等,那么这两个角所对
的边也相等(简称:等角对②
等边
).
(3)一个角的平分线与其对边上的中线、高互相重合的三角形是等腰三
角形.
返回目录
3
方法点拨:对于等腰直角三角形的判定,需判定它既是直角三角形又是
等腰三角形.另外,等腰直角三角形具有直角三角形和等腰三角形的一
切性质.
返回目录
4
Hale Waihona Puke 2. 等腰三角形的性质(1)等边对③
等角
据不同的条件进行选择,使问题简单化.
返回目录
9
2. 等边三角形的性质
(1)等边三角形的三边都⑱
相等
.

(2)等边三角形的内角都相等,且均为⑲
60°
.

(3)等边三角形每一条边上的中线、高和所对角的平分线互相⑳ 重合 .

第四章 三角形 复习总结

第四章 三角形 复习总结

七年级下第四章:三角形一、知识点框架三角形内角和定理三角形三角形三边关系角平分线三条重要线段中线高线全等图形的概念全等三角形的性质三角形SSS全等三角形SAS全等三角形的判定ASAAAS全等三角形的应用利用全等三角形测距离尺规作三角形二、知识点复习:(一)知识点1:三角形的内角和及分类1.三角形的内角和等于,直角三角形的两个锐角 . 2.三角形按角分类,可以分为三角形,三角形,三角形.巩固练习:在△ABC中,1.∠C=70°,∠A=50°,则∠B= 度;2.∠B=100°,∠A=∠C,则∠C= 度;3.2∠A=∠B+∠C,则∠A= 度.4.∠A∶∠B∶∠C=1∶3∶5,则∠A = ∠B=∠C=.5.一个三角形可以有两个直角吗?三角形的三个角能都大于70°吗?能都小于50°吗?(二)知识点2:三角形的三边关系1.三角形任意两边之和第三边,三角形任意两边之差第三边。

巩固练习:1.已知一个三角形的两边长分别是2cm和4cm,则第三边长x的取值范围是;若x是奇数,则x的值是;2.一个等腰三角形的一边是2cm,另一边是9cm ,则这个三角形的周长是cm 3.一个等腰三角形的一边是5cm,另一边是7cm ,则这个三角形的周长是cm1. 三角形的中线:三角形中,连接一个 与它 叫做三角形的中线 2.三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的 与 叫做三角形的角平分线.3.三角形的高线:从三角形的一个 向它的 所在的直线作垂线,顶点与垂足之间的 叫做三角形的高线.4 .三角形的三条中线交于 ,这一点称为三角形的 .三角形的三条角平分线交于 ,三角形的三条高 交于 . 巩固练习:1.如图在△ABC 中,BC 边上的高是 ,AB 边上的高是在△BCE 中, BE 边上的高是: , EC 边上的高是: 在△ACD 中,AC 边上的高是: , CD 边上的高是: 2.△ABC 中,D 为BC 上的一点,且S △ABD =S △ADC , 则AD 为BC 边上的 。

七下第四章《三角形》全章课件

七下第四章《三角形》全章课件

B
C
2.有公共点
D
A
A O
AD
A
E
D
B
C B
O B
CD
E CB
C
总结归纳 1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
(2)用长度为6㎝的木棒能与它们组成三角 形吗?为什么?用长度为11㎝的木棒呢?
解: 能。因为第三边的范围是大于3cm小于 11cm,6cm在此范围内。11cm不能,因为11cm 不在此范围内。
例2
(3)如果第三边长是奇数,那么第三边可能 是多长?
解: 可能是5cm、7cm、9cm
(4)如果周长是奇数,那么第三边可能是哪 几个数?
解:(1)对应边有EF和 NM,FG和MH,EG和NH; 对应角有∠E和∠N, ∠F 和∠M, ∠EGF和∠NHM.
(2)求线段NM及HG的长度;
解:∵ △EFG≌△NMH,
∴NM=EF=2.1cm,
EG=NH=3.3cm.
∴HG=EG –EH=3.3-1.1=2.2(cm).
(3)观察图形中对应线段的数量或位置关系,试提出

归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
下面哪些图形是全等图形?
大小、形状 完全相同
(1)
(2)
(3)
(5)
(6)
(7)
(9)
(10)
(11)
(4) (8) (12)

第四章《 三角形 》复习总结 ppt课件

第四章《 三角形 》复习总结 ppt课件

本章总结提升
[点析]本题以构成三角形三边关系为载体,主要考查了整式 计算与三角形的有关边知识的理解与运用,在探究等腰三角形的 形状时要注意分类讨论,构建方程分析与解决实际问题.
本章总结提升
► 类型二 等腰三角形
例3 一个三角形的两条边相等,周长为18 cm,三角形一边 长为4 cm,求其他两边长.
本章总结提升
例10 如图4-T-8,AB=AE,∠B=∠E,BC=ED,F是CD的
中点,则AF⊥CD吗?试说明理由.
图4-T-8
本章总结提升
解:连接AC,AD,由AB=AE,∠B=∠E,BC=DE,根据 “SAS”可知△ABC≌△AED,
根据全等三角形的对应边相等可知AC=AD. 由AC=AD,CF=DF,AF=AF(公共边), 根据“SSS”可知△ACF≌△ADF. 根据全等三角形的对应角相等可知∠AFC=∠AFD. 又由于F在直线CD上,可得∠AFC=90°, 即AF⊥CD.
[解析] 本题分两种情况:①腰长为4 cm,②底边长为4 cm. 解答时要注意求出的边长要符合“三角形两边之和大于第三边” .
本章总结提升
解:①当腰长为 4 cm 时,则底边长为 18-4×2=10(cm),此 时,三角形三边长为 4 cm,4 cm,10 cm,因为 4+4<10,不符合 三角形三边关系,所以当三角形的腰长为 4 cm 时不合题意,舍去; ②当底边长为 4 cm 时,则腰长为182-4=7(cm),此时三角形的三 边长为 4 cm,7 cm,7 cm,4+7>7,符合三角形三边关系,所以, 该三角形其他两边长为 7 cm,7 cm.
图4-T-4
本章总结提升
解:如图4-T-5所示.①先画射线BC;
图4-T-5

初中数学 九年级 第4章 锐角三角函数 知识点清单 最新最全

初中数学 九年级 第4章 锐角三角函数 知识点清单 最新最全

第4章锐角三角函数4.1 正弦和余弦知识点1 正弦1.正弦的定义2.特殊角的正弦值3.利用计算器求锐角的正弦值或由正弦值求锐角。

特别提醒1. sinα是完整的数学符号,是一个整体,不能理解成sin·a2.正弦符号后面可以跟单个小写希腊字母或单个英文字母或三个大写英文字母或数字表示的角,也可以跟度数,如sinα,sin A, sin∠ ABC,sin∠2, sin 70°.知识点2 余弦1.余弦的定义2.特殊角的余弦值3.利用计算器求锐角的余弦值或由余弦值求锐角。

知识点3 互余两角正弦值和余弦值的关系1.同一锐角的正弦值和余弦值之间的关系:sin²A+cos²A=1(平方关系)2.互余两角的正弦值和余弦值之间的关系:3.sin A=cos(90°-∠A) cos A=sin(90°-∠A)锐角三角函数之间的关系都可用定义推理得出.4.2 正切知识点1 正切1.正切的定义2.特殊角的正切值3.利用计算器求锐角的正切值或由正切值求锐角。

4.拓展:(1)互余两角的正切值之间的关系:tan α·tan(90°-α)=1.(2)锐角α的正弦值、余弦值、正切值之间的商数关系:tan α= sinαcosα特别提醒:1.tan a是完整的数学符号,是一个整体,不能理解成tan・α.2.tan α中的α角的符号"∠"习惯上省略不写,但对于用三个大写英文字母或数字表示的角,角的符号不能省略。

3. tanα的值只与角α的大小有关,与所在直角三角形的边的长短无关.4.正切符号后面可以跟单个小写希腊字母或单个大写英文字母或三个大写英文字母或数字表示的角,也可以跟度数.知识点2 锐角三角函数1.定义:从正弦、余弦、正切的定义看到,任意给定一个锐角a都有唯一确定的比值sin α(或cos α,tan α)与它对应.当角α变化时,它的比值sin α(或cos α,tan α)也随之变化.因此我们把锐角α的正弦、余弦和正切统称为角α的锐角三角函数2.特殊角的三角函数值:特别提醒并非只有在直角三角形中才有三角函数值,而是只要有角就有三角函数值.锐角三角函数的定义说明了直角三角形中的边角之间的关系,它是一个比值,无单位,这些比值只与锐角的大小有关.在锐角三角函数中,自变量是角a.4.3 解直角三角形知识点1 解直角三角形的定义一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角,在直角三角形中利用已知元素求其余未知元素的过程叫作解直角三角形.(1)在直角三角形中、除直角外的五个元素中,已知其中的两个元素(至少有一个是边),可求出其余的三个未知元素(知二求三)(2)一个直角三角形可解,则其面积可求.但在一个解直角形的题中,如无特别说明,则不包括求面积.知识点2 直角三角形中的边角关系1.直角三角形中的边角关系:在直角三角形ABC中,∠C为直角,∠A,∠B,∠C所对的边分别为a,b,c,那么除∠C外的5个元素之间有如下关系:1)三边之间的关系:a²+b²=c²(勾股定理)(2)两锐角之间的关系:∠A+∠B=90(3)边角之间的关系:sinA=∠A的对边斜边= ac,sinB=∠B的对边斜边= bc,cosA =∠A的邻边斜边= bc, cosB =∠B的邻边斜边= ac,tanA=∠A的对边∠A的邻边= ac, tanB =∠B的对边∠B的邻边= ac,3.运用关系式解直角三角形时,常常要用到以下变形:(1)锐角之间的关系:∠A=90°-∠B,∠B=90°-∠A;(2)三边之间的关系:a=√c2−b2, b=√c2−a2,c=√a2+b2;(3)边角之间的关系:a=c·sinA ,a=c·cosB ,a=b·tanA ,b=c·sinB ,b=c·cosA ,b=a·tanB,4.4 解直角三角形的应用知识点1 解直角三角形在实际中的应用1.利用解直角三角形解决实际问题的一般步骤:(1)画出平面图形,将实际问题抽象为数学问题,转化为解直角三角形的问题;(2)根据已知条件的特点,灵活选用锐角三角函数等知识解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.2.解决实际问题时,常见的基本图形及相应的关系式如下表所示.特别提醒1.当实际问题中涉及的图形可以直接转化为直角三角形时,可利用解直角三角形的知识直接求解.2.在解直角三角形时,若相关的角不是直角三角形的内角,应利用平行线的性质或互余互补的角的性质将其转化为直角三角形的内角,再利用解直角三角形的知识求解.3.问题中有两个或两个以上的直角三角形,当其中一个直角三角形不能求解时,可考虑分别由两个直角三角形找出含有相同未知元素的关系式,运用方程求解。

第4章相似三角形复习课件(浙教版)

第4章相似三角形复习课件(浙教版)
【点悟】 比较某几个设计方案的好坏,一般的方法 就是进行计算来比较好坏,运用数据来说明问题,数据是 最具有说服力的证据.
全效学习 学案导学设计
画一画研一研
检查视力时,规定人与视力表之间的距离 应为5米.如图4-11(1),现因房间两面墙的距离为3米, 因此使用平面镜来解决房间小的问题.若使墙面镜子能呈 现完整的视力表,如图4-11(2),由平面镜成像原理,作 出了光路图,其中视力表A,B的上下边沿A,B发出的光 线经平面镜MM′的上下边沿反射后射入人眼C处.如果视 力表的全长为0.8米,请计算出镜长至少为多少米?
A.ac=db C.a+b2b=c+d 2d
B.badc=bc D.a+b b=c+d b
全效学习 学案导学设计
( C)
画一画 研一研
1.在同一时刻,身高1.6米的小强在阳光下
的影长为0.8米,一棵大树的影长为4.8米,则树的高度为
( C)
A.4.8米
B.6.4米
C.9.6米
D.10米
【解析】 设树高为 x,则10..68=4x.8,x=9.6(米),故选 C.
全效学习 学案导学设计
图4-3
画一画 研一研
(1)求证:△EDM∽△FBM; (2)若DB=9,求BM. 【解析】 ∵AB=2CD,E是AB的中点,可先证明四 边形BCDE是平行四边形,然后就证得△EDM∽△FBM. 解:(1)∵E是AB的中点,∴AB=2EB.∵AB=2CD, ∴CD=EB. 又∵AB∥CD,∴四边形CBED是平行四边形, ∴CB∥DE,∴∠DEM=∠BFM,∠EDM= ∠FBM, ∴△EDM∽△FBM.
3.如图4-9所示,△ABC中,CD⊥AB,垂足为D. 下列条件中,能证明△ABC是直角三角形的有__①__②__④___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末知识汇总
类型一三角形内角和定理的运用
命题点:三角形内角和
例1在△ABC中,∠A=20°,∠B=60°,则△ABC是()
A.等边三角形B.锐角三角形
C.直角三角形D.钝角三角形
解析:由三角形的内角和定理得,∠A+∠B+∠C=180°,故∠C=180°-20°-60°=100°,故△ABC是钝角三角形,故选D.
答案:D
类型二三角形三边关系定理的运用
例2若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长
为()
A.7B.5
C.5或7D.6
解析:当3为底时,其他两边都为1,因为1+1<3,所以不能构成三角形,故舍去;当3为腰时,其他两边为3和1,3,3,1可以构成三角形,周长为7,故选项A正确.
答案:A
类型三三角形全等的条件与性质的运用
例3如图,AC和BD相交于点O,OA=OC,OB=OD.试说明AB与CD的位置关系.
解析:由题意分析可知AB ∥CD ,说明这一结论需得一组内错角相等即可.
解:在△DOC 和△BOA 中,
⎩⎪
⎨⎪
⎧OA =OC ,∠DOC =∠BOA ,OB =OD ,
所以△DOC ≌△BOA ,所以∠A =∠C .所以AB ∥CD . 类型四 三角形的作图
例4 如图,已知:线段a 及∠O ,只用直尺和圆规,求作:△ABC ,使BC =a ,∠B =∠O ,∠C =2∠B .(在指定作图区域作图,保留作图痕迹,不写作法)
解析:先作一个角等于已知角,即∠MBN =∠O ,在边BN 上截取BC =a ,以射线CB 为一边,C 为顶点,作∠PCB =2∠O ,CP 交BM 于点A ,
△ABC即为所求.
解:如图所示.
类型五三角形全等的实际应用
例5如图,七年级数学兴趣小组要测量河中浅滩B(可看成一点)与对岸4之间的距离.先在另一岸边确定点C,使C,A,B三点在同一条直线上,再在AC的垂直方向上作线段CD,取CD的中点O,然后过点D作DF⊥CD,使F,O,A三点在同一条直线上,在DF上取一点E,使E,O,B三点也在同一条直线上.那么EF的长就是浅滩B与对岸A之间的距离,你能说出同学们这样做的根据吗?
解析:要得到FE =AB ,只要说明△FEO ≌△ABO 即可,而要说明△FEO ≌△ABO ,则需要先说明△AOC ≌△FOD .
解:因为AC ⊥CD ,FD ⊥CD ,所以∠C =∠D =90°.在△AOC 和△FOD
中,⎩⎪
⎨⎪
⎧∠AOC =∠FOD ,CO =DO ,∠C =∠D ,
所以△AOC ≌△FOD (ASA).所以OA =OF ,∠A
=∠F .在△AOB 和△FOE
中,⎩⎪
⎨⎪
⎧∠A =∠F ,OA =OF ,∠AOB =∠FOE ,
所以
△AOB ≌△FOE (ASA).
所以AB =FE ,即EF 的长就是浅滩B 与对岸A 之间的距离.。

相关文档
最新文档